
HAL Id: hal-00114684
https://hal.science/hal-00114684v1

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Operational Semantics for PBC with Asynchronous
Communication

Raymond Devillers, Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck
Pommereau

To cite this version:
Raymond Devillers, Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck Pommereau. Operational
Semantics for PBC with Asynchronous Communication. 2002, pp.1-6. �hal-00114684�

https://hal.science/hal-00114684v1
https://hal.archives-ouvertes.fr

Proc. of HPC’02, SCS, 2002. c© 2002 SCS

Operational Semantics for PBC with Asynchronous Communication

R. Devillers1, H. Klaudel2, M. Koutny3, E. Pelz2, and F. Pommereau2

1 Département d’informatique, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium. rdevil@ulb.ac.be
2 Université Paris 12, LACL, 61 avenue du général de Gaulle, 94010 Créteil, France.

{klaudel,pelz,pommereau}@univ-paris12.fr
3 Department of Computing Science, University of Newcastle upon Tyne, NE1 7RU, United Kingdom.

Maciej.Koutny@newcastle.ac.uk

Keywords: Petri nets, process algebra, asynchronous
communication, structured operational semantics.

Abstract
This paper presents two related algebras which can be
used to specify and analyse concurrent systems with
synchronous and asynchronous communications. The
first algebra is based on a class of P/T-nets, called
boxes, and their standard transition firing rule. It is an
extension of the Petri Box Calculus (PBC). Essentially,
the original model is enriched with the introduction of
special ‘buffer’ places where different transitions (pro-
cesses) may deposit and remove tokens, together with
an explicit asynchronous communication operator, de-
noted by tie, allowing to make them ‘private’. We also
introduce an algebra of process expressions correspond-
ing to such a net algebra, by augmenting the existing
syntax of PBC expressions, and defining a system of
SOS rules providing their operational semantics. The
two algebras are related through a mapping which, for
any extended box expression, returns a corresponding
box with an isomorphic transition system.

INTRODUCTION
This paper is concerned with the theme of relat-

ing process algebras, such as CCS [9] and CSP [6], and
Petri nets [11]. In general, the approaches proposed in
the literature aim at providing a Petri net semantics
to process algebras whose definition has been given in-
dependently of any Petri nets semantics (see, e.g., [5]).
Another way is to translate elements from Petri nets
into process algebras such as ACP [1] (see, e.g., [2]).

A specific framework and the starting point of the
current paper is a concrete process algebra, called the
Petri Box Calculus (PBC [3, 4]), designed with the aim
of allowing a compositional Petri net semantics. PBC
is composed of an algebra of process expressions (called
box expressions) with a fully compositional translation
into labelled safe Petri nets (called boxes). In this pa-
per, the original PBC is extended by the introduction of

special ‘buffer’ places where different transitions (pro-
cesses) may deposit and remove tokens, together with
an explicit asynchronous communication operator, de-
noted by tie, allowing to make them ‘private’.

In the variant of the original PBC considered here,
places are labelled by their status symbols (e for entry,
x for exit, and i for internal) while transitions are la-
belled by CCS-like synchronous communication actions,
such as a, â, and τ (similarly as in CCS, τ represents
an invisible action). The operators considered are: se-
quence E; E′ (the execution of E is followed by that
of E′); choice E2E′ (either E or E′ can be executed);
parallel composition E‖E ′ (E and E′ can be executed
concurrently); iteration E~E ′ (E can be executed an
arbitrary number of times, and is followed by E ′); and
scoping E sc a (all handshake synchronisations involv-
ing pairs of a- and â–labelled transitions are enforced,
and after that they may no longer be executed alone).
We illustrate some of the PBC constructs in figure 1,
where the upper net is the translation of the box ex-
pression (d2a)‖((â~c)‖a).

e

x

d a

e

x

c

â e

x

a

the box of (d2a)‖((â~c)‖a)

e

x

d

e

x

cτ

e

x

τ

the box of ((d2a)‖((â~c)‖a))) sc a

Figure 1. Two expressions and the corresponding Petri
boxes of the original PBC.

The operational semantics of PBC is given through
SOS rules in Plotkin’s style [10]. Instead of expressing

1

2 R. Devillers, H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau

the evolutions through rules modifying the structure of
the expressions, like a.E

a
−→ E in CCS, the idea is to

represent the current state of the evolution using over-
bars and underbars, respectively representing the initial
and final states of the corresponding (sub)expressions.
This is illustrated in figure 1, where the lower net is
the initially marked scoping of the upper net w.r.t. the
communication action a.

There are two kinds of SOS rules: equivalence rules
specifying when two distinct expressions denote the very
same state, e.g.,

((d2a)‖((â~c)‖a))) sc a ≡ ((d2a)‖((â~c)‖a))) sc a

≡ ((d2a)‖((â~c)‖a))) sc a ≡ ((d2a)‖((â~c)‖a))) sc a

and evolution rules specifying when we may have a state
change, e.g.,

((d2a)‖((â~c)‖a))) sc a
{d}
−→ ((d2a)‖((â~c)‖a))) sc a

It was shown in [4, 8] that the two algebras of the
original PBC are fully compatible, in the sense that a
box expression and the corresponding box generate iso-
morphic transition systems.

Recently, [7] introduced a new set of basic boxes
and a new operator on Petri boxes (denoted by tie) for
the modelling of asynchronous interprocess communica-
tion. This extension is based on a set of special places
sb labelled with a link symbol b, as shown in figure 2.
An intuitive meaning of a b–labelled place is that some
transitions can insert tokens into it, while others can
remove them, thus effecting asynchronous communica-
tion. Moreover, each PBC operator is extended in such
a way that all the b–labelled places are combined into
a single one (see the box of b+‖b− in figure 2). The tie

operator w.r.t. a link b, when applied to such a net,
changes the status of the b–labelled place into b, defin-
ing by this the scope of the asynchronous links w.r.t. b;
such a place can no longer be glued with other buffer
places (see the box of (b+‖b−) tie b in figure 2, and the
box in figure 4). The b–labelled places may be viewed
as a new kind of internal places, and so there is a single
status b for all the link symbols.

Within the domain of box expressions, the specific
device for inserting and removing messages from buffers
is provided through basic expressions of the form b+ and
b−, respectively (see the boxes of b+ and b− in figure 2).
There is also a basic expression b± which both remove
and add a token, in effect checking for the presence of
a token (message) in the buffer place. Although the re-
sulting model, called PBC with Asynchronous Commu-
nication (or PBCac), is no longer based on safe Petri

nets since the buffer places can be unbounded, the ex-
tension is conservative as the remaining places are still
safe, as in the original PBC (see the box in figure 4 in
which the b–labelled place is unbounded, whereas all
the remaining ones are safe).

The aim of this paper is to introduce the PBCac

model which extends the original PBC with new devices
supporting asynchronous interprocess communication.
The model will be based on two algebras, an algebra of
box expressions and an algebra of boxes, both consti-
tuting conservative extensions of their counterparts in
the original PBC. On the technical level, we will extend
the PBC syntax by introducing specific constructs mod-
elling the tie operator and, in particular, the unbounded
nature of the buffer places. The original operational se-
mantics rules of PBC will be augmented, yielding a sys-
tem of SOS rules providing the operational semantics of
PBCac expressions. The two algebras forming PBCac

will be related through a mapping which, for any box
expression, returns a corresponding box with an isomor-
phic transition system.

e

sb

b

x

τ

the box of b+

e

sb

b

x

τ

the box of b−

e

sb

b

x

τ

e

x

τ

the box of b+‖b−

e

sb

b

x

τ

e

x

τ

the box of (b+‖b−) tie b

Figure 2. Asynchronous link operation.

AN ALGEBRA OF PETRI BOXES
We assume sets A

df

= {τ, a, â, . . .} of actions and

B
df

= {b, b′, . . .} of links to be given. The former are
communication actions which will be used, in particu-
lar, to model synchronous handshake communication.
The latter are a device which allows one to express
asynchronous communication, where the sending and
receiving of a message do not need to happen simulta-
neously. Similarly as in CCS, the actions a and â can
synchronise and produce a silent (internal) action τ .
A marked labelled net (labelled net, for short) is a tu-

ple Σ
df

= (S, T, W, λ, M) such that: S and T are disjoint

Operational Semantics for PBC with Asynchronous Communication 3

sets of respectively places and transitions ; W is a weight
function from the set (S×T)∪ (T×S) to the set of nat-
ural numbers IN; λ is a labelling function for places and
transitions such that λ(s) ∈ {e, i, x, b} ∪ B (we assume
that e, i, x, b 6∈ B), for every place s ∈ S, and λ(t) ∈ A,
for every transition t ∈ T ; and M is a marking, i.e., a
multiset over S. A step is a finite multiset of transition
labels.

If the labelling of a place s in Σ is e then s is an
entry place, if i then s is an internal place, if x then s

is an exit place, if b or b ∈ B then s is a buffer place
(closed or open, respectively). By convention, ◦Σ and
Σ◦ denote respectively the entry and exit places of Σ.
The e-, i- and x–labelled places are called control flow
places.

All nets are assumed to be T-restricted, i.e., for ev-
ery transition t there are control flow places s and r

such that W (t, s) > 0 and W (r, t) > 0.
A labelled net Σ is marked if at least one control

flow place is marked; and unmarked otherwise (notice
that in such a case buffer places may still contain to-
kens). We will say that Σ is in an entry marking if
the marking of Σ restricted to the control flow places
is ◦Σ, and in an exit marking if the marking of Σ re-
stricted to the control flow places is Σ◦. Moreover, we
define Σ and Σ as, respectively, (S, T, W, λ, ◦Σ + M ′)
and (S, T, W, λ, Σ◦ + M ′) where M ′ is the marking of
Σ restricted to the buffer places.

A finite step sequence semantics for a labelled net
Σ captures the potential concurrency in the behaviour
of the system modelled by Σ. It is illustrated for the
example given in the appendix.

The marking M of Σ is safe if for every control flow
place s ∈ S, M(s) ∈ {0, 1}; and it is clean if ◦Σ ⊆ M

or Σ◦ ⊆ M implies that M restricted to the control
places is equal to ◦Σ or Σ◦, respectively. A labelled net
is called safe (clean) if all its reachable markings are
safe (respectively, clean).

Boxes with the tie operator
A box is a T-restricted labelled net Σ such that

◦Σ 6= ∅ 6= Σ◦. An unmarked box Σ will be called static
if each marking reachable from Σ or from Σ is safe and
clean. Static boxes are net counterparts of static expres-
sions, i.e., expressions without overbars and underbars.
A marked box Σ is dynamic if each marking reachable
from its initial marking or from Σ or from Σ is safe and
clean. Dynamic boxes are net counterparts of dynamic
expressions, i.e., expressions with active subexpressions
indicated by overbars and underbars. One can show that
if Σ is a static box and Θ is derivable from Σ then Θ

is a dynamic box.

The box operators considered in this paper can be
divided in two groups: the control flow operators, and
the communication ones. The first group, which con-
sists of sequential and parallel compositions, choice and
iteration, are synthesized from the refinement meta-
operator [4]. Each binary operator on nets, op, is de-
scribed by a net Ωop with two transitions v1 and v2,
which can be refined by nets Σ1 and Σ2 in the process
of forming a new net Σ1 op Σ2. This corresponds for-
mally to the application of a process-algebraic operator
op to its two arguments.

Operators of the second group, scoping and asyn-
chronous link, are concerned with the modelling of inter-
process communication. Intuitively, scoping is an oper-
ation which combines synchronous communication and
restriction. In the net Σ sc a, each pair of transitions, t

and u, respectively labelled by a and â, gives rise to a
new τ–labelled transition which inherits the connectiv-
ity of both t and u; after that all the transitions labelled
by a and â are removed (this operation is illustrated in
the lower part of figure 1).

The PBCac scheme of introducing asynchronous
communication is based on the buffer places which can
hold tokens representing messages, and two operations:
(i) the merge operation combines together buffer places
labelled by the same b ∈ B; and (ii) the tie b opera-
tor which encapsulates b–labelled buffer places, so that
no further gluing with other buffer places is possible
(in effect, it acts as a hiding operator for asynchronous
communication). Formally, we proceed as follows.

Let Σ
df

= (S, T, W, λ, M) be a box, and SB
df

= {sb |
b ∈ B ∧ λ−1(b) 6= ∅} be a set of fresh places. The

merge operation defines a box m(Σ)
df

= ((S \ λ−1(B)) ∪
SB, T, W ′, λ′, M ′) such that:

– The label of each new place sb is b; otherwise the
labels are unchanged.

– The marking of each new place sb is the sum of the
tokens in all b–labelled places of Σ; otherwise the
marking is unchanged.

– For each new place sb and every t ∈ T , the weight
of the arc from sb to t (from t to sb) is the sum of
weights from each b–labelled place of Σ to t (respec-
tively, the sum of weights from t to each b–labelled
place of Σ); otherwise the weights are unchanged.

For a box Σ and b ∈ B, Σ tie b is defined as Σ

with the status of each b–labelled place changed to b.
Notice that if no b–labelled places are present, then
Σ tie b = Σ.

All original PBC operations are adapted to the new
context, with the only difference being the treatment

4 R. Devillers, H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau

of b- and b–labelled places (not existing in the original
PBC) which are regarded as if internal, i.e., having the
status i. Formally, the scoping construct remains the

same, Σ sc a
df

= Σ scPBC a and, for any binary PBC

operator opPBC, we define Σ op Σ′ df

= m(Σ opPBCΣ′).
Thus, for any b ∈ B there will be at most one b–labelled
place in Σ op Σ′.

AN ALGEBRA OF EXPRESSIONS
The main new feature of PBCac with respect to

the existing PBC syntax is the E.b notation reflecting
the token buffering feature introduced by asynchronous
links. Intuitively, E.b represents a system modelled by
E with one extra resource inside a b–labelled buffer,
which can subsequently be consumed by actions spec-
ified within E (or within F , if E.b is a subexpression
of F).

As in the original PBC approach, PBCac distin-
guishes two kinds of process expressions: the static and
dynamic ones. The former model the structure of a con-
current system in which the control flow part is dormant
and so no action can be executed (in Petri net terms,
this corresponds to having completely unmarked con-
trol flow places). However, the system may still have
some resources (asynchronous messages) stored in com-
munication buffers (in Petri net terms, this corresponds
to having marked buffer places). The dynamic expres-
sions represent concurrent systems where the control
flow part is allowed to progress (in Petri net terms, any
place can be marked).

We consider the following syntax of static PBCac

expressions, where a ∈ A and b ∈ B:

E ::= τ | a | â | b+ | b− | b± | E‖E | E2E | E; E

| E~E | E sc a | E tie b | E.b

The syntax of dynamic PBCac expressions is a
straightforward adaptation of that used by the original
PBC (by adding the last two constructs):

D ::= E | E | D sc a | D‖D | D2E | E2D

| D; E | E; D | D~E | E~D | D.b | D tie b

Moreover, we will use F to denote any static or dynamic
expression. As in PBC, the expressionE represents E in
its initial state (in terms of nets, this corresponds to the
initially marked box of E). Similarly, E represents E in
its final state (in terms of nets, this corresponds to the
finally marked box of E). Note that, with respect to the
notations used in [3, 4], the above syntax uses slightly
different symbols to denote scoping (E sc a instead of
[a : E]) and iteration (E~E ′ instead of 〈E ∗E′]). How-
ever, their semantics will remain unchanged. Note also

that the .b notation is needed for static as well as for dy-
namic expressions because a dormant part of a dynamic
expression (represented by a static subexpression) may
still have tokens in buffer places.

One of the key features of the original PBC is that
all nets corresponding to box expressions are safe. Here
we want to retain this property when considering only
the control flow places (this is not desired for buffer
places, which may contain unused resources even after
the whole system has terminated). To achieve this, we
impose the same syntactic constraints as it has been
done in [3] (although this is not essential to preserve
our final consistency property, see theorem 2 below).

e

x

a

e

b

x

τ

e

b

x

τ

e

b

x

τ

Figure 3. The nets Σa, Σb+ , Σb− and Σb± , respec-
tively, used in the definition of box.

Denotational semantics
We first translate PBCac expressions into the cor-

responding boxes. The function box takes a static or
dynamic expression F , and returns a box which is the
box corresponding to F . It is defined compositionally,
by induction on the structure of PBCac expressions:

box(F op F ′)
df

= box(F) op box(F ′)

box(F sc a)
df

= box(F) sc a

box(F tie b)
df

= box(F) tie b

box(E)
df

= box(E) box(E)
df

= box(E)

box(a)
df

= Σa box(b+)
df

= Σb+

box(b−)
df

= Σb− box(b±)
df

= Σb±

where a ∈ A, b ∈ B, op is a binary PBCac operator (i.e.,
op ∈ {; , 2, ‖, ~}), and the boxes Σa, Σb+ , Σb− , Σb± are
given in figure 3. Moreover, box(F.b) is defined thus: if
there is a place sb in box(F) (there is only one such place
due to the systematic merges of the buffer places), then
we add one token to it; otherwise we add to box(F) an
isolated b–labelled place sb with exactly one token.

Theorem 1. For every static (dynamic) box expression
F , box(F) is a static (respectively, dynamic) box.

Operational Semantics for PBC with Asynchronous Communication 5

Operational semantics
We will now introduce the semantics of PBCac ex-

pressions based on execution rules. In the appendix, we
demonstrate how they can be applied to a simple system
of three concurrent processes.

Structurally equivalent expressions

The operational semantics of PBC identifies struc-
turally equivalent expressions as those for whom the
corresponding boxes are identical, and whose opera-
tional semantics is the same.

In addition to the structural equivalence rules from
[3], we need new rules reflecting the asynchronous com-
munication features of PBCac. We define them below,
where b, b′ ∈ B and op is a binary PBCac operator:

E.b ≡ E.b

E.b ≡ E.b

E tie b ≡ E tie b

E tie b ≡ E tie b

(F.b) sc a ≡ (F sc a).b

(F1.b) op F2 ≡ (F1 op F2).b

F1 op (F2.b) ≡ (F1 op F2).b

(F.b) tie b′ ≡ (F tie b′).b if b 6= b′

The first four rules directly follow those of the origi-
nal PBC. The remaining ones capture the fact that the
asynchronous message, produced by a b+ expression and
represented by .b, can freely move within an expression
in order to be received by b− links. However, it may
never cross the boundary imposed by the tie b operator
(notice that the last rule means that moving outside a
tie context is only allowed if b 6= b′).

SOS execution rules

The operational semantics has moves of the form

F1
Γ

−→ F2 such that F1 and F2 are box expressions
and Γ is a finite multiset of actions in A. In addition
to those defined for PBC, we need the following new
rules introduced specifically to deal with asynchronous
communication (below b ∈ B):

b+
{τ}
−→ b+.b b−.b

{τ}
−→ b−

b±.b
{τ}
−→ b±.b D

Γ
−→ D′

D tie b
Γ

−→ D′ tie b

D.b
Γ

−→ D′.b

MAIN RESULT

A common way to represent the branching structure
of a concurrent system is to use (labelled) transition sys-
tems. In this paper, a transition system is a rooted, pos-

sibly infinite tree ts
df

= (V, L, A, vin , l) where: V is a set of
nodes; L a set of arc labels; A ⊆ V ×L×V a set of arcs;
vin is the root; and l is a labelling function which with
every node associates a state of the concurrent system
modelled by ts. We associate a transition system both
to: (i) an SOS-semantics of a (static or dynamic) PBC
expression; and (ii) to an associated Petri net. We then
show that the two semantics are equivalent, through
equivalences defined at the transition system level.

The transition system generated by a marked la-

belled net Σ is defined as the smallest tree tsΣ
df

=
(V, L, A, vin , l) such that: vin is a root labelled by Σ;
if v ∈ V is a node labelled by a box Θ then for ev-
ery non-empty step Γ , if Θ [Γ 〉 Ψ then there is an arc
(v, Γ, w) ∈ A such that the label of w is Ψ . In other
words, tsΣ is the labelled reachability tree of Σ. The
labelled transition system generated by an unmarked

labelled net Σ is tsΣ
df

= tsΣ .
Let [F] denote the equivalence class of the relation

≡ containing a box expression F . The transition system
generated by a dynamic expression D is defined as the

smallest tree tsD
df

= (V, L, A, vin , l) such that: vin is a
root labelled by [D]; if v ∈ V is a node labelled by [H]

then for every non-empty step Γ , if [H]
Γ

−→ [J] then
there is an arc (v, Γ, w) ∈ A such that the label of w is
[J]. The labelled transition system generated by a static

expression E is tsE
df

= tsE .
With the above notations, we can formulate the cen-

tral property of the PBCac model.

Theorem 2. For every box expression F , tsF and
tsbox(F) are isomorphic transition systems. Moreover,
the isomorphism preserves the initial or final aspect of
the corresponding nodes.

CONCLUSION
In this paper, we proposed a framework which sup-

ports two consistent concurrent semantics for a class of
process expressions with both synchronous and asyn-
chronous communication. Such a model can be used,
in particular, to give a semantics of programming lan-
guages with timing constraints and exceptions. In our
future work, we will aim at handling also recursion, i.e.,

process definitions of the form X
df

= E.
This research was partially supported by the ARC

JIP and EPSRC BEACON projects.

References

6 R. Devillers, H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau

1. J.Baeten and W.P.Weijland. Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science 18, Cam-
bridge University Press (1990).

2. T.Basten and M.Voorhoeve. “An Algebraic Seman-
tics for Hierarchical P/T Nets.” Proc. of ICATPN’95,
Springer, LNCS 935 (1995) 45–65.

3. E.Best, R.Devillers and M.Koutny: A Unified Model for
Nets and Process Algebras. Handbook of Process Alge-
bra. Jan A. Bergstra, Alban Ponse, Scott A. Smolka,
(Eds.) Elsevier (2001) 873–944.

4. E.Best, R.Devillers and M.Koutny. Petri Net Algebra.
EATCS Monographs on TCS, Springer (2001).

5. G.Boudol and I.Castellani. “Flow Models of Distributed
Computations: Three Equivalent Semantics for CCS.”
Information and Computation 114 (1994) 247–314.

6. C.A.R.Hoare. Communicating Sequential Processes.
Prentice Hall (1985).

7. H.Klaudel and F.Pommereau. Asynchronous links in the

PBC and M-nets. Springer, LNCS 1742 (1999). 190–200
8. M.Koutny and E.Best. “Fundamental Study: Opera-

tional and Denotational Semantics for the Box Algebra.”
Theoretical Computer Science 211 (1999) 1–83.

9. R.Milner. Communication and Concurrency. Prentice
Hall (1989).

10. G.D.Plotkin.“A Structural Approach to Operational Se-
mantics.” Technical Report FN-19, Computer Science
Department, University of Aarhus (1981).

11. W.Reisig. Petri Nets. An Introduction. EATCS Mono-
graphs on TCS, Springer (1985).

APPENDIX: AN EXAMPLE
Figure 4 presents a model of a concurrent sys-

tem composed of two producer processes (represented
by (b+

~f)‖(b+
~f)) and one consumer process (repre-

sented by b−
~f), operating in parallel. In the produc-

ers, the b+ actions can repeatedly send tokens to a buffer
place, which then can be received using the b− actions
in the consumer process.

The two-producers/one-consumer system is encap-
sulated by an application of the tie operator, which
makes the buffer place b–labelled. This place is there-
fore no longer available for future asynchronous links.
The whole system is preceded by a startup action a.

The step sequence semantics is illustrated for the
above example using the following execution scenario:

– the system is initialised by executing the a–labelled
transition;

– the two producers send a token each to the b–
labelled place;

– the consumer takes one of the two tokens from the
b–labelled place and, at the same time, the first pro-
ducer sends another token there;

e

i i i

x x x

b

a

τ τ τ

f f f

the box of a; ((((b+
~f)‖(b+

~f))‖(b−
~f)) tie b)

Figure 4. Two-producers/one-consumer system.

– the two producers and the consumer finalise their
operation by simultaneously executing the f–
labelled transitions.

Such a scenario corresponds to the labelled step se-
quence Σ [{a}{τ, τ}{τ, τ}{f, f, f}〉 Σ ′ where Σ′ is Σ

with two tokens in the b–labelled place, one token in
each of the x–labelled places, and no token elsewhere
(i.e., Σ′ is in an exit marking). The same effect can be
achieved using the rules of the operational semantics,
as shown below:

a; ((((b+~f)‖(b+~f))‖(b−~f)) tie b)

≡ a; ((((b+
~f)‖(b+

~f))‖(b−
~f)) tie b)

{a}
−−−−−→ a; ((((b+

~f)‖(b+
~f))‖(b−

~f)) tie b)

≡ a; ((((b+~f)‖(b+~f))‖(b−~f)) tie b)

≡ a; ((((b+~f)‖(b+~f))‖(b−~f)) tie b)

{τ,τ}
−−−−−→ a; ((((b+.b~f)‖(b+.b~f))‖(b−~f)) tie b)

≡ a; ((((b+.b~f)‖(b+
~f).b)‖(b−~f)) tie b)

≡ a; ((((b+.b~f)‖(b+
~f)).b‖(b−~f)) tie b)

≡ a; ((((b+.b~f)‖(b+
~f))‖(b−~f)).b tie b)

≡ a; ((((b+.b~f)‖(b+
~f))‖(b−~f).b) tie b)

≡ a; ((((b+.b~f)‖(b+
~f))‖(b−.b~f)) tie b)

≡ a; ((((b+.b~f)‖(b+
~f))‖(b−.b~f)) tie b)

{τ,τ}
−−−−−→ a; ((((b+.b.b~f)‖(b+

~f))‖(b−
~f)) tie b)

≡ a; ((((b+.b.b~f)‖(b+
~f))‖(b−

~f)) tie b)

{f,f,f}

−−−−−→ a; ((((b+.b.b~f)‖(b+
~f))‖(b−

~f)) tie b)

≡ a; ((((b+.b.b~f)‖(b+
~f))‖(b−

~f)) tie b)

