
HAL Id: hal-00114669
https://hal.science/hal-00114669v1

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Petri nets as executable specifications of high-level
timed parallel systems.

Franck Pommereau

To cite this version:
Franck Pommereau. Petri nets as executable specifications of high-level timed parallel systems.. Scal-
able Computing : Practice and Experience, 2005, 6 (4), pp.71-82. �hal-00114669�

https://hal.science/hal-00114669v1
https://hal.archives-ouvertes.fr


PETRI NETS AS EXECUTABLE SPECIFICATIONS OF

HIGH-LEVEL TIMED PARALLEL SYSTEMS

FRANCK POMMEREAU∗

Abstract. We propose to use high-level Petri nets as a model for the semantics of high-level
parallel systems. This model is known to be useful for the purpose of verification and we show that
it is also executable in a parallel way. Executing a Petri net is not difficult in general but more
complicated in a timed context, which makes necessary to synchronise the internal time of the Petri
net with the real time of its environment. Another problem is to relate the execution of a Petri net,
which has its own semantics, to that of its environment; i.e., to properly handle input/output.

This paper presents a parallel algorithm to execute Petri nets with time, enforcing the even pro-
gression of internal time with respect to that of the real time and allowing the exchange of information
with the environment. We define a class of Petri nets suitable for a parallel execution machine which
preserves the step sequence semantics of the nets and ensures time consistent executions while taking
into account the solicitation of its environment. The question of the efficient verification of such nets
has been addressed in a separate paper [14], the present one is more focused on the practical aspects
involved in the execution of so modelled systems.

Key words. Petri nets, parallelism, real-time, execution machines.
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1. Introduction. Petri nets are widely used as a model of concurrency, which
allows to represent the occurrence of independent events. They can be as well a
model of parallelism, where the simultaneity of the events is more important. Indeed,
when we consider their step sequence semantics, an execution is represented by a
sequence of steps, each of them being the simultaneous occurrences of some transitions.
Within this semantics, the execution of a step may be replaced by that of any of its
linearisation (total or partial). This can be viewed as possible executions of the same
program on parallel machines with different numbers of processors. In this context,
the choice of executing one step or another becomes a question of scheduling (this is
usually solved non-deterministically by the Petri net semantics). Petri nets are thus
suitable for specifying and verifying systems in models for which the portability is an
important concern.

Our main goal in this paper is to show that Petri nets are also suitable for the
execution of the modelled systems. We thus consider high-level Petri nets for mod-
elling high-level parallel systems, with the aim to allow both verification and execution
of the specification. The question of the efficient verification of such nets has been
addressed in a separate paper [14], the present one is more focused on the practical
aspects involved in the execution of so modelled systems.

There are at least two reasons for having executable specifications. First, it al-
lows for prototyping and testing at early stage of the design: there may be no need
to have an implementation in order to see how the program behaves when its model
can already be executed. Second, if the execution of the specification can be made
(or happens to be) efficient enough, there is no need to consider any further imple-
mentation. This completely saves from the risk of introducing errors on the way from
specification to implementation: the verified model and the executed program are
exactly the same object. It may be objected that Petri nets are suitable for modelling
but really not for programming. This is true. However, Petri nets like those used
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2 F. POMMEREAU

in this paper are widely used has a semantical domain for parallel programming lan-
guages or process algebra with concurrent semantics. For instance, the semantics of
the parallel language B(PN)2 [3] is defined in terms of Petri nets similar to those used
in this paper. It features most usually expected high-level constructs for programming
languages, in particular: nested declaration of typed variables and FIFO communica-
tion channels; communication through shared variables or channels; atomic actions;
control flow constructs including parallelism; procedures with parameters passed by
value or by reference and allowing recursive and parallel calls [10]; exceptions whose
propagation can carry arbitrary value [11]; or Ada-like tasking with suspend/resume
or abort capability [12]. Moreover, it can be easily extended with real-time constructs
using the same approach to timed system as presented in the following, see [13, §7.3].
Another example is the Causal Time Calculus defined in [14] which is a process al-
gebra with timing features having a step based semantics. Both these formalisms
could be applied to massively parallel problems, allowing to leave Petri nets in the
background while working with much more pleasant and convenient notations.

Executing a Petri net is not difficult when we consider it alone, i.e., in a closed
world. But as soon as the net is embedded in an environment, the question becomes
more complicated. The first problem comes when the net is timed: we have to ensure
that its time reference matches that of the environment. The second problem is to
allow an exchange of information between the net and its environment. Both these
questions are addressed in this paper.

The causal time approach is a way to introduce timing features in an otherwise
untimed model [7], in particular Petri nets. The idea behind causal time is to use the
expressive power of the model in order to give an explicit representation of clocks in
the modelled systems. In the case of high-level Petri nets, it is possible to introduce
counters and a distinguished tick transition whose role is to simultaneously increment
them. These counters thus become the timing reference and can be used as clock-
watches by the processes as in [15, 6, 13, 14]. It was shown in [6, 14] that the causal
time approach is highly relevant since it is simple to put into practice and allows for
efficient verification through model checking. This paper shows that this approach is
also relevant when concrete execution are considered. For the purpose of verification,
the hypothesis of the closed world is assumed: the Petri net which models a system
is considered alone, without any reference to something external to it. The situation
differs if we consider the execution of such a Petri net in an environment which has its
own time reference. Indeed, the tick transition of a Petri net may causally depend on
the progression of other transitions in the net, which results in the so called deadline
paradox [7]: “tick is disabled until the system progresses”. In a closed world, this
statement is logically equivalent to “the system is forced to progress before the next
tick”, which solves the deadline paradox. But, in the case of an open world, one may
wonder how even is the progression of the causal time with respect to that of the real
time, which is the time imposed by the environment.

Moreover, if the Petri net has to communicate with its environment, one may ask
how the net can receive information from the environment and send back appropriate
responses. Producing output is rather simple since the net is not disturbed; but
reading input (i.e., changing the behaviour of the net in reaction to the changes in
the environment) is more difficult and may not be always possible.

In this paper, we define a parallel execution machine whose role is to run a Petri
net with a tick transition in such a way that the ticks occur evenly with respect to
the real time. We show that this can be ensured under reasonable assumptions about



PETRI NETS AS EXECUTABLE SPECIFICATIONS 3

the Petri net. The other role of the machine is to allow the communication between
the Petri net and the environment and we will identify favourable situations, very
easy to obtain in practice, in which the reaction to a message is ensured within a
short delay. An important property of our execution machine will be that it will
preserve the step sequence semantics of the Petri net: this machine can be seen as an
implementation of the Petri net execution rule including additional constraints related
to the environment (real time and communication).

In the perspective of direct execution of the modelled systems, it becomes natural
to provide parallel executions of the model of a parallel system. So, our goal in
proposing a parallel execution machine is more related to a question of consistency
than to that of speedup. The question of the speed of our execution machine will
thus be intentionally left out of the topics of this paper. However, our definitions will
leave enough free space to investigate in this direction and we will come back to this
discussion at the end of the paper.

1.1. Execution machines. Defining an execution machine is the usual way
to show that an abstract model, defined under assumptions which may be consid-
ered as unrealistic, can be used for concrete executions. For instance, the family of
synchronous languages (e.g., Esterel [2]), relies on the synchronous hypothesis which
states that the reaction to a signal is instantaneous. This leads to consider an in-
finitely fast computer in the abstract model. Several execution machines for these
languages have been defined (see, e.g., [1, 5]); in all cases, the solution to remove
the synchronous hypothesis makes use of a compilation stage which produces finite
automata in which a whole chain of action/reaction is collapsed on a single transi-
tion. This allows a correct implementation of the instantaneous reaction assuming a
computer fast enough with respect to the delays that the environment can observe.
However, this breaks the causality relation between events and leads to reject some
systems which may be considered on the abstract level but are concretely impossible
to implement.

Similar concerns arise in the case of Petri nets with causal time; in particular, we
have to reject systems which allow runs of unbounded length between two consecutive
ticks. (Such behaviours are often called Zeno runs.) Concerning the question of re-
acting to the solicitation of the environment, it is easy to introduce specific constructs
in a Petri net in order to ensure that a signal will be always taken into account very
efficiently, provided that the environment is not “too demanding”. This is to say that
we will need a computer fast enough with respect to its environment, exactly like for
synchronous languages.

1.2. Organisation of the paper. The sequel is organised as follows. The sec-
tion 2 introduces the basic notions related to Petri nets and their semantics. The
section 3 then defines the class of Petri nets we are interested in and gives the as-
sumptions which must be considered in order to allow their real-time execution. The
section 4 shows how such nets can be compiled into a form suitable for their execution.
Then, the section 5 defines the execution machine itself. We finally conclude in the
section 6, introducing discussions about the efficiency of an implementation.

2. Basic definitions about Petri nets. This section briefly introduces the
class of Petri nets and the related notions that will be used in the following.

2.1. Multisets. A multiset over a set X is a function µ : X → N. We denote
by mult(X) the set of all finite multisets µ over X , i.e., such that

∑
x∈X µ(x) < ∞.

We write µ ≤ µ′ if the domain X of µ is included in that of µ′, and if µ(x) ≤ µ′(x),



4 F. POMMEREAU

for all x ∈ X . An element x ∈ X belongs to µ, denoted x ∈ µ, if µ(x) > 0. The
sum and difference of multisets, and the multiplication by a non-negative integer are
respectively denoted by +, − and ∗ (the difference is defined only when the second
argument is smaller or equal to the first one). A subset of X may be treated as a
multiset over X , by identifying it with its characteristic function, and a singleton set
can be identified with its sole element. A finite multiset µ over X may be written
as

∑
x∈X µ(x) ∗ x or

∑
x∈X µ(x) ∗ {x}, as well as in extended set notation, e.g.,

{a1, a1, a2} denotes a multiset µ such that µ(a1) = 2, µ(a2) = 1 and µ(x) = 0 for all
x ∈ X \ {a1, a2}.

2.2. Labelled Petri nets. Let S be a set of actions symbols, D a finite set of
data values (or just values) and V a set of variables. For A ⊆ S and X ⊆ D ∪ V, we
denote by A⊗X the set {a(x) | a ∈ A, x ∈ X}. Then, we define A

df

= S⊗ (D ∪ V) as
the set of actions (with parameters). These four sets are assumed pairwise disjoint.

Definition 2.1. A labelled marked Petri net is a tuple N = (S, T, ℓ, M) where:
• S is a nonempty finite set of places;
• T is a nonempty finite set of transitions, disjoint from S;
• ℓ defines the labelling of places, transitions and arcs, i.e., elements of (S ×

T ) ∪ (T × S), as follows:
– for s ∈ S, the labelling is ℓ(s) ⊆ D which defines the tokens that the

place is allowed to carry (often called the type of s),
– for t ∈ T , the labelling is ℓ(t)

df

= α(t)γ(t) where α(t) ∈ A and γ(t) is a
boolean expression called the guard of t,

– for (x, y) ∈ (S × T ) ∪ (T × S), the labelling is ℓ(x, y) ∈ mult(D ∪ V)
which denotes the tokens flowing on the arc during the execution of the
attached transition. The empty multiset ∅ denotes the absence of arc;

• M is a marking function which associates to each place s ∈ S a multiset in
mult(ℓ(s)) representing the tokens held by s.

Notice that α(t) could be a finite multiset of actions. This would be a trivial ex-
tension but would lead to more complicated definitions; we choose to restrict ourselves
to single actions in order to streamline the presentation.

We adopt the standard rules about representing Petri nets as directed graphs with
the following simplifications: the names of some nodes (especially places) may not be
given; the two components of transition labels are depicted separately; true guards
are omitted as well as brackets around sets; arcs may be labelled by expressions as a
shorthand (see the example given in the figure 2.1).

0 0,...,η

t τ(x)

x + 1 x

0 0,...,η

t τ(x)
y = x + 1

y x

Fig. 2.1. On the left, a Petri net which actually denotes that given on the right, with η ≥ 0,
{0, . . . , η} ⊆ D, {x, y} ⊆ V and τ ∈ S.

2.3. Step sequence semantics. A binding is a function σ : V → D which
associates concrete values to the variables appearing in a transition and its arcs. We
denote by σ(E) the evaluation of the expression E bound by σ.

Let (S, T, ℓ, M) be a Petri net, and t ∈ T one of its transitions. A binding σ
is enabling for t at M if the guard evaluates to true, i.e., σ(γ(t)) = ⊤, and if the
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evaluation of the annotations on the adjacent arcs respects the types of the places,
i.e., for all s ∈ S, σ(ℓ(s, t)) ∈ mult(ℓ(s)) and σ(ℓ(t, s)) ∈ mult(ℓ(s)).

A step corresponds to the simultaneous execution of some transitions, it is a
multiset U = {(t1, σ1), . . . , (tk, σk)} such that ti ∈ T and σi is an enabling binding of
ti, for 1 ≤ i ≤ k. U is enabled if the marking is sufficient to allow the flow of tokens
required by the execution of the step, i.e., for all s ∈ S

M(s) ≥
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) .

It is worth noting that if a step U is enabled at a marking, then so is any sub-step
U ′ ≤ U . A step U enabled by M may be executed, leading to the new marking M ′

defined for all s ∈ S by

M ′(s)
df

= M(s) −
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) +
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(t, s)) .

This is denoted by M [U〉M ′ and this notation naturally extends to sequences of steps.
The empty step, denoted by ∅, is always enabled and we have M [∅〉M . A marking
M ′ is reachable from a marking M if their exists a sequence of steps ω such that
M [ω〉M ′; we will say in this case that M enables ω. Notice that M is reachable from
itself through a sequence of empty steps.

The step sequence semantics is defined as the set containing all the sequences
of steps enabled by a net. This semantics is based on transitions identities but the
relevant information is generally the labels of the executed transitions. The labelled
step associated to a step U is defined as

∑
(t,σ)∈U U((t, σ)) ∗ σ(α(t)), which allows to

naturally define the labelled step sequence semantics of a Petri net. In the sequel we
will consider only this semantics and omit the word “labelled”.

2.4. Safety. A Petri net (S, T, ℓ, M) is safe if any marking M ′ reachable from M
is such that, for all s ∈ S and all d ∈ ℓ(s), M ′(s)(d) ≤ 1, i.e., any place holds at most
one token of each value. The class of safe Petri nets (including models abbreviating
them) is very interesting:

• from a theoretical point of view, safe Petri nets never have auto-concurrency
of transitions, which allows for efficient verification techniques [8];
• from a pragmatical point of view, safe Petri nets corresponds to the class of

finite state Petri nets (as shown in [4], bounded Petri nets can be reduced
to safe Petri nets while preserving their concurrent semantics), which corre-
spond to realistic systems, i.e., those that can be implemented on a concrete
computer;
• from a practical point of view, this class was shown expressive enough to

model most interesting problems from the real world. For instance, the se-
mantics procedures, exceptions or tasks preemption in the language B(PN)2

do not require more than safe Petri net.
Another nice property of safe Petri nets, directly related to our purpose, is that

they have finitely many reachable markings, each of which enabling finitely many
steps whose sizes are bounded by the number of transitions in the net. For all these
reasons, as in the previous works about causal time [15, 6, 13, 14], we restrict ourselves
to safe Petri nets.

3. Petri nets with causal time: CT-nets. We are now in position to define
the class of Petri nets we are actually interested in; it consists in safe Petri nets, with
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several restrictions, for which we will define some specific vocabulary related to the
occurrence of ticks. We assume that there exists τ ∈ S, used in the labelling of the
tick transition.

Definition 3.1. A Petri net with causal time (CT-net) is a safe labelled Petri
net N

df

= (S, T, ℓ, M) in which there exists a unique tτ ∈ T , called the tick transition
of N , such that:

• α(tτ ) ∈ {τ} ⊗ (D ∪ V);
• α(t) /∈ {τ} ⊗ (D ∪ V) for all t ∈ T \ {tτ};
• tτ has at least one incoming arc labelled by a singleton.

A tick-step is a step U of N which involves the tick transition, i.e., such that τ(d) ∈ U
for a d ∈ D.

Thanks to the safety and the last restriction on tτ , any tick-step contains exactly
one occurrence of the tick transition. On the other hand, one may notice that this
definition is very liberal and allows to define nets in which the tick transition is
not tight to increment counters but may produce any other effect not related to
time. Fortunately, we do not need a more restrictive definition, which lets us free to
experiment different approaches in the future.

The figure 3.1 shows a toy CT-net that will be used as a running example. In
this net, the role of the tick transition tτ is to increment a counter located in the
top-right place. When the transition t1 is executed, it resets this counter and picks in
the top-left place a value which is bound to the variable m. This value is transmitted
to the transition t2 which will be allowed to execute when at least m ticks will have
occurred. Thus, m specifies the minimum number of ticks between the execution of t1
and that of t2. At any time, the transition t3 may randomly change the value of this
minimum while emitting a visible action u(x) where x is the new value. Notice that
the maximum number of ticks between the execution of t1 and that of t2 is enforced
by the type of the place connected to tτ which specifies that only tokens in {0, . . . , η}
are allowed (given η > 0).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

••
•

m

m

0
y c

c

xy n + 1n

m m

Fig. 3.1. An example of a CT-net, where η > 0, {a1, a2, u, τ} ⊆ S, {c, n, m, x, y} ⊆ V and
{0, . . . , η} ∪ {•} ⊆ D.

Assuming η ≥ 5, a possible execution of this CT-net is:

{τ(0)} {u(2)} {a1(2)} {τ(0), u(1)} {τ(1)} {u(5)} {τ(2)} {τ(3)} {a2(4), u(0)} {τ(4)} .

3.1. Tractability. A CT-net (S, T, ℓ, M) is tractable if there exists an integer
δ ≥ 2 such that, for all marking M ′ reachable from M , any sequence of at least δ
nonempty steps enabled by M ′ contains at least two tick-steps. In other words, the
length of an execution between two consecutive ticks is bounded by δ whose smallest
possible value is called the maximal distance between ticks.



PETRI NETS AS EXECUTABLE SPECIFICATIONS 7

This notion of tractable nets is important because it allows to distinguish those
nets which can be executed on a realistic machine: indeed, an intractable net may
have potentially infinite runs between two ticks (so called Zeno runs), which can-
not be executed on a finitely fast computer without breaking the evenness of ticks
occurrences.

For example, the CT-net of our running example is intractable because the tran-
sition t3 can be executed infinitely often between two ticks: in the execution given
above, the step {u(5)} could be repeated an arbitrary number of times. In the rest of
this paper, we restrict ourselves to tractable CT-nets.

3.2. Input and output. The communication between a CT-net and its envi-
ronment is modelled using some of the actions in transitions labels. We distinguish
for this purpose two finite disjoint subsets of S: Si is the set of input action symbols
and So is that of output actions symbols. We assume that τ /∈ Si ∪ So. We also
distinguish a nonempty set Dio ⊆ D representing the values allowed for input and
output. Intuitively, the distinguished symbols correspond to communication ports
on which values from Dio may be exchanged between the execution machine and its
environment. Thus the execution of a transition labelled by ao(do) ∈ So⊗Dio is seen
as the sending of the value do on the output port ao. Conversely, if the environment
sends a value di ∈ Dio on the input port ai ∈ Si, the net is expected to execute a step
containing the action ai(di). In general, we cannot ensure that such a step is enabled,
in the worst case, it may happen that no transition has ai in its label. Fortunately,
we show now that a net can easily be designed in order to ensure that such an input
message is always correctly handled.

A naive way to achieve this result is to use self-loops, like the transition t3 in
the figure 3.1. In this example, if we assume u ∈ Si and {0, . . . , η} ⊇ Dio , any
requested communication on u can always be handled. Unfortunately, self-loops lead
to intractable nets since such transitions can always be arbitrarily repeated (remember
the step {u(5)} above). Actually, a self-loop indicates that the CT-net is expected to
be able to respond instantaneously to all the messages that the environment would
send on the corresponding port, which is not a realistic assumption. Indeed, if the
number of such messages sent in a given amount of real time is not bounded, then
a finitely fast computer cannot avoid to miss some of them. So, in the following,
we assume that the environment may not produce more than one message on each
input port between two ticks, which will lead to the notion of tick-reactiveness. This
assumption is equivalent to say that we require the CT-net to be executed on a
computer fast enough with respect to its environment; so, this is actually one of the
classical conditions that must be assumed while defining an execution machine.

Let A ⊆ Si be a nonempty set of input action symbols, we denote by req(A) the set
of potential requests on A, which contains all the sets of the form {a1(d1), . . . , ak(dk)}
where {a1, . . . , ak} ⊆ A and (d1, . . . , dk) ∈ Dio

k for all k ≥ 1. Each element of req(A)
is potentially a step of a CT-net.

A CT-net (S, T, ℓ, M) is once-reactive to A ⊆ Si iff: either, it enables only the
empty step; or, there exists a step U ′ /∈ req(A) such that M [U ′〉M ′′ and, for all
U ∈ req(A), we have M [U〉M ′ and the CT-net (S, T, ℓ, M ′) is once-reactive to A\{a ∈
A | ∃d ∈ Dio , a(d) ∈ U}. Intuitively, this inductive definition states that, for all input
port ai ∈ Si, the CT-net can react to any request on a as soon as it comes, after what
it may miss them. On the other hand, the CT-net is never forced to execute an action
involving an input port in A (thanks to the step U ′). At any time, the CT-net may
terminate its execution with a deadlock.
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A CT-net (S, T, ℓ, M) is tick-reactive to A ⊆ Si iff it is once-reactive to A and, for
all sequence of steps U1 · · ·Uk such that Uk is a tick-step and M [U1 · · ·Uk〉M ′, then the
CT-net (S, T, ℓ, M ′) is tick-reactive to A. This definition is also inductive and states
that a tick-reactive CT-net is almost like a once-reactive net except that its capability
to react is fully restored after each tick. This guarantees that one message on a may
always be handled between two ticks, which exactly matches our assumption. It turns
out that it is easy to transform a reactive CT-net with self-loops into a tick-reactive
one. It is enough to add one place for each self-loop with the type {◦, •} and marked
with •, and arcs such that each occurrence of the self-loop consumes the • and replace
it with a ◦, so it cannot occur twice; on the other hand, each occurrence of the tick-
transition must reset to • the token in the added places. This way, self-loops cannot
be repeated with at least one tick in between. As we can see, it is easy to construct a
tick-reactive net; for instance, the figure 3.2 shows a modified version of our running
example which is tick-reactive to {u} and tractable (now, the step {u(5)} could not
be repeated at will).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

•
◦,•

••
•

m

m

0
y c

c

z

•◦

•
xy n + 1n

m m

Fig. 3.2. The tick-reactive version of the running example, where z ∈ V and {◦, •} ⊂ D.

3.3. Consistency. We denote by U [a] the number of occurrences of the action
symbol a in a step U , i.e., U [a]

df

=
∑

a(x)∈U U(a(x)). A step U is consistent if U [a] ≤ 1
for all a ∈ Si ∪ So. A CT-net is consistent if its step sequence semantics only involve
consistent steps. Inconsistent steps are those during the execution of which several
communications take place on the same port. Since the transitions executed by a single
step occur simultaneously, this means that several values may be sent or received on
the same port at the same time. This is certainly something which is not realistic and
so, we restrict ourselves to consistent CT-nets in the following.

The nets given in the figures 3.1 and 3.2 are both consistent. But, assuming
a2 ∈ Si∪So, it would not be the case if we would replace u(x) by a2(x) in the label of
the transition t3 since we could have and execution with the step {a2(4), a2(0)} which
is not consistent.

4. Compilation of CT-nets: CT-automata. The aim of this section is to
show how to transform a tractable and consistent CT-net into a form more suitable
for the execution machine. This corresponds to a compilation producing an automaton
(non-deterministic in general), called a CT-automaton, whose states are the reachable
markings of the net and whose transitions correspond to the steps allowing to reach
one marking from another. It should be remarked that this compilation is not strictly
required but allows to simplify things a lot, in particular in an implementation of the
machine: with respect to its corresponding CT-net, a CT-automaton has no notion of
markings, bindings, enabling, etc., which results in a much simpler model. Another
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reason to introduce this compilation stage is that it can be used to check if the net
of interest is really a safe, tractable and consistent CT-net; moreover, it is an almost
necessary step to compute the value of δ (the maximal distance between ticks) which
will be used during the execution. So, as we cannot avoid a computation at least
equivalent to this compilation stage, we turn it into an advantage for the execution
which can be made much simpler and more efficient.

In order to record only the input and output actions in a step U of a CT-net, we
define the set of the visible actions in U by ⌊U⌋

df

= U ∩ (((Si ∪ So)⊗Dio)∪ ({τ}⊗D)).
Because of the consistency, ⌊U⌋ could not be a multiset.

Definition 4.1. Let N = (S, T, ℓ, M) be a tractable and consistent CT-net, the
CT-automaton of N is the finite automaton A(N)

df

= (SA, TA, sA) where:
• SA is the set of states defined as the set of all the reachable markings of N ;
• the set of transitions is TA ⊆ SA × LA × SA, where LA

df

= {A ⊆ ((Si ∪ So)⊗
Dio) ∪ ({τ} ⊗ D)}, and is defined as the set of all the triples (M ′, A, M ′′)
such that M ′, M ′′ ∈ SA and there exists a nonempty step U of N such that
M [U〉M ′ and A = ⌊U⌋;
• sA

df

= M ∈ SA is the initial state of A(N), i.e., the initial marking of N .
The following holds by definition but should be stressed since it states that a

CT-net and the corresponding CT-automaton have exactly the same executions.
Proposition 4.2. Let N

df

= (S, T, ℓ, M) be a tractable and consistent CT-net,
M ′ be a reachable marking of N and (SA, TA, M)

df

= A(N).
1. If M ′[U〉M ′′ for a nonempty step U then (M ′, ⌊U⌋, M ′′) ∈ TA.
2. Conversely, if (M ′′, A, M ′′′) ∈ TA then there exists a nonempty step U such

that M ′′[U〉M ′′′ and ⌊U⌋ = A.
As an example, the figure 4.1 shows the CT-automaton which corresponds to the

tractable version of our running example (given in the figure 3.2). For the sake of
compactness, we assumed η

df

= 1 (the automaton for η = 2 has 105 states and this
number grows to 277 for η = 3). Moreover, we assumed {a1, a2, u} ⊆ Si ∪ So.

5. The execution machine. We now describe the execution machine. In order
to communicate with the environment, a symbol ao ∈ So is considered as a port on
which a value d ∈ Dio may be written, which is denoted by a ← d (more generally,
this is used for any assignment). Similarly, a symbol ai ∈ Si is considered as a port
on which such a value, denoted by ai?, may be read; we assume that ai? = ∅ /∈
Dio when no communication is requested on ai. Moreover, in order to indicate to
the environment if a communication have been properly handled, we also assume
that each a ∈ Si may be marked “accepted” (denoting that the communication has
been correctly handled), “refused” (denoting that the communication could not been
handled), “erroneous” (denoting that a communication on this port was possible but
with another value, or that a communication was expected but not requested) or not
marked, which is represented by “no mark”. We also use the notation ai ← mark
when an input port is being marked.

Let (SA, TA, sA) be a CT-automaton and let ∆ be a constant amount of time; we
will see later on how ∆ is defined since it depends on the definition of the execution
machine. We will use three variables:

• Θ is a time corresponding to the occurrences of ticks;
• s ∈ SA is the current state;
• I ⊆ Si is the set of ports on which the environment asks a communication.

The behaviour of the machine is described by the algorithm given on the left of
the figure 4.2 where the execution of a step (line 13) is detailed on the right of the
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Fig. 4.1. The CT-automaton of the CT-net given in the figure 3.2 (with η
df

= 1), the initial
state is numbered 0 and filled in black.

1: s← sA
2: Θ← now

3: while s has successors do

4: for all a ∈ Si do

5: a← “no mark”
6: end for

7: I ← {a ∈ Si | a? 6= ∅}
8: choose a transition (s, A, s′)
9: if A is a tick-step then

10: wait until now = Θ + ∆
11: Θ← now

12: end if

13: execute(A, I)
14: s← s′

15: end while

procedure execute(A, I) :

17: for all a(d) ∈ A (a 6= τ) do

18: if a ∈ So then

19: a← d
20: else if a ∈ Si and a? = d then

21: a← “accepted”
22: else

23: a← “erroneous”
24: end if

25: I ← I \ {a}
26: end for

27: for all a ∈ I do

28: a← “refused”
29: end for

Fig. 4.2. The main loop of the execution machine (on the left) and the execution of a step A

with respect to requested inputs given by I (on the right).
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figure. Several aspects of this algorithm should be commented:
• the statement “now” evaluates to the current time when it is executed;
• the “for all” loops are parallel loops;
• the execution of the line 8 can be parallelised also (see below);
• each execution of the “while” loop performs a bounded amount of work,

in particular the following numbers are bounded: the number of ports; the
number of transitions outgoing from a state; the number of actions in each
step. Assuming that choosing a transition requires a fixed amount of time (see
below), ∆ is the maximum amount of time required to execute the “while”
loop δ − 1 times;
• no tick is explicitly executed but its occurrence actually corresponds to the

execution of the line 11.
Proposition 5.1. The algorithm presented in the figure 4.2 ensures an even

occurrence of the ticks.
Proof. Let θ be the value assigned to Θ when the line 2 is executed. A number of

transitions (at most δ−2) is executed until a tick transition is chosen. All together, the
duration of these executions requires is D ≤ ∆ so the line 10 waits during ∆−D. Thus,
the line 11, which corresponds to the tick, is executed at time θ+D+(∆−D) = θ+∆.
By induction, we obtain that ticks are executed at times θ + k∆ for k ≥ 1.

5.1. Choosing a transition. We still have to define how a transition may be
chosen, in a fixed amount of time, in order to mark “accepted” as much as possible
input ports in the set I of requested communications. In order to define a criterion
of maximality, we assume that there exists a total order on Si. This corresponds to
a priority between the ports: when several communications are requested but not all
are possible, we first choose to serve those on the ports with the highest priorities.
Then, given I, we define a partial order ≺ on the transitions outgoing from a state
and the machine chooses one of the smallest transitions according to ≺. This choice
may be random or driven by a scheduler. For instance, we may choose to execute
steps as large as possible, or steps no larger than the number of processors, etc. The
definition of a scheduling strategy is out of the scope of this paper; we just need to
assume that the time needed to choose a transition is bounded (which should hold in
the reasonable cases).

For each step A appearing on a transition outgoing from the current state, we
define a vector VA ∈ {0, 1, 2}Si which represents the marks on the input ports after
A would be executed: the value 0 stands for “accepted” or “no mark”, the value 1 for
“refused”and the value 2 for “erroneous”. Thus, the value of VA(a) can be found using
the following table, where d and d′ are distinct values in Dio :

A[a] = 0 a(d) ∈ A a(d′) ∈ A

a? = d 1 0 2

a? = ∅ 0 2 2

Then, A1 ≺ A2 if VA1
< VA2

according to the lexicographic order on these vectors.
Again, it is clear that building these vectors and choosing the smallest one is

feasible in a fixed amount of time since the number of transitions outgoing from a
state is bounded. This is also feasible in parallel: all the VA’s can be computed in
parallel (as well as all their components) and the selection of the smallest one is a
logarithmic reduction.

Notice that if ≺ allows to define a total order on steps, it is not the case for the
transitions since several transitions may be labelled by the same step. For instance,
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assuming u /∈ Si∪So, the running example would give a CT-automaton similar to that
of the figure 4.1 but in which all the actions u(0) or u(1) would have been deleted.
In this case, the state 13 would have two outgoing transitions labelled by ∅ and three
labelled by a2(1).

Proposition 5.2. Let a ∈ Si be an input action symbol and N be a CT-net
which is tick-reactive to R ∋ a. Then, the execution of A(N) will never mark a as
“erroneous” nor “refused”.

Proof. Let s be the current state of A(N) and (s, A, s′) be the transition chosen
by the execution machine. There are three cases.

(1) If a? = ∅, then it may be marked “erroneous” or not marked. In the former
case, this means that a(d) ∈ A for a d ∈ Dio . Then, if A = {a(d)}, because of
the tick-reactiveness, there must exist a transition (s, U ′, s′′) which does not involve
a (tick-reactiveness never forces the occurrence of an input action), otherwise, the
transition (s, A′, s′′) with A′ df

= A \ {a(d)} must exists (since it corresponds to a sub-
step). In both cases, we have (s, U ′, s′′) ≺ (s, A, s′) or (s, A′, s′′) ≺ (s, A, s′) hence a
contradiction with the fact that (s, A, s′) was chosen. So, a must be not marked in
this case.

(2) If a? = d 6= ∅ and the communication on a is marked “refused”, this means
that A[a] = 0. The tick-reactiveness ensures that there must exist a transition (s, A∪
{a(d)}, s′′) (by assumption, a cannot have been requested before since the previous
tick), hence again a contradiction. So, a must be marked “accepted” in this case.

(3) If a? = d 6= ∅ and the communication on a is marked “erroneous”, this means
that a(d′) ∈ A for a d′ ∈ Dio \{d}. But there must exist a transition (s, (A∪{a(d)})\
{a(d′)}, s′′) (tick-reactiveness allows the occurrence for any value in Dio), hence again
a contradiction. So, a is also marked “accepted” here.

Then, the next result shows that a communication requested on a port to which
the CT-net is tick-reactive is always correctly handled (i.e., accepted) within the
current “while” loop, which is the best response time that one can expect from the
presented algorithm.

Proposition 5.3. Let a ∈ Si be an input action symbol and N be a CT-net
which is tick-reactive to R ∋ a. If a? = d 6= ∅ before the execution of the line 7 in the
figure 4.2, then a is marked “accepted” after the line 13 has executed.

Proof. Directly follows from how the machine chooses a transition and from the
proposition 5.2.

6. Concluding remarks. We defined a parallel execution machine which shows
the adequacy of causal and real time by allowing time-consistent executions of causally
timed Petri nets (CT-nets) in a real-time environment. We also shown that it was
possible to ensure that the machine efficiently reacts to the solicitation of its environ-
ment by designing CT-nets having the property of tick-reactiveness, which is easy to
construct. In order to obtain these results, several restrictions have been adopted:

• only safe Petri nets are considered;
• the nets must be tractable, i.e., they are not allowed to have unbounded runs

between two ticks;
• the nets must be consistent, i.e., they cannot perform several simultaneous

communications on the same port;
• the execution machine must be run on a computer fast enough to ensure that

the environment cannot attempt more than one communication on a given
port between two ticks.
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We do not consider the tractability and consistency requirements as true restrictions
since they actually correspond to what can be performed on a realistic machine. The
last restriction is actually a prescription: in order to ensure a correct communication,
one has to run the execution machine on a computer fast enough to execute ticks
more often than the environment can produce input. Moreover, it should be noticed
that the frequency of ticks is arbitrary. So, if the ticks of a CT-net are too much
sparse with respect to the requested inputs, it is easy to multiply by a constant k all
its timing constraints in the net so ticks will occur k times more often. Using non-safe
Petri nets may be considered in the future, however, this would lead to the class of
infinite state systems which does not seem realistic for the purpose of execution.

6.1. Future work. Petri nets like CT-nets have been used for a long time as a
semantical domain for high-level programming languages and process algebras with
step based semantics (see, e.g., [3, 14]) and these techniques could be directly applied
to massively parallel languages or formalisms. In this direction, we envisage to com-
bine a n-ary parallel composition operation with symmetry reductions [9] allowing
to the verification of very large systems while giving modelling support for kinds of
SPMD systems.

6.2. Implementation issues. A preliminary version of this work proposed a
sequential execution machine and a prototype has been successfully implemented in
Ada; this allowed to show that the evenness of ticks was not only possible in the
theory but also easy to achieve in an implementation. (The only “difficulty” was to
obtains ∆ using test runs at the starting of the machine.) A parallel implementation
of the version presented here had been started but had to be delayed since it turned
out that there were still need for a ground study. Indeed, several open questions are
actually critical ones. Notice that if our goal is to perform testing or simulation, an
implementation can be naive and may even be sequential. But in the perspective of
direct execution of the modelled systems, the speedup becomes crucial and actually
depends on the interaction between several parameters: the model of computation,
the family of parallel machine targeted and the scheduling strategy (as discussed in the
section 5.1). All these questions were left out of the current paper; we thus envisage
further research on this subject with the goal to identify good combinations allowing
to produce high-quality implementations of our execution machine. In particular:
how to exploit the parallelism in the presented algorithm strongly depends on the
computational model envisaged (which may itself depend on the target architecture);
the question of storing the CT-automaton is also important if one targets a distributed
memory architecture. Taking all these parameters into account may lead to several
very different refinements of the algorithm proposed above, each specially dedicated to
a particular class of parallel computer and parallel programming language or model.

Related to the goal of efficient executions, another interesting problem is to con-
nect the input/output of the machine to the concrete computer in order to delegate
some computation. Indeed, output actions may be considered as calls to computa-
tional primitives, while input actions could correspond to the receiving of the com-
puted values. This introduces delays, externals to the model, which must be taken
into account. This can be made by introducing further timing constraints in the model
in order to reflect the execution times obtained from benchmarks or from real-time
guarantees in the case of calls to real-time primitives. In this perspective, considering
Petri nets with time becomes necessary.
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6.3. Conclusion. We believe that the framework proposed in this paper can be
used to build concrete parallel applications in which the control flow could be ensured
by Petri nets while a large part of the computation would be delegated to dedicated
primitives with known performances. Using Petri nets for both the modelling and the
execution allows to verify and run the same object, saving from the risk to introduce
errors on the way from a model to its implementation, while allowing executions even
during the early stages of the design.
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