
HAL Id: hal-00114672
https://hal.science/hal-00114672

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Box Calculus with High-Level Buffers
Cécile Bui Thanh, Hanna Klaudel, Franck Pommereau

To cite this version:
Cécile Bui Thanh, Hanna Klaudel, Franck Pommereau. Box Calculus with High-Level Buffers. 2004,
pp.1-6. �hal-00114672�

https://hal.science/hal-00114672
https://hal.archives-ouvertes.fr

Box Calculus with High-Level Buffers
Cécile Bui Thanh

LACL, Université Paris 12
61 avenue du général de Gaulle, 94010 Créteil, France

bui@univ-paris12.fr

Hanna Klaudel
LaMI, Université Evry-Val d’Essonne

523 Place des Terrasses, 91000 Evry, France
klaudel@lami.univ-evry.fr

Franck Pommereau
LACL, Université Paris 12

61 avenue du général de Gaulle, 94010 Créteil, France
pommereau@univ-paris12.fr

Keywords: Process algebra, handshake/buffered commu-
nication, structured operational semantics, coloured Petri
nets.

���������
	��
�

In this paper, we propose a high-level process algebra al-
lowing to express the exchange of data values using both
handshake and buffered communication. This allows a sim-
ple and compositional expression of interprocess communi-
cation; in particular the buffered one makes easy the repre-
sentation of program variables, allowing a compact repre-
sentation of large systems. The process terms are provided
with an operational semantics as well as with a denotational
one in terms of high-level Petri nets. The main result is that
both semantics are consistent in the sense that a term and
the corresponding Petri net generate isomorphic transition
systems.

�����������������������

The modelling of concurrent systems involves a rep-
resentation of interprocess communication (which may be
handshake or buffered), and very often that of data like pro-
gram variables. This representation should be compact and
readable in order to avoid design errors. A first step for im-
proving the readability is the structured modelling which is
a main characteristic of process algebras. Concerning the
communication, process algebras are historically based on
the paradigm of handshake communication and there are
two classical ways to model the buffered one. The first way
consists in considering each communication as buffered, as
for instance in the asynchronous π-calculus [5]: the output
prefix ax in the term ax|a(x).P is interpreted as a message
x already present on the channel a, and available for re-
ception. Doing so, handshake communication becomes not
available, since the channels are implicitly buffered. The
second way consists in considering a buffered communi-
cation as two different actions (a sending and a receiving)
managed by a medium. This medium can be explicitely
added to the modelisation by its parallel composition with
the system, like in Milner’s π-calculus [17], or implicitly
included in the formalism, by adding a syntactic feature
representing a message already sent but not yet received,

like in the algebraic version of Linda1 [9] or in Broy and
Olderog’s formalism used in [6]. Note also that multiway
communication is usually not supported by process alge-
bras, and if it is the case, only handshake is available, like
in SCCS [16] or PBC [1–3]. Most efforts given in the do-
main of process algebras to add high-level features like, for
instance, in M-expressions [14] or value-passing CCS [16],
do not consider both buffered and handshake multiway
communication. The Asynchronous Box Calculus with Mul-
tiway Communication [7] is a low-level formalism suitable
for modelling distributed systems in a compositional way.
In the following, we will call it the low-level model. It is
composed of an algebra of process terms with a fully com-
positional translation into labelled Petri nets (called boxes)
and it was shown that the semantics of a process term ob-
tained by the rules of the structural operational semantics
(SOS) was equivalent to the step sequence semantics of the
associated Petri net. Thus, this model takes both advantages
from process algebras for the design, and from Petri nets
for the efficiency of system verification [11]. Moreover, it
allows for both handshake and buffered multiway commu-
nication.

The aim of this paper is to introduce high-level features
in this low-level model in order to simplify the modelling
of complex systems manipulating data. Using the low-level
model for such systems requires to use, for instance, one
buffer to represent each possible value of a modelled vari-
able, which is not readable for large data types and may
become humanly intractable in complex cases. In the ex-
tension proposed here, the changes concern the syntactical
level (terms), the associated SOS rules, as well as the Petri
net level (boxes). The main extension consists in introduc-
ing high-level buffers, which are able to carry values from
an associated set. (Thus, these buffers become useful for
representing variables in a compact way.) This leads to in-
troduce parameters in both actions and links, and also to
add a guard (i.e., a boolean expression) to atomic terms.
As in the low-level model, an encapsulation mechanism for
buffered communication is proposed; this does not exist in
other process algebras and in particular in [9, 6].

The main result is that the obtained high-level frame-
work, called Box Calculus with Data (BCD), is consistent

1 Meanwhile, Linda does not allow for handshake communication.

in the sense that a term and the corresponding net generate
isomorphic transition systems. This is obtained by showing
the consistency with the low-level model w.r.t. a transla-
tion called unfolding. Moreover, it turns out that the used
class of Petri nets was shown in [12, 18] sufficient to model
the semantics of a high-level parallel specification language
B(PN)2 [4] and was used in [10] to express a compositional
semantics of the π-calculus [15].

The paper is structured as follows: we first introduce
the BCD algebra of terms. Next, we give the structural op-
erational semantics and the denotational semantics through
a translation to boxes. Finally, we give the main results of
this work and conclude. The present paper is an extended
abstract of the technical report [8] containing the complete
formalisation and proofs.

� � ��������� � � ��� � � ��	�

We introduce first some notions and notations needed
to formalise the high-level features of our extension.

We assume that there is a finite set A of action sym-
bols used to model handshake communication. Each action
symbol a ∈ A has the arity ar(a) corresponding to the num-
ber of parameters used during a handshake communication.
We also assume that, for all a ∈ A, there exists a conjugated
â in A such that ̂̂a = a and ar(a) = ar(â). An action is com-
posed of an action symbol and parameters which may be
values from the finite set V or variables from the set X. For
instance, if ar(a) = 2, then a(x, 1) and â(2, y) are exam-
ples of actions. A multiset of such actions is called a multi-
action. We consider also a finite set B of buffer symbols (or
buffers) intended for buffered communication. Each buffer
b ∈ B is assigned a non-empty set type(b) ⊆ V, represent-
ing all the values it can carry. Communication through a
buffer b is represented with links of the form b+(e) for send-
ing a value (represented by the expression e) to the buffer
b, or b−(e) for receiving. For instance b+(x + 1) or b−(2)
denote links. Moreover, in process terms, we will use the
notations .b(v), with v ∈ type(b), to denote the presence of
a value v in the buffer b.

We consider an algebra of process terms over the fol-
lowing signature:

C ∪ { · , · } ∪ { ‖ , # , � , ~} ∪ {sca | a ∈ A}
∪ {.b(v), tie b | b ∈ B, v ∈ type(b)}

where C
df

= {〈α|β|γ〉 | α is a multiaction, β is a multiset of
links and γ is a guard} are the constants; the binary opera-
tors ‖, #, � and ~ will be used in the infix mode; the unary
operators sc a, tie b and .b(v) will be used in the postfix
mode; and · and · are two positional unary operators (the
position of the argument being given by the dot). The op-
erators of BCD will have the following intuitive meaning:
iteration E1 ~E2 (E1 can be executed an arbitrary num-
ber of times, and then is followed by E2); buffer restriction
E tie b (the buffer b and the related links become private
to E); scoping E sc a (setup handshake communication in-
volving the actions a or â); and buffer stuffing .b(v) (add a
value v in the buffer b). Sequence E1 #E2 , choice E1 � E2

and parallel composition E1‖E2 have their classical mean-
ings.

There are two classes of process terms: the static and
dynamic ones, denoted respectively by E and D. Collec-
tively, we will refer to them as the terms, F . Their syntax is
given by:

E ::= 〈α|β|γ〉 | E sca | E tie b | E.b(v) | E‖E
| E � E | E #E | E ~ E

D ::= E | E | D sc a | D tie b | D.b(v)
| D‖D | E binD | D bin E

where 〈α|β|γ〉 ∈ C, a ∈ A, b ∈ B, v ∈ type(b) and
bin ∈ {�, ‖, #, ~}. Notice that, since the order of bi(vi)’s
will be irrelevant in terms of the form F.b1(v1) · · · .bk(vk),
we will sometimes use the shorthand F.B, where B is the
multiset containing all the bi(vi)’s.

Essentially, a term encodes the structure of the control,
together with the current state of the execution (using over-
bars and underbars) and the state of the buffers (using the
.b(v)’s). Thus, a term E represents E in its initial state,
while E represents E in its final state. The execution of a
term depends on the evaluation of the expressions it con-
tains which may be done for a chosen binding σ : X → V

which assigns values to variables. This way, an atomic BCD
term can have as many executions as there are distinct en-
abling bindings for it.2 A binding σ is enabling for a term
〈α|β|γ〉 if the guard evaluates to true, eval(σ(γ)) = >, and
if for each link of the form b−(e) or b+(e) in β, the con-
cerned expression evaluates to a value from the type of the
link, eval(σ(e)) ∈ type(b). For instance, if type(b) = V,
the atomic term 〈a(x) | b+(x + 1) | x ∈ {1, 2}〉 has two
enabling bindings σ1 = {x 7→ 1} and σ2 = {x 7→ 2}
each of them leading to a distinct potential execution. Such
an execution is possible if the term is in its initial state;
for instance, 〈a(x) | b+(x + 1) | x ∈ {1, 2}〉 may be ex-
ecuted with the binding σ2, producing a value 3 in the
buffer b and a visible bound action ({a(x)}, σ2) (which in-
tuitively corresponds to the action a(2)), and leads to the
term 〈a(x) | b+(x + 1) | x ∈ {1, 2}〉.b(3).

It is worth remarking that the buffer stuffing .b(v) is
needed for static as well as for dynamic terms because the
dormant part of a dynamic term may have .b(v)’s which
may be later needed if it becomes active.

The scoping is defined through partial functions ϕsc a

(for each a ∈ A) which allow to enforce the hand-
shake communication w.r.t. a and to forbid the in-
dependent execution of events still involving a or â.
More precisely, ϕsc a may be applied to a pair (mα, δ),
where mα is a multiset of multiactions whose el-
ements (multiactions) can synchronise together under
the substitution δ; in this case, ϕsc a(mα, δ) yields
the resulting multiaction. For instance, the fact that
ϕsc a({{a(x), a(3)}, {â(5)}, {â(y), a2}}, {x 7→ 5, y 7→
3}) = {a2} means that, the involved multiactions can per-
form a three-way synchronisation (a(x) is synchronised

2 We identify the bindings which coincide for all the variables of a term but may differ on other variables not involved in the term.

CON1 F ≡ F
′

F una ≡ F
′
una

CON2
F1 ≡ F

′
1, F2 ≡ F

′
2

F1 bin F2 ≡ F
′
1 bin F

′
2

ENT E ≡ E
′

E ≡ E′
EX E ≡ E

′

E ≡ E
′

OPL (F.b(v)) binF ′ ≡ (F bin F ′).b(v) OPR F bin(F ′.b(v)) ≡ (F bin F ′).b(v)

E1 E una ≡ E una X1 E una ≡ E una

B1 (F.b(v)) una ≡ (F una).b(v) if una 6= tie b

IS1 E1 # E2 ≡ E1 #E2 IS2 E1 #E2 ≡ E1 #E2

IS3 E1 # E2 ≡ E1 #E2 REN F ≡ ρ(F)

IPAR1 E1‖E2 ≡ E1‖E2 IPAR2 E1‖E2 ≡ E1‖E2

IC1L E1 � E2 ≡ E1 � E2 IC1R E1 �E2 ≡ E1 �E2

IC2L E1 � E2 ≡ E1 � E2 IC2R E1 �E2 ≡ E1 �E2

IIT1 E1 ~ E2 ≡ E1 ~ E2 IIT2 E1 ~E2 ≡ E1 ~E2

IIT3 E1 ~ E2 ≡ E1 ~ E2 IIT4 E1 ~E2 ≡ E1 ~E2

IIT5 E1 ~ E2 ≡ E1 ~ E2

Fig. 1. Structural similarity relation, where b ∈ B, v ∈ type(b), una stands for any unary operator, bin stands for any binary operator and
ρ is a substitution on X.

with â(5) and a(3) is synchronised with â(y)), where the
substitution {x 7→ 5, y 7→ 3} has to be applied, and this
synchonisations leads to the multiaction {a2}. These func-
tions ϕsc a are used to enforce CCS-like synchronisations,
but with no limitation on the number of simultaneous par-
ticipants. They existed already in the low-level model and
are extended in order to take the bindings of variables into
account (see [7, sec. 2.2] for all the details).

 � 	 � ��������

 �������
��� �
	������
	 �
	 ������
 	�� ��	�� 	�
 ��� � �

As usual, the operational semantics of terms is given by
SOS rules; however, instead of expressing the evolutions
by modifying the structure of the terms, like a.E

a
−−−−−−−−→ E

in CCS, the idea here is to represent the current state of the
evolution using overbars and underbars, corresponding re-
spectively to the initial and final states of (sub)terms. These
rules are entirely detailed in [8].

The first kind of rules defines an equivalence relation
≡, called the structural similarity relation, which allows
to identify different terms which actually denote the very
same state. For instance, in a sequential composition, hav-
ing the first component in final state is equivalent to having
the second one in initial state: F1 # F2 ≡ F1 # F2 for any
BCD term F1 and F2. The relation ≡ as the least equiv-

alence relation on terms such that all the equations in the
figure 1 are satisfied. Most of these rules are those of the
low-level version of the process algebra, and adapted to fit
the syntax which now specifies which value v is stored in a
buffer b, by using .b(v) instead of just .b. A new rule spec-
ifies also that variables may be renamed. It is worth noting
that an important part of the operational semantics relies in
this equivalence relation.

The second kind of rules specifies when an expression
may evolve producing a state change. This is expressed
through rewriting rules of the form F

Γ
−−−−−−−−→ F ′, where F

and F ′ are terms, and Γ is a step, i.e., is a multiset of pairs
(α, σ), where α is a multiaction and σ a binding. For in-
stance, we will have:

〈a2 | b−(y) | >〉.b(3)
{({a2},{y 7→3})}
−−→ 〈a2 | b−(y) | >〉 .

These rules are given in the figure 2. Each α in a step cor-
responds to the execution of one atomic term and the as-
sociated σ is the binding used during this execution. In the
rule LA, a term 〈α|β|γ〉.B may produce a move (α, σ) if
the buffers hold sufficiently many values (represented by
the multiset B of values in the buffers) in order to cover
all the receiving links from β. Such a move consumes B

and produces the multiset B′ of new values in the buffers,
according to the sending links in β.

LA 〈α|β|γ〉.B
{(α,σ)}
−−−−−−−−−−−−−−−−−−−−−−−→ 〈α|β|γ〉.B ′ if

8

>

>

<

>

>

:

σ is an enabling binding for 〈α|β|γ〉

B =
P

b−(e)∈β
β(b−(e)) · b(eval(σ(e)))

B′ =
P

b+(e)∈β
β(b+(e)) · b(eval(σ(e)))

LQ1 F
{}
−−−−−−−−−→ F LQ2

F ≡ F
′
, F

′ Γ
−−−−−−−−−→ F

′′
, F

′′ ≡ F
′′′

F
Γ

−−−−−−−−−→ F
′′′

LBUF F
Γ

−−−−−−−−−→ F
′

F.b(v)
Γ

−−−−−−−−−→ F
′
.b(v)

LOP
F1

Γ1−−−−−−−−−→ F
′
1, F2

Γ2−−−−−−−−−→ F
′
2

F1 bin F2
Γ1+Γ2−−−−−−−−−−−−−−−−−−−−→ F

′
1 binF

′
2

LTIE F
Γ

−−−−−−−−−→ F
′

F tie b
Γ

−−−−−−−−−→ F
′
tie b

LSC F
Γ1+...+Γk−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F

′

F sc a
(ϕsc a(Γ α

1),σ)+...+(ϕsc a(Γ α
k),σ)

−−−→ F
′
sc a

Fig. 2. The operational semantics for BCD, where a ∈ A, b ∈ B, v ∈ type(b), bin stands for any binary BCD operator, and in the rule

LSC σ is a binding such that for 1 ≤ i ≤ k and for all (α, σ′) ∈ Γi, we have σ′ = σ and Γ α
i

df
=

“

P

(α,σ′)∈Γi
Γi(α, σ) · σ(α)

”

∈

dom(ϕsc a).

� 	�
 ����	 � � ��
 	�� ��	�� 	
 ��� � �

The denotational semantics of terms is given by a map-
ping box which associates to each BCD term a labelled
high-level Petri net called a box. A box is a Petri net in
which we distinguish through a special labelling the entry,
internal and exit places which are used to represent the con-
trol flow of the modelled system and can only carry ordi-
nary tokens •. In particular, a term E in its initial state E

will be translated to a box with one token in each entry
place (initial marking), represented by box(E); similarly
the final state E corresponds to have one token in each
exit place of box(E) (final marking). We also distinguish
the buffer places which are used to implement the buffered
communication: each b ∈ B corresponds to a buffer place
sb labelled by b which may hold tokens in type(b). The
transitions of a box are labelled by pairs αγ where α is a
multiaction and γ is a guard; each transition actually corre-
sponds to an atomic term. The links specified by the β part
of atomic terms give rise to the arcs between transitions and
buffer places.

The class of boxes is provided with a set of operations
(based on the labelling of places and transitions) which
exactly correspond to those defined on BCD terms: for
each operator on terms there exists a similar one operat-
ing on boxes. For instance, the sequential composition of
two boxes N1 and N2 is defined and denoted by N1 #N2;
it glues the exit places of N1 with the exit places of N2

and merges the buffer places with the same label. The com-
plete definitions of all these operations are given in [8].
The strong similarity between the two domains allows us
to give a simple inductive definition of the semantical map-
ping box.

The basic building blocks, from which composite boxes
are constructed, are the boxes N〈α|β|γ〉, each one being de-
fined as follows. Its set of places is composed of one entry
place se, one exit place sx and one buffer place sb labelled
by b for each b ∈ B. It has only one transition t labelled by

αγ, which has one incoming arc labelled by {•} from se

and one outgoing arc to sx with the same label. The other
arcs correspond to the links in β and we have for each b ∈ B

as many arcs from sb to t labelled by e as there are links
b−(e) in β, and analogously for the arcs from t to sb. Given
this base case, the function box is defined inductively by:

box(〈α|β|γ〉)
df

= N〈α|β|γ〉 box(F una)
df

= box(F) una

box(E)
df

= box(E) box(E)
df

= box(E)

box(F1 binF2)
df

= box(F1) bin box(F2)

where 〈α|β|γ〉 ∈ C, una stands for any unary operator (sca,
tie b or .b(v), with a ∈ A, b ∈ B, v ∈ V), and bin for any
binary operator (‖, �, # or ~).

An example of box of BCD terms in a producer-
consumer system is given in the figure 3:

PROD
df

=
(
〈ap | b−p (n), b+

p (n+1), b+(x) | >〉.bp(0)
~ 〈fp | b−p (n) | >〉

)
tie bp ,

CONS
df

=
(
〈ac | b−c (k), b+

c (k+2), b−(x), b−(x) | >〉.bc(0)
~ 〈fc | b−c (k) | k ≥ 4〉

)
tie bc

SYS
df

= PROD || CONS

The producer repetitively generates random resources
on a buffer b, updates the private counter of produced re-
sources bp and emits a multiaction {ap}. It may terminate
at any time, by emitting a multiaction {fp}. The consumer
repetitively consumes a pair of the same value, updates the
private counter of consumed resources bc and emits a mul-
tiaction {ac}. It may terminate at any time, if it has con-
sumed at least 4 resources.

In the figure, the unrestricted buffers are represented by
a place with double line, while the restricted buffers are
represented by a place in bold. In the producer/consumer
example, the restricted buffers correspond to the buffers bp

and bc after the application of tie bp and tie bc. Notice that

⇐

b

0

bp

t1

ap

t2fp

⇒

x

n

n n+1

the box of PROD

⇐

b

0

bc

t3

ac

t4
{fc}

{k ≥ 4}

⇒

x, x

k
kk+2

the box of CONS

⇐

b

0

bp

t1

ap

t2fp

⇒

x

n

n n+1

⇐

0

bc

t3

ac

t4
{fc}

{k ≥ 4}

⇒

x, x

k
kk+2

the box of SYS = PROD‖CONS

Fig. 3. Example of BCD boxes involved in a producer-consumer system. The buffer places may carry tokens in N while the other places
may only hold •.

⇐

b 3 d

t

a(k)

⇒

x, x
k

k+2

⇐

b0b1b2

· · ·
d0 d1 d2

•
d3 d4

· · ·

tσ0

a(0)

tσ1

a(1)

tσ2

a(2)

...

⇒

2

2
2

Fig. 4. The box of the BCD term 〈a(k) | b−(x), b−(x), d−(k), d+(k + 2) | >〉.d(3) tie d and a fragment of its unfolding, where
σ0 = {x 7→ 0, k 7→ 0}, σ1 = {x 7→ 0, k 7→ 1}, and σ2 = {x 7→ 0, k 7→ 2}.

some annotations are omitted in the figure, like the guards
which are always true, or the annotation {•} in the arcs.

��� � � � ����� � � ��� ��� �
 �
 � � � ���
� �
 � � �

The translations from the high-level domains of BCD
terms, boxes and steps to the corresponding low-level do-
mains are called unfoldings and are denoted in all cases by
unf.

Low-level boxes sensibly differ from high-level ones:
the places are not typed and may only carry tokens •; the
transitions are labelled by multisets of low-level actions
(whose parameters are only values) and do not have guards;
the arcs are defined through a weight function represent-
ing the number of tokens flowing on the arcs; the marking
function returns the number of tokens held by each place
instead of a multiset of values. The unfolding is defined in
such a way that each transition t of a high-level box gives
rise to a set of low-level transitions tσ , where σ is an en-
abling binding for t; the label of tσ is that of t evaluated
through σ (without the guard which evaluates to true). Each
high-level place s is unfolded into a set of low-level places
sv, for each value v in the set of tokens allowed for s. The
low-level arcs and markings are obtained in a similar way.
An example of the unfolding of a box is provided in the
figure 4.

The low-level version of terms has the following syntax
(with bin ∈ {‖, �, #, ~} as above):

E ::= 〈α`|β`〉 | E sc a` | E tie b` | E.b` | E binE

D ::= E | E | D sca` | D tie b` | D.b`

| D‖D | D bin E | E bin D

where a` is a low-level action and α` is a multiset of such

actions, b` is a low-level buffer and β` is a multiset of low-
level links (with only values as parameters).

The unfolding of BCD terms is defined by induction on
their syntax. As the base case, the unfolding of an atomic
term is the choice between all the low-level terms it en-
codes:

unf(〈α|β|γ〉)
df

=
σ∈B〈α|β|γ〉

〈ασ |βσ〉 ,

where B〈α|β|γ〉 is the set of all the bindings enabling
〈α|β|γ〉, ασ is the multiset of low-level actions obtained
by evaluating through σ all the parameters of actions
from α, and βσ is the multiset of low-level links obtained
from β in a similar way. For instance, the unfolding of
the BCD term 〈a(x) | b+(x + 1) | x ∈ {1, 2}〉 is
〈a(1) | b+(2)〉� 〈a(2) | b+(3)〉.

Then, for terms F , F1 and F2, a ∈ A, b ∈ B, d ∈
type(b) and any binary operator bin, the unfolding is de-
fined as follows:

unf(F sc a)
df

= unf(F) sc unf(a)

unf(F tie b)
df

= unf(F) tie unf(b)

unf(F.b(d))
df

= unf(F).bd

unf(F1 bin F2)
df

= unf(F1) bin unf(F2)

unf(F)
df

= unf(F) unf(F)
df

= unf(F)

where unf(a) is the set of all low-level actions of the form
a(v, . . . , v′) in which v, . . . , v′ are values from V, and
unf(b) is the set of all low-level buffers of the form bv for
all v ∈ type(b). Notice that, since unf(a) is a finite set of
low-level actions, sc unf(a) is in fact a shorthand for suc-
cessive applications of scoping with respect to all the ele-
ments of unf(a) (which may be applied in any order thanks

to the commutativity of scoping). The situation is similar
for tie unf(b).

The unfolding of a step is obtained by applying its bind-
ings to the corresponding multiactions.

� ��
�� � ��� 	�
 ��� ��	 � � � �
�

The main result of the paper is the consistency of the
model w.r.t. the unfolding which states that for any term,
the semantics of its unfolding coincides with the unfolding
of its semantics. This statement holds for each piece of the
semantics: the box mapping, the step semantics of boxes,
the relation ≡ and the moves defined by −−−−−−−−→. The moves
in the box domain are denoted by [〉. The proof and more
results can be found in [8].

Theorem 1. Let F and F ′ be two terms and Γ a step.
Then:

1. unf(box(F)) = box(unf(F)).

2. box(F)[Γ 〉 box(F ′)
⇐⇒ unf(box(F))[unf(Γ)〉 unf(box(F ′)).

3. F ≡ F ′ =⇒ unf(F) ≡ unf(F ′).

4. F
Γ

−−−−−−−−→ F ′ ⇐⇒ unf(F)
unf(Γ)
−−−−−−−−−−−−−−−−−−−→ unf(F ′).

As shown in [7], the box and the SOS semantics of
a low-level term are equivalent in arguably the strongest
sense (they generate isomorphic transition systems), which
allows to show the following result.

Theorem 2. The SOS and box semantics of a BCD term
generate isomorphic transition systems. Thus:

F
Γ

−−−−−−−−→ F ′ ⇐⇒ box(F)[Γ 〉 box(F ′) .

� ��� � � �
 �����

We presented how a compositional low-level frame-
work may be extended in order to cope with systems ma-
nipulating large data types. The main change consisted in
using buffers capable to carry coloured tokens. This feature
was exploited in both buffered and handshake communi-
cation through high-level parameterised links and actions.
This extension provided a real progress from a practical
point of view since it allows to represent in a very com-
pact way systems with large data types (as, for instance, the
FIFO channel developed in the running example). More-
over, independent papers [12, 10] showed the relevance of
the used class of composable Petri nets which was power-
ful enough to give an elegant compositional semantics to
parallel specification languages like B(PN)2 or formalisms
like π-calculus. From the theoretical point of view, the ob-
tained framework, called BCD, was shown to be a coherent
high-level counter-part of the existing low-level model in
the sense that a BCD term and its unfolding have the same
behaviour and similarly for a BCD box and its unfolding.
As a consequence, a BCD term and its corresponding box
generate isomorphic transition systems.

Future works will be dedicated to introduce in this
framework the modelling of preemption inspired by [13].
It will need first a representation of sub-terms of which
several concurrent instances may be started. This should
lead to a very complete process algebra capable to express,
in particular, the semantics of parallel programming lan-
guages with exceptions.

� 	�� 	 ��	�
�� 	 �

1. E. Best, R. Devillers and J. Hall. The Petri Box Calculus:
a New Causal Algebra with Multilabel Communication. Ad-
vances in Petri Nets 1992, LNCS 609, 1992.

2. E. Best, R. Devillers and M. Koutny. A Unified Model for
Nets and Process Algebras. Handbook of Process Algebra,
Elsevier, 2001.

3. E. Best, R. Devillers and M. Koutny. Petri Net Algebra.
EATCS Monographs on TCS, Springer, 2001.

4. E. Best and R. P. Hopkins. B(PN)2 – a Basic Petri Net Pro-
gramming Notation. PARLE’93, LNCS 694, 1993.

5. G. Boudol. Asynchrony and the π-calculus. Research Report
1702, INRIA, Sophia Antipolis, 1992.

6. M. Broy and E.-R. Olderog. Trace-Oriented Models of Con-
currency. J.A. Bergstra, A.Ponse, and S.A. Scott, editors,
Handbook of Process Algebra, Elsevier Science, 2001.

7. C. Bui Thanh, H. Klaudel and F. Pommereau. Asynchronous
Box Calculus with Multi-way Communication. LACL Tech.
Report, Univ. Paris 12, 2002. Available on 〈http://
www.univ-paris12.fr/lacl〉.

8. C. Bui Thanh, H. Klaudel and F. Pommereau. Box Calculus
with Coloured Buffers. LACL Tech. Report, Univ. Paris 12,
2002. Available on 〈http://www.univ-paris12.fr/
lacl〉.

9. N. Busi, R. Gorrieri and G. Zavattaro A process algebraic
view of Linda coordination primitives. Theoretical Computer
Science 192(2), 1998.

10. R. Devillers, H. Klaudel and M. Koutny. Compositional
High-Level Petri Net Semantics of π-calculus. Manuscript.

11. J. Esparza. Model checking using net unfoldings. Science of
Computer Programming, 23. Elsevier, 1994.

12. H. Klaudel Parameterized M-expression semantics of paral-
lel procedures. DAPSYS’00, Kluwer Academic Publishers,
2000.

13. H. Klaudel et F. Pommereau. A class of composable and pre-
emptible high-level Petri nets with an application to multi-
tasking systems. Fundamenta Informaticae, 50(1), IOS Press,
2002.

14. H. Klaudel and R.-C. Riemann High Level Expressions with
their SOS Semantics. Proceedings of CONCUR’97, LNCS
1243, Springer, 1997

15. R. Milner, J. Parrow and J. Walker. A calculus of mobile pro-
cesses, Parts I and II. Information and Computation, 100(1),
1992.

16. R. Milner Communication and Concurrency. Prentice Hall,
1989.

17. J. Parrow. An Introduction to the π-calculus. J.A. Bergstra,
A.Ponse, and S.A. Scott, editors, Handbook of Process Alge-
bra, Elsevier Science, 2001.

18. F. Pommereau. FIFO buffers in tie sauce. DAPSYS’00,
Kluwer Academic Publishers, 2000.

