
HAL Id: hal-00114673
https://hal.science/hal-00114673v1

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causal Time Calculus
Franck Pommereau

To cite this version:
Franck Pommereau. Causal Time Calculus. FORMATS, 2004, Marseille, France. pp.1-12,
�10.1007/978-3-540-40903-8_21�. �hal-00114673�

https://hal.science/hal-00114673v1
https://hal.archives-ouvertes.fr

Proc. of FORMATS’03, LNCS, Springer, 2003. c© 2003 Springer

Causal Time Calculus

Franck Pommereau

LACL, Université Paris 12
61, avenue du général de Gaulle

94010 Créteil — France
pommereau@univ-paris12.fr

Abstract. We present a process algebra suitable to the modelling of
timed concurrent systems and to their efficient verification through model
checking. The algebra is provided with two consistent semantics: a struc-
tural operational semantics (as usual for process algebras) and a deno-
tational semantics in terms of Petri nets in which time is introduced
through counters of explicit clock ticks. This way of modelling time has
been called causal time so the process algebra is itself called the Causal
Time Calculus (CTC). It was shown in a separate paper [3] that the
causal time approach allowed for efficient verification but suffered from
a sensitivity to the constants to which counts of ticks are compared. We
show in this paper how this weakness can be removed.

1 Introduction

This paper presents a process algebra in which the representation of timing
constraints can be explicitly included. With respect to the many such models
already defined (a short comparison is given in the conclusion), our contribution
is: first, to provide a concurrent semantics instead of the interleaving generally
used; second, to propose a multiway communication scheme; and third, to give
a way through which efficient model checking can be performed. We thus de-
fine a structural operational semantics (SOS), explicitly including concurrency,
through SOS rules in Plotkin’s style [17]; then a consistent denotational seman-
tics is given by a transformation from process terms to Petri nets on which dedi-
cated verification techniques may be applied [8]. The involved class of Petri nets
consists in composable, labelled and coloured nets in which time is introduced
by explicitly modelling clocks and counters of clock ticks. This is sometimes
called the causal time approach and thus, our algebra is called the Causal Time
Calculus (CTC). It is worth noting that CTC is actually a descendant of the
Petri Box Calculus [2] and inherits, in particular, a large part of its syntax, the
multiway communication scheme and the concurrent semantics.
A case study [3] made a comparison between the causal time approach and

timed automata [1]; it turned out that the verification of Petri nets with causal
time using a general model checker for high-level Petri nets (MARIA [13]) was
more efficient than the verification of timed automata using well known tools
(Kronos [20] and UPPAAL [12]). The approach in [3] was to translate timed

1

automata into the closest possible Petri nets, without any special optimisation.
Indeed, an important concern was to avoid a biased comparison. Thus, even if
one case study does not allow for any conclusion, this result is very encouraging.
However, the causal time approach suffers from a sensitivity to the constants to
which ticks counters are compared. The size of the state space actually depends
on the product of the largest constants compared to each counter. If one uses k
counters, each compared to a value n, one gets nk states only to represent the
timing information. We show at the end of this paper that this problem can be
removed by identifying states which differ by the values of the ticks counters
but are otherwise identical, i.e., lead to the same evolutions. This is very similar
to the notion of regions developed for timed automata [1] and allows to use
verification techniques based on the concurrent semantics of Petri nets [8] which
are generally much more efficient than those based on the interleaving semantics
(as in MARIA). The benefits is thus twofold: first, to remove the sensitivity to
constants, and second, to improve the good performances obtained in [3].
The next section defines the algebra of terms and its operational semantics.

The section 3 presents the Petri nets, called boxes, used to define the denotational
semantics and gives the transformation from process terms to boxes. These two
sections form an extended abstract of the technical report [18] which provides
the full definitions, properties and proofs. The section 4 addresses the question
of the verification of boxes and is a completely new contribution. We conclude
in the section 5 and briefly compare CTC to other timed process algebras.

2 CTC terms: syntax and operational semantics

Communication. We assume that there is a set A of actions used to model
handshake communication. We also assume that τ /∈ A and that, for every
a ∈ A, â is also an action in A such that ̂̂a = a. A multiaction is a finite multiset
of actions and we denote by {} the empty multiaction.
Communication in CTC generalises the synchronisation of CCS [16] (allowed

by the parallel composition) followed by the restriction (which forbids the inde-
pendent execution of synchronised actions). This is formalised through the par-
tial functions ϕsc a, for a ∈ A, which map the multisets of multiactions allowed to
handshake to the multiactions resulting from the communication. For instance,
ϕsc a1

is such that its domain contains Γ
df
= {{a1, a1, a2}, {â1, a3}, {â1}}, which

denotes that the multiactions of Γ may perform a three-way synchronisation.
The multiaction corresponding to this communication is given by ϕsc a1

(Γ)
df
=

{a2, a3}. On the contrary, {{a1, a2}, {a2}} is not in the domain of ϕsc a1
because

the multiactions {a1, a2} and {a2} cannot handshake.

Clocks. The progression of time will be reflected on clocks which are nonnegative
integer variables that can be tested or updated by the processes. We denote by N
the set of natural numbers. The set C of clocks is finite and we assume that there
exists a function max : C → N \ {0} which gives the maximum value allowed
for each clock. This allows to specify deadlines, i.e., time boundaries within

which a process completes [7]. Time progresses when a tick occurs incrementing
simultaneously all the clocks, which is forbidden when at least one clock has
reached its maximum. Notice that we require max(c) > 0 for all c ∈ C, otherwise
no tick could ever occur, resulting in an untimed model.
A clock vector is a partial function θ : C → N such that for all c ∈ dom(θ),

θ(c) ≤ max(c). Such a mapping associates its current value to each clock c
in its domain, i.e., the number of ticks which occurred since the last reset of
c. We denote by V the set of all clock vectors. For θ1 and θ2 in V such that
dom(θ1) ∩ dom(θ2) = ∅, we denote by θ1 + θ2 the clock vector whose domain is
dom(θ1) ∪ dom(θ2) and which is equal to θ1 on dom(θ1) and to θ2 on dom(θ2).
By extension, writing θ1+ θ2 will implicitly imply that the domains of θ1 and θ2

are disjoint. In the following we denote by θ(e) the evaluation of the expression
e in which the clocks have been replaced by their values as specified by θ. For
instance, if θ(c) = 3 then we have θ(c+ 1) = 4.
Clocks vectors will be handled through clock expressions, attached to the

atomic process terms, which are sets of expressions of two kinds: comparisons
(for instance c1 + c2 > 3), used to specify a condition under which an atomic
process may be executed; and assignments (for instance c1 := c2+1) which allow
to change the value of a clock. It is required that a clock expression δ contains
at most one assignment for each clock in C. A particular clock expression will
be used in the following to represent the occurrence of a tick: δτ

df
= {c := c+ 1 |

c ∈ C}. We say that a clock vector θ enables a clock expression δ if (1) all
the clocks involved in δ belong to the domain of θ, (2) all the comparisons in δ
evaluate to true through θ, and (3) all the assignments c := e in δ are such that
θ(e) ≤ max(c). In such a case, applying to θ all the assignments specified in δ
leads to a new vector which is denoted δ(θ).

Syntax. The syntax of CTC is given in the figure 1. We distinguish static terms,
denoted by E, which cannot evolve, from dynamic ones, denoted by D, where
the current state of the execution is represented by overbars (initial state) and
underbars (final state) which may flow through the terms during their execution.
We denote by F a static or dynamic term.
The atomic terms are of the form αδ where α is a multiaction and δ is a

clock expression. Consider for instance the two atomic terms {â1, a2}{} and
{a1}{c2 > 0, c2 := 0}. The first one denotes the simultaneous receiving of the
signal a1 and sending of the signal a2, which is untimed; the second one can send
the signal a1 and reset the clock c2 if the value associated to c2 is greater than
zero. Various operators allow to combine terms:

E ::= αδ | E sc a | E‖E | E # E | E ¤ E | E ~ E | E @ θ

D ::= E | E | D sc a | D‖D | D # E | E # D

| D ¤ E | E ¤D | D ~ E | E ~D | D @ θ

Fig. 1. The syntax of CTC terms, where αδ is an atomic term, a ∈ A and θ ∈ V.

– the sequential composition F1 # F2 (F1 is executed first and followed by F2)
may be seen as a generalisation of the prefixing operator used in CCS;

– the choice F1 ¤ F2 (either F1 or F2 may be executed) corresponds to the
choice of CCS;

– the parallel composition F1‖F2 (F1 and F2 may evolve concurrently) differs
from that used in CCS since it does not allow for synchronisation;

– the iteration F1 ~ F2 (F1 is executed an arbitrary number of times and is
followed by F2) allows to represent repetitions while in CCS the recursion
would be used;

– the scoping F sc a (all the handshakes involving a and â are enforced) was
discussed above.

In order to model the clocks, terms are decorated with clock vectors. For instance,
we may form {a}{c := 0} @ {c 7→ 5} denoting that the clock c has value the 5
for the atomic term {a}{c := 0}.

Operational semantics. An important part of the operational semantics relies on
equivalence rules allowing to identify distinct terms which actually correspond to
the same state. Formally, we define ≡ as the least equivalence relation on terms
such that all the rules in the figure 2 are satisfied. Consider for instance the rule
IS2: it states that having the first component of a sequence in its final state is
equivalent to have the second component in its initial state, which is indeed the
expected semantics of a sequential composition.
Contrasting with CCS where evolutions are expressed by removing prefixes

of terms, like in a.P
a
−−−−−−−−→ P , the structure of CTC terms never evolves; instead,

the overbars may be changed to underbars as in

{a}{c := 0}@ {c 7→ 5}
({a},{c7→5})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {a}{c := 0}@ {c 7→ 0}

which produces the timed multiaction ({a}, {c 7→ 5}) denoting the occurrence of
{a} when the clock c had the value 5, while the reset c := 0 has been reflected
on the new clock vector. In order to have a concurrent semantics, several timed
multiactions may be combined, denoting their concurrent occurrence. Given Γ1

and Γ2 two multisets of multiactions and θ1, θ2 ∈ V having disjoint domains,
A1

df
= (Γ1, θ1) and A2

df
= (Γ2, θ2) are timed multisets of multiactions and A1 +

A2
df
= (Γ1 + Γ2, θ1 + θ2).
Then, we define a ternary relation −−−−−−−−→ as the least relation comprising all

(F,A, F ′) where F and F ′ are terms and A is a timed multiset of multiactions,
such that the rules in the figure 3 hold. Notice that we use F

A
−−−−−−−−→ F ′ to denote

(F,A, F ′) ∈ −−−−−−−−→. When used with ¦ = ‖, the rule EOP is the way through which
true concurrency is introduced. When used with another operator, the syntax
ensures that at most one of A1 or A2 has a nonempty multiset of multiactions
since at least one of the operands must be a static term. In these cases, the rule
EOP shall be used in conjunction with EQ1 in order to compose a static term
with a dynamic one. Concerning the rule ETICK, it should be noted that the side
condition “θ enables δτ” implies that dom(θ) = C; thus the occurrence of a tick
always simultaneously increments all the clocks.

EX
E ≡ E

′

E ≡ E
′ ENT

E ≡ E
′

E ≡ E′

CON1
F ≡ F

′

F sc a ≡ F
′
sc a

CON2
F1 ≡ F

′
1, F2 ≡ F

′
2

F1 ¦ F2 ≡ F
′
1 ¦ F

′
2

ISC1 E sc a ≡ E sc a ISC1 E sc a ≡ E sc a

IPAR1 E1‖E2 ≡ E1‖E2 IPAR2 E1‖E2 ≡ E1‖E2

IC1L E1 ¤ E2 ≡ E1 ¤ E2 IC2L E1 ¤ E2 ≡ E1 ¤ E2

IC1R E1 ¤ E2 ≡ E1 ¤ E2 IC2R E1 ¤ E2 ≡ E1 ¤ E2

IS1 E1 # E2 ≡ E1 # E2 IS2 E1 # E2 ≡ E1 # E2

IS3 E1 # E2 ≡ E1 # E2 IIT1 E1 ~ E2 ≡ E1 ~ E2

IIT2 E1 ~ E2 ≡ E1 ~ E2 IIT3 E1 ~ E2 ≡ E1 ~ E2

IIT4 E1 ~ E2 ≡ E1 ~ E2 IIT5 E1 ~ E1 ≡ E1 ~ E2

IAT1
F ≡ F

′

F @ θ ≡ F
′ @ θ

IAT2 E @ θ ≡ E @ θ

IAT3 E @ θ ≡ E @ θ IAT4 (F sc a) @ θ ≡ (F @ θ) sc a

IAT5 (F1 ¦ F2) @ (θ1 + θ2) ≡ (F1 @ θ1) ¦ (F2 @ θ2)

Fig. 2. Similarity relation, where a ∈ A, ¦ ∈ {‖, #,¤,~} and {θ, θ1, θ2} ⊂ V.

EQ1 F
({},θ∅)
−−−−−−−−−−−−−−−−−−−−−−−→ F where dom(θ∅) = ∅

EQ2
F ≡ F

′
, F

′ A
−−−−−−−−−→ F

′′
, F

′′ ≡ F
′′′

F
A
−−−−−−−−−→ F

′′′

EAT
F

(Γ,θ1)
−−−−−−−−−−−−−−−−−−→ F

′

F @ θ2
(Γ,θ1 + θ2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F

′ @ θ2

EA αδ @ θ
{(α,θ)}
−−−−−−−−−−−−−−−−−−−−−−→ αδ @ δ(θ) if θ enables δ

ETICK
F @ θ

A
−−−−−−−−−→ F

′ @ θ

F @ θ
A+({τ},θ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F

′ @ δτ (θ)
if θ enables δτ

ESC
F

(Γ1,θ1)+···+(Γk,θk)
−−−→ F

′

F sc a
(ϕsc a({Γ1,...,Γk}),θ1+···+θk)
−−→ F

′
sc a

if τ does not appear in
any Γi and {Γ1, . . . , Γk} ∈
dom(ϕsc a)

EOP
F1

A1−−−−−−−−−→ F
′
1 , F2

A2−−−−−−−−−→ F
′
2

F1 ¦ F2
A1+A2−−−−−−−−−−−−−−−−−−−−−−→ F

′
1 ¦ F

′
2

if τ does not appear in A1

neither in A2

Fig. 3. Evolution rules, where αδ is an atomic term, {θ, θ1, θ2, θ∅} ⊂ V, a ∈ A, ¦ ∈
{‖, #,¤,~} and assuming that all the applications of + are well defined.

3 Denotational semantics

The algebra of boxes. We start by introducing the labelled coloured Petri nets
called boxes and the operations used to compose them. These operations exactly
correspond to those defined on terms: for each operator on terms, there exists a
similar operator defined on boxes.
The labelling of boxes allows to distinguish the entry, internal and exit places;

all together, they are called the control places since their role is to represent the
current state of the control flow. The marking of the entry places corresponds
to the initial marking of a box and thus we define N as the box N in which
one token is added to each entry place. Similarly, the exit places correspond to
the final marking and N is defined as expected. The internal places correspond
to intermediate states during the execution of a box. Except for the scoping,
the operators of CTC are also based on the labels of places. For instance, the
sequential composition N1 # N2 is defined by combining the exit places of N1

with the entry places of N2, resulting in internal places whose marking represent
both the final marking of N1 and the initial one of N2.
Another class of places is distinguished thanks to their labels, these are the

clock places in which clock values are modelled. A box has exactly one clock place
labelled by c for each c ∈ C. When several nets are combined, for instance using
the parallel composition, clock places with the same label are automatically
merged (with their markings) ensuring a unique representation of each clock.
While the control places are only allowed to carry the ordinary black token •,
each clock place may carry any integer from N. Thus, the clock places are the
only coloured ones.
The labelling of an arc consists in a multiset of values, variables or expressions

which represents the tokens flowing on the arc when the attached transition is
executed.
The labelling of a transition contains a multiaction as in atomic terms. This

allows to define the scoping w.r.t. a ∈ A whose role is to merge sets of transi-
tions whose labels α1, . . . , αk belong to the domain of ϕsc a, the newly created
transition being labelled by ϕsc a({α1, . . . , αk}). Transitions are also labelled by
guards (boolean conditions involving the variables used in adjacent arcs) which
must evaluate to true in order to allow the execution of the transitions. When
this occurs, the variables in the guard and the adjacent arcs are associated to
values through a binding σ and we denote by tσ the occurrence of t under the
binding σ.

From terms to boxes. Let αδ be an atomic term, its denotational semantics is
given by the box Nαδ defined as follows. Its places are: one entry place se, one
exit place sx, and one clock place sc labelled by c for each c ∈ C. The marking
is empty for the control places and {0} for the clock places. The box has one
transition t labelled by {τ}(

∧
c∈C

c < max(c)) which models the tick and, for
each c ∈ C, there is one arc labelled by {c} from sc to t and one arc labelled
by {c + 1} from t to sc. There is also one transition u labelled by αγ, where γ
is the disjunction of all the comparisons in δ (or true if there is no comparison

in δ), which models the atomic action αδ. This transition u has one incoming
arc from se labelled by {•} and one outgoing arc to sx with the same label. The
other arcs on u correspond to the clocks involved in δ; for all c ∈ C:

– if c appears in δ in comparisons only, then there is one arc from sc to u
labelled by {c} and one arc from u to sc with the same label;

– if c appears in δ in an assignment c := e, where e is an expression, then there
is one arc from sc to u labelled by {c} and one arc from u to sc with the
label {e};

– if c does not appear in δ then there is no arc between sc and u.

The denotational semantics is then defined by induction:

box(αδ)
df
= Nαδ box(E)

df
= box(E) box(E)

df
= box(E)

box(F sc a)
df
= box(F) sc a box(F1 ¦ F2)

df
= box(F1) ¦ box(F2)

where αδ is an atomic term, a ∈ A and ¦ ∈ {‖, #,¤,~}. Moreover, for θ ∈ V,
box(F @ θ) is box(F) in which the marking of each clock place labelled by c ∈
dom(θ) is set to {θ(c)}. For example, assuming C df

= {c} and max(c)
df
= 4, the box

on the left of the figure 4 is

box

(
{a1}{c := 0} # {a2}{c ≥ 2}

)
.

The operational and denotational semantics are closely related: they are actu-
ally consistent in arguably the strongest sense since a term and the corresponding
box generate isomorphic transitions systems.

4 Verification through unfoldings

A well known technique to perform efficient model checking on Petri nets is to
use their concurrent semantics expressed by prefixes of their unfolding which
are also Petri nets, see [8]. The traditional definition of unfoldings is based on
low-level Petri nets, but it was shown in [10] that coloured Petri nets like boxes
may be unfolded as well (producing a low-level net). An example of a box and a
prefix of its unfolding is given in the figure 4.
In the unfolding, places are called conditions and are labelled by the name and

the marking of the place to which they correspond in the original net; similarly,
transitions are called events and correspond to the transition occurrence which
labels them. The labelling function is an homomorphism and will be denoted by
h in the following. In the figure 4, this labelling is indicated inside the nodes
and is simplified: a condition labelled by an integer n denotes the presence of n
in the place sc and conditions labelled by s1, s2 or s3 denote the token • in the
corresponding place.
An unfolding may be executed by putting one token in each condition with no

predecessor. One can check on the example that this allows to perfectly mimic the
behaviour of the original net. Notice that, when the pairs of conditions depicted

• s1

u {a1}(true)

s2

v {a2}(c ≥ 2)

s3

0sc

t

{τ}(c < 4)

0

c

c

c

c+ 1 c

s1

3

0 s2 4

0 s2

1

0

2

3 2s3

3

4

4 3s3

4

1

4 s3

0 s2

0 s2 2

0 s2

tσ0

tσ0

tσ1

vσ2tσ2

tσ2

tσ3

vσ3tσ3

vσ4

uσ0

tσ3

uσ1 tσ1

uσ2 tσ2

uσ3 tσ3

uσ4

Fig. 4. The box of {a1}{c := 0} # {a2}{c ≥ 2} (on the left) and a prefix of its unfolding
(on the right), where σi

df
= {c 7→ i} for 0 ≤ i ≤ 4; assuming C df

= {c} and max(c)
df
= 4.

with double lines become marked, the execution may be continued from the
conditions depicted with thick lines. Indeed, these double-lined pairs are cuts
where the unfolding have been truncated since the corresponding markings were
already represented by the thick-lined pair of conditions. This allows to consider
only prefixes of the full unfolding which may be itself infinite (if the net has an
infinite run). Such a prefix is complete (w.r.t. reachability properties) if every
reachable marking of the original net is represented in the prefix. This guarantees
that reachability properties can be verified on the prefix rather than on the
original net.
The notion of completeness actually depends on the properties that should

be verified. Usually, those related to reachability are considered, but different
ones may be envisaged like in [9]. In our case, if only control flow properties
have to be verified on a box, the occurrences of ticks and the markings of clock
places could be removed from the unfolding of this box. In the following, we
present an intermediate simplification which keeps some timing information but
without its full precision: it will not be possible to exactly know the values of the
clocks when an event occurs; instead, we will obtain a range of possible values.
Moreover, in the simplified unfolding, an event labelled by an occurrence of the
tick transition will denote that “time is passing” instead of the more accurate
“one tick occurs”.

Simplification of unfoldings. We now show how to collapse chains of ticks (as,
e.g., at the bottom-right of the figure 4) thus removing the sensitivity of model
checking to the constants used in clock expressions. It should be stressed that,
for practical applications, the transformation described below should be applied
on-the-fly during the computation of the unfolding; but, the principle being
independent of the algorithm actually used, we prefer the current presentation.
Let x be an event or a condition, we denote by •x the set of nodes immediately

preceding x and by x• those immediately succeeding x. This notation naturally
extends to sets of nodes. For a set E of events, we denote by trans(E) the multiset
of transitions involved in E, i.e.,

trans(E)
df
=

∑

e∈E∧h(e)=wσ

{w} .

To start with, we change the labelling of conditions to triples (s, p, q) where
s is a place of the original net and p, q are integers such that 0 ≤ p ≤ q. If s is
a control place, this label indicates that the condition corresponds to s marked
by •; but if s is a clock place, the condition corresponds to the place s whose
marking is any integer in {p, . . . , q}. So, the labelling is changed as follows: for
each condition which corresponds to the marking of the control place s, the
label becomes (s, 0, 0); for each condition which corresponds to the marking of
the clock place s′ by the integer n, the label is changed to (s′, n, n).
Then, we consider an event e labelled by an occurrence tσ of the tick tran-

sition. We call e a tick event. One can show that, if •e = {c1, . . . , ck} with
h(ci) = (si, pi, qi) for 1 ≤ i ≤ k, then, because the tick transition is connected to
clock places through side loops (and not connected to any other place), we must
have e• = {c′1, . . . , c

′
k} and h(c′i) = (si, p

′
i, q

′
i) for 1 ≤ i ≤ k. We distinguish two

sets of events: E
df
= (•e)• which contains all the events in conflict with e (includ-

ing e) and E′ df
= (e•)• which contains all the events enabled by the occurrence

of e. Then, if trans(E) = trans(E ′), it means that the tick do not change the
enabling in the net (it may change the bindings but not the transitions which
are enabled). So, e is removed and the conditions in e• are merged to those in
•e. Each condition c′i (whose label is (si, p

′
i, q

′
i)) is merged to the corresponding

ci (labelled by (si, pi, qi)) as follows:

– the condition c′i is removed and the label of ci is changed to (si, pi, q
′
i);

– each tick event e′ ∈ E′ becomes a successor of ci;
– each non tick event e′ ∈ E′ is removed as well as all its successors nodes. This
allows to remove branches which were already possible before the occurrence
of the tick.

This simplification step has to be repeated iteratively for all the tick events.
We already remarked that, during each step, for 1 ≤ i ≤ k, ci ∈ E and c′i ∈ E′

are such that h(ci) = (si, pi, qi) and h(c′i) = (si, p
′
i, q

′
i). One can now show that

we also have p′i = qi + 1 and that this remains true after some tick events have
been removed. It may also be shown that the order in which tick events are
considered has no influence on the final result.

s1 0−3

t u

4 0,1 s2

0

u

s2

t

2,3

v

4

t

2,3s3

t

4

v

4 s3

s1 0−4

u

0,1 s2

t

2−4

v

2−4s3

Fig. 5. On the left, the prefix generated using the first method, and on the right, using
the second one. The bindings are no more relevant and thus not indicated.

By applying this transformation, we obtain the prefix given on the left of the
figure 5, notice that some conditions are now labelled by lists or ranges of integers
when they correspond to several possible markings of sc. One can see that the
left part of the original prefix have been simplified and that the only remaining
visible tick is the one which leads to have 4 in sc thus disabling any further tick.
Similarly, the right branch was also simplified and the two remaining occurrences
of v correspond to the two following situations: both v and t are enabled; or,
only v is enabled.
It may be considered that too much information is still present in the prefix.

In particular, one can distinguish between states from which tick can or cannot
occur, which is an information only related to our particular modelling of time.
In order to simplify again, we can use the same transformation scheme but,
instead of removing a tick event when trans(E) = trans(E ′), we use the weaker
condition trans(E/τ) = trans(E ′/τ) where X/τ is X from which all the tick
events have been removed. This new criterion leads to the prefix given on the
right of the figure 5 in which the only remaining tick event denotes that time
must pass. All the situations in which time only may pass have been hidden.
Choosing one or the other criterion depends if one wants to always know when
ticks are possible or not. But, in both cases, we achieved our goal which was to
remove the sensitivity to constants.

5 Conclusion

We defined a process algebra with multiway communication and timing feature
through clocks directly handled. This model, the Causal Time Calculus (CTC),

was provided with a structural operational semantics as well as with a consistent
denotational semantics in terms of labelled coloured Petri nets. These nets use
the so called causal time approach to the modelling of time which was shown in
a previous paper [3] having the potentiality for efficient verification but suffering
from a sensitivity to the constants compared to clocks. An important contribu-
tion of this paper was to show how to remove this weakness.
As an extension of the Petri Box Calculus (PBC) [2], CTC is similar to

the approach in [11] where the author extends PBC with time using time Petri
nets [15] for the denotational semantics. A similar result is also obtained in [14]
where timed Petri nets [19] are used. It should be noted that, in both cases,
the model checking of the underlying models is known to be much less efficient
than that of standard Petri nets. This makes an importance difference with
CTC for which the efficiency of the verification was a major concern. Moreover,
we introduced time through explicit clocks directly handled by the processes
which is known to be useful for modelling timed systems (this is indeed the
scheme used in timed automata). Among process algebras not related to PBC, we
should distinguish ARTS [6, chap. 5] which has been designed in order to denote
timed automata while CTC denotes Petri nets; ARTS thus provides continuous
time while CTC uses discrete time. Another difference is that the operational
semantics in ARTS is used to give a translation from terms to automata while
in CTC it is independent of Petri nets (even if both semantics are consistent).
It finally appears that both algebras may be complementary as they denote
objects on which model checking can be performed efficiently. Which one to use
in which case is still a topic for future research. Concerning the other process
algebra with time (for instance those based on CCS, see [5]), it may be remarked
that most of them also use ticks to model the passing of time. However, they
generally consider an interleaving semantics of parallelism while CTC considers
true concurrency and most of these algebras do not provide multiway as in CTC.
Several extensions to the model presented here can be envisaged, in partic-

ular: actions with parameters, allowing to exchange data during handshakes;
buffered communication, allowing to model program variables; and guards, al-
lowing to specify conditions under which an atomic process may be executed.
Incorporating these features should be straightforward since they are already
defined in several extensions of PBC (in particular in [4]). Another extension
would be to allow the maximum values of clocks to be changed dynamically.
This must be addressed carefully in order to guaranty that either a finite prefix
of the unfoldings can always be found or methods dedicated to infinite state
spaces can be used.
Last but nor least, an in-depth study of the unfolding simplification proposed

here appears necessary in order to know exactly what is its influence on the
properties which can be verified: which one are preserved and which one are
hidden. One way to reach this goal is to define a timed temporal logic in order to
specify properties which could then be verified automatically. The more complete
this logic will be, the more we will know about the properties preserved by our
unfolding simplification.

Acknowledgement. I am very grateful to Victor Khomenko for his advice
about Petri nets unfoldings.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
126(2). Elsevier, 1994.

2. E. Best, R. Devillers and J. Hall. The Petri Box Calculus: a new causal algebra

with multilabel communication. Advance in Petri nets 1992, LNCS 609. Springer,
1992.

3. C. Bui Thanh, H. Klaudel and F. Pommereau. Petri nets with causal time for

system verification. MTCS’02, Electronic Notes in Theoretical Computer Sciences
68.5. Elsevier, 2002.

4. C. Bui Thanh, H. Klaudel and F. Pommereau. Box Calculus with Coloured Buffers.
LACL Technical report, 2002. Available at http://www.univ-paris12.fr/lacl

5. F. Corradini, D. D’Ortenzio and P. Inverardi. On the relationship among four timed
process algebras. Fundamenta Informaticae 34. IOS Press, 1999.

6. P.R. D’Argenio. Algebras and automata for real-time systems. PhD. Thesis, De-
partment of Computer Science, University of Twente, 1999.

7. R. Durchholz. Causality, time, and deadlines. Data & Knowledge Engineering 6.
North-Holland, 1991.

8. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming 23. Elsevier, 1994.

9. V. Khomenko, M. Koutny et W. Vogler. Canonical prefixes of Petri net unfoldings.
CAV’02, LNCS 2404. Springer, 2002.

10. V. Khomenko and M. Koutny. Branching processes of high-level Petri nets.

TACAS’03, LNCS 2619. Springer, 2003.
11. M. Koutny. A compositional model of time Petri nets. ICATPN’00, LNCS 1825.

Springer, 2000.
12. K. G. Larsen, P. Pettersson et W. Yi. UPPAAL in a nutshell. International Journal

on Software Tools and Technology Transfer 1(1-2). Springer, 1997.
13. M. Mäkelä. MARIA: modular reachability analyser for algebraic system nets. On-

line manual, http://www.tcs.hut.fi/maria, 1999.
14. O. Marroqúın Alonzo and D. de Frutos Escrig. Extending the Petri Box Calculus

with time. ICATPN’01, LNCS 2075. Springer, 2001.
15. P. M. Merlin and D. J. Farber. Recoverability of communication protocols—

implications of a theoretical study. IEEE Transaction on Communication 24. IEEE
Society, 1976.

16. R. Milner Communication and concurrency. Prentice Hall, 1989.
17. G. D. Plotkin. A Structural approach to Operational Semantics. Technical Report

FN-19, Computer Science Department, University of Aarhus, 1981.
18. F. Pommereau. Causal Time Calculus. LACL Technical report, 2002. Available at

http://www.univ-paris12.fr/lacl

19. C. Ramchandani. Analysis of asynchronous concurrent systems using Petri nets.

PhD. Thesis, project MAC, MAC-TR 120. MIT, 1974.
20. S. Yovine. Kronos: A verification tool for real-time systems. International Journal

of Software Tools for Technology Transfer, 1(1/2). Springer, 1997.

