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Abstract

We present a new approach to the modelling of time constrained systems. It is
based on untimed high-level Petri nets using the concept of causal time. With this
concept, the progression of time is modelled in the system by the occurrence of a
distinguished event, tick , which serves as a reference to the rest of the system. In
order to validate this approach as suitable for automated verification, a case study
is provided and the results obtained using a model-checker on high-level Petri nets
are compared with those obtained for timed automata using prominent tools. The
comparison is encouraging and shows that the causal time approach is intuitive and
modular. It also potentially allows for efficient verification.

1 Introduction

This paper presents a case study in modelling and verification of systems with
time constraints. We use an original approach based on untimed high-level
Petri nets, using a concept of so called causal time [17], inspired by [5,18].
This widely differs from the classical approaches where time is introduced in
Petri nets in terms of intervals or durations labelling nets elements, as in time
or timed Petri nets (see [4] for a survey and a comparison of the different
approaches), referring to a progression of time external to the system. The
main characteristic of the causal time approach is that the progression of time
is modelled in the system by a distinguished event, called tick . Thus, the
occurrences of the other events may depend on the occurrences of tick . The
time constraints of the kind “at most” or “at least 5 ticks between events t

and t′ ” are realized by counting the appropriate number of ticks between the
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occurrences of t and t′. So, the occurrence of t′ is causally dependent on those
of tick and may only occur if the time constraint is satisfied. The modelled
system and the counter of ticks are both represented by high-level Petri nets
interacting with each other.

We use a model of high-level Petri nets provided with a structure of pro-
cess algebra, the algebra of M-nets [2], in which Petri nets can be composed
together with operators like sequential and parallel composition. The model
also allows for synchronous communication, as in CCS [16]. In this context,
introducing causal time amounts to consider a net expressing a tick counter
being able to interact with the system and to produce the required number of
ticks between occurrences of transitions (as proposed for instance in [12]).

The main goal of this paper is to show that the causal time approach in
this context allows one to model systems in an intuitive and modular way,
with the potentiality of efficient verification. For this purpose, we present
a comparative case study concerning the railroad crossing problem and give
its specification in terms of timed automata as well as in terms of high-level
nets with causal time. Various versions of the specification having different
properties (for instance the absence or presence of deadlocks) are then verified
using model-checkers Kronos [20] and Uppaal [13] for the timed automata,
and MARIA [15] for the high-level Petri nets. The results obtained are very
promising since in many cases, the causal time approach allows for a more
efficient verification. At the end of the paper, we discuss the current limitations
concerning the approach and the tools, and we point out some ways which can
lead to significant improvements.

Throughout the paper, we assume that the reader has basic knowledge
about timed automata [1,9] and coloured Petri nets [10,2].

2 Railroad crossing system (RC)

The railroad crossing system is composed of nt trains (each of them moving
on its own track) and of a pair of gates which prevent cars from crossing the
tracks when a train is present.

The trains move independently and, initially, none is present. Each train
starts far from the railroad crossing; it triggers a signal app when it approaches
close enough to the gates. From this point, it reaches the gates in at least am

and at most aM time units. Then, it passes inside the gates during at least em

and at most eM time units and finally leaves the gates triggering a signal exit .
The gates are initially open. They close in at least gm and at most gM time

units after receiving a signal down. They require the same delay for opening
after receiving a signal up. It may happen that the gates receive the signal
down when they are already going up; in this case also, the time needed in
order to close is in the same boundaries.

A controller receives the signals from the trains and reacts by sending
signals to the gates in at least cm and at most cM time units. It must ensure
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the safety property which states that if a train is present at the crossing, then
the gates must be closed.

The purpose of this paper is to show the usability of the causal time ap-
proach and to compare its performances with timed automata. This, we will
use a simplified specification of the railroad crossing problem. For instance,
we do not verify the availability property (gates are open as much as possible).

3 A modelling of RC with timed automata

We consider here a version of timed automata [1] which allows, in particular,
for state invariants [9], integer variables (in addition to clocks which take real
values) and binary synchronisations. A state invariant is a condition involving
clocks and variables which must be true while the automaton stays in this
state. Invariants are often used to express deadlines, for instance, c ≤ max c

labelling a state s means that the maximal value of the clock c in s is max c.
A transition label contains three parts separated by bars: a condition called a
guard, a communication action (such as act ! or act?, expressing respectively
a sending and a receiving on a canal act) and an expression specifying the
clocks to be reset and the integer variables to be modified. For instance,

c ≥ minc | act ! | c := 0; n := n + 1

indicates that the transition is possible if c is greater than minc; if it oc-
curs, signal act ! is sent, clock c is reset and the variable n is incremented.
Timed automata may be composed using synchronised product inducing the
synchronisation of complementary actions (like act ! and act?).

It is easy to give a modelling of RC with timed automata. The variant
presented here is depicted in figure 1. A train is modelled by the automaton
Train and the gates by the automaton Gate. The link between trains and
gates is obtained by the automaton Controller . The complete specification is
the synchronised product of Gate, Controller and nt copies of the automaton
Train.

Initially, the controller is idle, and the variable n is set to 0, the gates are
open and all the trains are far from them. If a train approaches, the controller
receives a signal app and reacts sending down to the gates and incrementing
n. When a train leaves the crossing, it sends exit to the controller which
decrements n. If it was equal to 1, then, up is sent to the gates, otherwise, no
special reaction is needed.

One may notice that when the controller is in state AppDown it cannot
receive any signal (app or exit) and delays their reception until it reaches the
state Idle. This is unrealistic since trains cannot be stopped; however, we
preferred to use this simplified version since our goal is more a comparison
than a complete case study.

The tools used for this work are Kronos [20] and Uppaal [13] because they
have the reputation to offer efficient verification. Deadlock freeness and safety
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.

.
Far

t≤aM

Before

t≤eM

Inside

−|app!|t:=0

t≥am|−|t:=0

t≥em|exit!|−

Train : clock t
.

.
Open

g≤gM

GoDown

Closed

g≤gM

GoUp

−|down?|g:=0

g≥gm|−|−

−|up?|g:=0

g≥gm|−|− −|down?|g:=0

−|down?|−

−|down?|−

Gate : clock g

.

.

Idle

c≤cM AppDown

c≤cM ExitUp

−|app?|c:=0 c≥cm|down !|n:=n+1

n=1|exit?|c:=0

c≥cm|up!|n:=0n>1|exit?|n:=n−1

Controller : clock c, int n := 0

Fig. 1. The timed automata Train, Gate and Controller . The initial states are
depicted with bold circles.

properties may be expressed through temporal logic formulas; for instance,
with Uppaal, we have:

∀2(¬deadlock) ∧ ((Train1.Inside ∨ · · · ∨ Trainnt
.Inside) ⇒ Gate.Closed) .

The automata presented above are directly usable with Uppaal; a non-
trivial translation is necessary in order to adapt them for Kronos. Indeed,
this tool uses a lower-level model without integer variables and with multi-way
synchronisation. So, the automata used for Kronos are much more complicated
than those presented above but they are functionally equivalent. Notice also
that while Uppaal have a very nice user-friendly interface, Kronos is much
more a low-level tool.

4 Composable high-level Petri nets with causal time

In this paper, we use modular high-level Petri nets, called M-nets [2], which
are well suited for specifying large concurrent systems. As usual for high-level
nets, their places, transitions and arcs are annotated in a specific way. In
the simplest case each place has a type which is the set of values (tokens) it
can hold; each arc is labelled by a multi-set of expressions (the simplest ones
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being just values or variables); and each transition carries a guard which is a
boolean expression playing the role of an execution condition.

An example of such a marked high-level net is shown in figure 2. This net
may evolve by firing transitions. During the execution, the variables in the
guards and in the arc annotations are bounded to values. A transition may
fire if its guard is true and if the arcs carry only tokens belonging to the types
of adjacent places. A possible execution of the net of figure 2 starts by firing
t1, which consumes the token • from its unique input place and produces a
new marking composed of a token • and a token 0, each in the corresponding
output place of t1. Then, the transition t is the only enabled because of the
guard of t2 which is false for the binding associating z to 0, denoted {z 7→ 0}.
The firing of t with the binding {x 7→ 0} consumes 0 and produces 1 instead.
One more firing of t is possible producing the marking 2 in its output place.
Then, t2 becomes enabled with the binding {z 7→ 2} and its firing consumes
tokens • and 2 from its input places and produces • in the output place. With
this marking, the net may not evolve anymore.

.

.

•{•} t1

true

•

{•}

•
t2

z=2

•
{•}

•

{0,1,2}

0

t x<2

x x+1

z

Fig. 2. A high-level Petri net.

The behaviour of an initially marked high-level Petri net may be described
by a reachability graph whose nodes are the reachable markings and whose
arcs correspond to the bounded transitions allowing to produce one marking
from another. The set of all paths (starting from the initial marking) in
this graph corresponds to an interleaving semantics of the Petri net. Several
concurrent semantics may be considered, including step [7] or partial order
semantics [14,6], however they are not considered in this paper.

These high-level nets may be composed in parallel by simply putting the
nets side by side. They may also by synchronised (using the operation called
scoping) in order to enforce all synchronous communications between transi-
tions. For this purpose, we consider for the high-level nets used in this paper
an labelling on transitions allowing for synchronisations. Some examples of
such extended initially marked nets are given in figure 4. Their transitions are
decorated by additional labels (the guards being as before) which are multi-
sets of CCS-like communication actions (possibly with arguments which are
variables or constants) as, for instance, app, down, clock(x, a, b) or âpp, d̂own,
ĉlock(z, 2, c).
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Notice that the following are always omitted in the figures: empty transi-
tion labels; guards which are always satisfied; arcs inscriptions and place types
of the form {•}.

The parallel composition of nets NGa, NTr, NCo and NCl is ParSys =
NGa‖NTr‖NCo‖NCl represented in figure 4. The scoping (which is a synchro-
nisation followed by a restriction) is illustrated in figure 3; it is applied to a
fragment of the net ParSys with transitions t1, t0 and t4 coming from nets
NGa, NCl, and NTr, respectively. The synchronisation of ParSys w.r.t. action
clock yields new transitions: t10 (gluing t1 and t0) and t04 (gluing t0 and t4).
These new transitions are obtained in several steps. First, the variables ap-
pearing in the surroundings of t1, t0 and t4 are renamed in order to avoid name
clashes. This is necessary because, by synchronisation, these surroundings are
combined into a single one. Then, a new transition is created for each pair of
actions clock and ĉlock if there is an unifier for their arguments. For instance,
{z 7→ x, t 7→ c1, c2 7→ 0} is a unifier allowing to synchronise t1 and t0. Finally,
the guard of the new transition is the conjunction of the two constituent substi-
tuted guards; its label is the multi-set sum of the two constituent substituted
labels, without the matching pair of actions; the arcs are all those of both for-
mer transitions (with substituted inscriptions). A restriction of the resulting
net w.r.t. clock gives a net in which all transitions whose labels contain at
least one action clock(· · ·) or ĉlock(· · ·), together with their surrounding arcs,
are deleted, see the right hand side of figure 3 which corresponds also to the
scoping of the net w.r.t. clock , denoted ParSys sc clock .

Scoping may be applied with respect to a set of actions (because synchro-
nisation is commutative and so is restriction [2]). Moreover, scoping w.r.t.
action clock is possible even if a transition holds several instances of this ac-
tion as on t2 in 4. In such a case, one action, say clock(y, t, ω), is first chosen
for synchronisation, leading to a new transition which still holds the second
action (here, clock(y′, t′, 0)). This new transition is then synchronised, yield-
ing a new transition holding without action clock and inheriting the arcs from
t2 and two pairs of arcs from t0 (one pair for each synchronisation).

.

.

... t4

down ,clock(1,g,0)

...

... t0 clock (x,c1,c2)

(x,c1)

(x,c2)

... t1

app,clock(y,t,0)

x=2i

...i i

.

.

...

... ...

... ...t10

app

x=2i

i

i

(x,c1)

(x,0)

t04

down

(1,g)

(1,0)

Fig. 3. A fragment of the net ParSys (on the left) and a fragment of ParSys sc clock

(on the right).
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4.1 Introduction of causal time in high-level Petri nets

The basic idea behind the concept of causal time is to represent the occurrence
of successive ticks (modelling the progression of time) in the same way as any
other event in the system. In the context of Petri nets, events are represented
by occurrences of transitions, and so, a time scale may be built by the firing of
some reference transition, called tick. For instance, figure 2, represents a time
constrained system composed of transitions t1 and t2 where two occurrences
of t (representing the tick) are enforced between those of t1 and t2.

It is possible to temporally constrain a given system in a modular way.
The approach consists in considering a particular net modelling a clock , being
able to generate occurrences of ticks, to evolve in parallel to the system and
to synchronise with it in order to enforce some temporal constraints. If the
system has more than one independent time constraint, the clock net should
be capable to manage several counting requests concurrently.

For the railroad crossing problem, we consider the clock net NCl, repre-
sented on the bottom of figure 4; it manages nc+1 counting requests. Initially,
the place Time carries nc + 1 pairs of the form (j, c) where j ∈ {0, . . . , nc}
is the number of the request and c is the current value of the corresponding
tick counter. Each request j has a fixed maximum value of its tick counter,
max j, which cannot be overtaken. A tick counter c = ω for some request
means that this request is unused. The constant ω is assumed to be equal to
max + 1, where max is the maximum of all the max j’s (for 0 ≤ j ≤ nc), and
we state ω + 1 = ω. The transition tick may occur at any time provided that
its guard is true (which is the case if all the temporal constraints are fulfilled
and will still be true after the tick, and, in particular, if no max j is reached).
The occurrence of tick increments the tick counters of all requests. Initially,
all the requests are unused and can be started at any time by the firing of a
transition coming from the synchronisation w.r.t. clock .

5 A modelling of RC using Petri nets with causal time

RC is modelled by the net:

ParSys sc {clock , down, up, app, exit} .

The resulting net has the same places as ParSys but different transitions
coming from the scoping w.r.t. all the communication actions. The scoping
w.r.t. up and down ensures that the gates move exactly as the controller allows
it. Analogously, the scoping w.r.t. app and exit enforces the communication
between the trains and the controller. The scoping w.r.t. clock ensures that
all counting requests are correctly handled.

The number of tick counters in clock NCl depends on the number of trains
in the system because we use two counters for each train, with the following
setting.

7



Bui Thanh, Klaudel and Pommereau

.

.

Far

{1,...,nt}

t1

app,clock(y,t,0)

y=2i

Before

{1,...,nt}t2

clock(y,t,ω),
clock(y′,t′,0)

t≥am∧y=2i∧y′=2i+1

Inside
{1,...,nt}

t3

exit,

clock(y′,t′,ω)

t′≥em∧y′=2i+1

i i

i
ii

i

.

.
Open

t4

down ,clock(1,g,0) GoDown

down

t5 clock(1,g,ω)g≥gm

Closed

down

up,clock (1,g,0)GoUp

clock(1,g,ω) g≥gm

down ,clock(1,g,0)

.

.

Idle
{0,...,nt}

t6
app,

clock(0,c,0)

AppDown{0,...,nt}

t7 down ,clock(0,c,ω),c≥cm

t8

exit,clock(0,c,0)

ExitUpt9

up,clock(0,c,ω),c≥cm

exit

x≥2 x

x−1
x

x x

x+1

1

0

.

.

Time
Ctrs×Ticks

ticki≤nc
ci 6=maxi t0 clock(x,c1,c2)

{(0,c0),...,(nc,cnc)}

{(0,c0+1),...,(nc,cnc+1)} (x,c1)

(x,c2)

Fig. 4. The nets NTr, NGa, NCo and NCl (from top to bottom, if taken separately),
or their parallel composition, ParSys (if taken as a single net). In the figure, nt

is the number of trains, nc = 2nt + 1 is the greatest counting request number,
Ctrs = {0, . . . , nc} is the set of all these numbers, and Ticks = {0, . . . , ω} is the set
of the possible values of tick counters. Places in bold are initially marked as follows:
{1, . . . , nt} for Far; {•} for Open; {0} for Idle; and {(0, ω), . . . (nc, ω)} for Time.

The counter 0 is reserved to the controller, and its maximal value is max 0
df

=
cM (see section 2). This counter is reset when a train is approaching (see
transition t6) and is used in order to ensure that signal down is sent to the
gates after at least cm ticks (see transition t7). The maximum number of
ticks allowed here, cM , is enforced in the guard of transition tick in the clock.
Then, the same counter is used once again (for a different purpose) when
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the last train leaves the crossing (see transitions t8 and t9). Notice that if
we have had different constraints in these two cases, we should have used two
different counters. (This is not an intrinsic limitation of causal time but rather
a limitation of the simple clock we choose to use.)

The counter 1 is reserved to the gates and its maximal value is max 1
df

= gM .
It is reset when the gates receive the signal to go down (see transition t4) and
it ensures that the gates are down after at least gm and at most gM ticks (see
transition t5 and the guard of tick). The same counter is used in order to
ensure the opening of the gates under the same time constraints.

For each train i, for i ∈ {1, . . . , nt}, we use two distinct counters: 2i and
2i + 1, with max 2i

df

= aM and max 2i+1
df

= eM , respectively. When a train
approaches, at least am and at most aM ticks can occur between the sending
of signal app and the arriving of the train between the gates. This constraint
is ensured by the counter 2i (see transitions t1 and t2). The counter 2i + 1
ensures that there must be at least em and at most eM ticks between the
crossing of the road by a train and its leaving sending the signal exit (see
transitions t2 and t3). In particular, t2 fires when the train enters the crossing;
the counter 2i must then indicate a value greater than am (thanks to t ≥ am

in the guard t2) and the counter 2i + 1 is reset.
In this system, the controller holds only one token and is synchronised

to all the other nets, and so, most events are interleaved. Moreover, almost
all the transitions of the system are synchronised on action clock and thus
the resulting transitions are in conflict with tick . This reduces again the
concurrency in the system which is in fact purely sequential (which is suitable
for a comparison with timed automata).

5.1 Tools used

We modelled the above specification using PEP toolkit [8] which proposes a
lot of tools gathered in a convenient graphical interface. In particular, it al-
lows one to edit high-level nets, to apply scoping on them and to convert the
resulting nets into low-level (place/transition) nets which are suitable for ver-
ification using one of the model-checkers integrated with PEP. Unfortunately,
we were not able to use PEP from the beginning to the end. The reason is
mainly the size of the low-level nets equivalent to our high-level specification,
which cannot be handled by PEP.

We used instead a high-level tool, MARIA [15], in order to check our spec-
ification against deadlock-freeness and safety. Such a tool does not need to
produce low-level nets and thus it does not generate more than necessary, con-
trasting with the transformation from high-level nets to low-level ones which
may generate, for instance, many places which will never be marked. This is
particularly true in our specification, where place Time in NCl cannot hold ar-
bitrary combination of tokens because the progression of time is not arbitrary
itself and only a small subset of possible markings are actually reachable.
MARIA works on the reachability graph of coloured Petri nets and allows
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one to check for deadlocks and for the reachability of partial markings (sub-
markings) during the generation of the graph. Deadlock freeness and the
safety property could be expressed as:

deadlock fatal;

reject !(place Inside equals empty)

&& (place Closed equals empty) && fatal;

The first line specifies that if a deadlock is found, the computation of
the reachability graph must be interrupted and the error reported. The rest
specifies states which has to be rejected if reached. It is a C-like boolean
expression on the marking of places, with lazy evaluation: if place Inside
is marked and then, if place Closed is not marked, then fatal is evaluated,
leading to abort the computation and to report the encountered rejected state.

The files produced by PEP have been converted to the file format supported
by MARIA. Then, these files have been made generic, and so we are able
to produce the specification for any number of trains and all kind of time
constraints using a simple preprocessing. At the current state of the work, only
a preprocessor and MARIA are involved in the generation and the verification
of the railroad specification, but PEP was necessary in the first steps in order
to produce the scoping of the nets.

6 Results

We report now the performances of the different tools during the deadlock
analysis and safety verification of various versions of the specification. All
the checks have been performed on a Sun Sparc station at 440Mhz, with 1Gb
of physical memory and 1Gb of swap space. We worked in the /tmp direc-
tory which, thanks to Sun’s TMPFS file system [19], is located in the virtual
memory so all the work, even file accesses, was actually made in memory with
proper swap. When a pre-compilation of some files has been necessary, the
time consumed is included into the durations given below. This was the case
for Kronos which needs to synchronise timed automata before to check them,
and for MARIA which can build the guards of the transitions into libraries
being then dynamically loaded by the tool in order to speed-up the evaluation.
Finally, we used Unix time tool in order to measure the time consumed by
each process (the “real” time is the one reported below).

We checked safe and deadlock-free systems for one to six trains with the
following values for the different constants: am = 4, aM = 5, cm = 0, cM = 1,
em = 4, eM = 6, gm = 0 and gM = 2. The times measured for each tool are
reported in the top part of figure 5 (see also the left graph on figure 6). After
about 12h30m, Uppaal exhausted all the memory and begun to be heavily
swapped, using less than 1% of CPU, so we preferred to stop it since the
reported time would have been meaningless.

Unsafe systems were produced with the same constants values as those
used for good systems except for gM which was here set to 3. Thus, the gates
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trains 1 2 3 4 5 6

safe systems with no deadlock

MARIA 0.2s 0.2s 0.9s 12s 4m 1h12m

Kronos 0s 0.1s 1.6s 20s 5m 1h36m

Uppaal 0.3s 0.5s 0.7s 27s 57m -

unsafe systems with no deadlock

MARIA 0.1s 0.2s 0.2s 0.2s 0.3s 0.4s

Kronos 0s 0.2s 1.7s 21.4s 6m57s 5h59m

Uppaal 0s 0s 0s 0s 0s 0s

deadlocking safe systems

MARIA 0.1s 0.2s 0.2s 0.2s 0.3s 0.4s

Kronos 0s 0.2s 1.7s 21.4s 6m55s 6h02m

Uppaal 0s 0s 0s 0s 0s 0.1s

Fig. 5. The performances of the tools for “good” systems (top part), unsafe systems
(middle part) and deadlocking ones (bottom part). We used specifications taking
into account up to six trains.

could go down too slowly and a train could cross the road while they are not
yet closed. The performances are given in the middle part of figure 5 (see also
the right graph on figure 6). Notice that the line for Uppaal is correct: this tool
was incredibly fast with wrong systems (i.e., unsafe and deadlocking ones).

Systems with deadlock were produced with the same values as for good
ones. We suppressed the capability for the gates to receive a signal down when
being or going down, by removing two transitions in each specification. Notice
that for one train only, this does not produce a deadlock. The performances
are reported in the bottom part of figure 5 (see also the right graph on figure 6).

6.1 Causal time w.r.t. dense time and consistency of the results

Using causal time is very natural provided that one has in mind that time
constraints are expressed with respect to a time scale built by a causal clock,
i.e., by the occurrence of a tick which is not itself directly observable (but its
consequence on the marking can be observed). Therefore, the causal time is
available through tick counters, which is fairly different from reading values on
a dense (or real) time scale. For instance, if c is a tick counter, equation c = 3
on a causal time scale means of course that “exactly three ticks occurred”, but
this may mean also that a fourth tick is just about to occur. On a dense time
scale, this would be expressed as 3 < c < 4. Notice that we do not have 3 ≤ c
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.

.

1 2 3 4 5 6

0

1

2

3

4

20s

4m

1h20m

1 track 6 tracks .

.

1 2 3 4 5 6

0

1

2

3

4

20s

7m

6h

1 track 6 tracks

Fig. 6. The graphical representations of the performances measured for MARIA
(continuous lines), Kronos (dashed lines) and Uppaal (dotted lines). The left graph
is for good systems, the other for deadlocking or unsafe ones. Notice that the
vertical scales are logarithmic. On the right graphics, lines for MARIA and Uppaal
completely overlap.

because the third tick has to be counted, and thus must have occurred. (We
assume that actions which cannot occur concurrently are not simultaneous,
and thus are separated by a non zero delay.)

Another example is the segment 5 < c ≤ 6 on a causal time scale which
corresponds to 6 < c < 7 on a dense time scale. This is not surprising if one
remembers that the first constraint has to be read as “strictly more than 5 and
at most 6 ticks occurred” which corresponds to “at least 6 ticks and strictly
less than 7 occurred”.

One can see that causal time differs from real time in many ways. However,
in our case study, we used for each specification the more natural expression
of time constraints, regardless of the introduced differences. Actually, we
conjecture that a wide class of timed automata can be translated this way
and that we can have a bisimilarity relation between the automata and the
translated M-nets. In order to verify in practice this intuition, and before to
obtain theoretical results, we checked many different versions of RC for many
different values of the constants and with or without deadlock. These results
are not presented here since they do not give more information than what we
already provided. But it is worth noting that all the checks were consistent.
For instance, if a given set of constants led to an unsafe system with one tool,
the same happened for the other tools. Moreover, the tools always reported
equivalent counter examples. As an illustration, consider the unsafe system
described above for 3 trains. MARIA reports a transition sequence leading to
an unsafe state which corresponds to:

(i) The token 1 in place Far (identifying the first train) is moved to place
Before while the token in the controller moves from Idle to AppDown.

(ii) One tick.

(iii) The token in the controller moves from AppDown to Idle and the token
for the gates from Down to GoDown
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(iv) Three ticks.

(v) Train 1 moves from Before to Inside.

With Uppaal (the case of Kronos is similar), we obtain a trace which corre-
sponds to:

(i) Train 1 goes from state Far to state Before while the controller goes from
Idle to AppDown.

(ii) Delay of 1 time unit.

(iii) The controller goes from AppDown to Idle while the gates goes from
Open to GoDown.

(iv) Delay of 3 time units.

(v) Train 1 goes from Before to Inside.

One may notice that a delay of three ticks with Petri nets corresponds to a
delay of exactly three time units with Uppaal (and actually with Kronos also).

6.2 State space explosion

In the results reported above, it happens that the performances obtained with
MARIA are generally better than those obtained with the other tools. This
optimistic results have to be moderated a little bit. Actually, using MARIA,
the causal time approach suffers of the well known state space explosion prob-
lem: when we increase the constants in the system, the number of reachable
markings increases very fast. Since MARIA explicitly generates these mark-
ings, its performances become very bad.

One way to alleviate this problem would be to abstract from the net the
intermediary states generated by counting ticks between two boundaries. For
instance, if counter c is used in order to ensure a constraint 1 ≤ c ≤ 6, only
values 1 and 6 are interesting for this counter. Removing the intermediary
values would reduce the number of states while preserving the interesting be-
haviour. This would amount for this example to consider three “meta-values”:
“before 1”, “between 1 and 6”, and “after 6”. With this kind of technique,
the preformances of the causal time approach would be still dependent on the
number of tick counters, but not on the values of the constants compared to
them.

In Petri nets, there are also other techniques trying to provide a solution
to the state space explosion problem. They are typically based on the inde-
pendence of some actions, often relying on the partial order view of concurrent
computation. Based on such a view, the entire state space of a system may be
represented implicitly, using an acyclic net in order to represent system actions
and local states (see MacMillan’s finite prefixes of Petri net unfoldings [14,6]).
Such techniques are so far limited to low-level models of Petri nets, but recent
researches in this area showed that it is possible to produce high-level prefixes
of high-level nets [11]. It is even possible to improve dramatically the efficiency
of this analysis by defining an equivalence between markings, which gathers
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many states in the generated prefixes. This amounts to abstract data from
the Petri net when it has no influence on the execution. For instance with our
railroad example, place Time would appear in the prefix only when the values
it holds lead to a new branch in the execution of the Petri net. Similarly, most
occurrences of the transition tick would not be present in the prefix.

This kind of new developments will certainly soon lead to alleviate the
state space explosion problem presented above. In such a case, it would not
only solve this problem, but it would also increase again the performances
already measured because working on finite prefixes is most of time much
more efficient than the exploration of the reachability graph. This gain of
performance would of course depend of the degree of concurrency we can
introduce in the specification.

7 Final remarks

We presented a new approach to the modelling of time constrained concurrent
systems, and developed a case study illustrating how it can be used for verifi-
cation. It showed that causally timed Petri nets are easy to use (the obtained
specification is similar to that given with timed automata), and offers also a
quite efficient verification. This paper is the first attempt to use this model
for verification, and we are aware of many improvements which could be pro-
vided. In particular, we should alleviate the state space explosion problem
and the sensitivity to the constants clocks values are compared to. However,
even without these optimisations, performances were quite satisfactory, what
is very encouraging for the future.

We already plan further investigations in this way. On the practical side,
we would like to make more case studies, in order to better appreciate the
kind of problems that causal time can address efficiently. On the theoretical
side, we wish to give a characterisation of a class of timed automata that could
be translated into Petri nets with causal time. We think that this class may
be quite wide and that it will be possible to establish a bisimilarity relation
between timed automata and their translation.

A very important point in this paper is that we showed that it was possible
to use successfully untimed Petri nets for the modelling of systems incorpo-
rating time constraints. Usually, various Petri net extensions were used for
this purpose, where time was associated to net components like places, tran-
sitions, arcs or tokens, under the form of durations or dates. For one of these
extensions, time Petri nets, it was proposed to compute branching processes
including tick transitions [3]. Contrasting with this approach, we provide this
kind of representation of time at the level of modelling and not only as a
interpretation of another notion of time for the purpose of verification.

We plan to provide case studies comparing causal time with tools based on
extended Petri net models. However, we would like to use a specification which
allows for concurrency (which is not the case in this paper) because sequential
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systems are often the worst case for many Petri net tools (in particular for
those relying on the partial order execution semantics).

Finally, we hope that tools will be developed in order to support the needs
of the causal time approach. In particular, we discovered that PEP was un-
able to generate low-level nets from our high-level specification because of
their size. Some work is already in progress in order to solve this problem.
Another possibility would be to generate prefixes directly from high-level nets,
as proposed in [11].
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