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Abstract

This work is devoted to the analysis of a finite volume method recently proposed
for the numerical computation of a class of non homogenous systems of partial
differencial equations of interest in fluid dynamics. The stability analysis of the
proposed scheme leads to the introduction of the sign matrix of the flux jacobian.
It appears that this formulation is equivalent to the VFRoe scheme introduced in
the homogeneous case and has a natural extension here to non homogeneous sys-
tems. Comparative numerical experiments for the Shallow Water and Euler equa-
tions with source terms, and a model problem of two phase flow (Ransom faucet)
are presented to validate the scheme. The numerical results present a convergence
stagnation phenomenon for certain forms of the source term, notably when it is sin-
gular. Convergence stagnation has been also shown in the past for other numerical
schemes. This issue is addressed in a specific section where an explanation is given
with the help of a linear model equation, and a cure is demonstrated.

Key words: Finite volumes, Riemann Problems, SRNH scheme, Source terms,
Shallow Water equations, Euler equations, Two-phase flow
PACS: 03483, 38675, 41076

1 Introduction

Many interesting phenomena in the field of fluid dynamics are governed by
systems of partial differential equations of the hyperbolic type. When they
state a conservation law the corresponding system is homogeneous. If the
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system of equations expresses the rate at which some quantities are created
or destroyed then it includes source terms. The general form of such a system
in one spatial dimension can be written as:

∂W

∂t
+

∂F (W )

∂x
= Q(x, t, W ) (1)

where x is the space variable, t the time, W (x, t) is the variables vector, F (W )
the flux vector and Q(x, t, W ) the source vector. The sytem is to be solved
subject to appropriate initial and boundary conditions:

W (x, 0) = u0(x) (2)

W (0, t) = ua(t) , W (L, t) = ub(t) (3)

The Shallow Water equations (SWE) describing one dimensional (1D) water
flow in a channel with a variable bed and the Euler equations (EUL) describ-
ing 1D gas flow in a nozzle of variable cross section can be expressed as system
(1). Note that when the channel bed (SWE) or the nozzle cross section (EUL)
becomes discontinuous, the source term Q becomes stiff, and system (1) be-
comes singular, hence the difficulty to numerically solve it. Also the common
pressure multifluid model can be described by system (1). However it is well
known that the flux jacobian of the common pressure multifluid model has
characteristic roots that can become complex. This implies that the system of
equations is no longer hyperbolic and the corresponding initial value problem
may be ill posed.
From this remarks, one deduces the necessity of devising robust and efficient
schemes to accurately solve non homogenous systems.

To this purpose, considerable work has been developed, during the last decade,
to solve problems of the form (1-3) by finite volume methods.
Although upwind schemes were initially developed for the Euler equations, the
number of papers devoted to the numerical solution of Shallow Water equa-
tions by means of Riemann solvers has greatly increased since the early works
([27], [2]). Specifically, efficient discretisations of source terms have been pro-
posed by a large number of authors ([53], [45], [27])). In particular, one must
mention the class of well-balanced schemes, designed to respect steady states.
These schemes have been extensively studied by Le Roux and co-workers [28],
[31], [32] in the scalar case, and in the framework of the SWE with topography
in [11], [12], [13],[44] and with friction in [16]. Zhou and al. [63] proposed the
surface gradient method for Shallow Water equations with source terms. Ming
Tseng [47] presents different approches using TVD-MacCormack schemes, for
the simulation of one dimensional open channel flows, with rapidly varying
bottom topography. More recently, in [6], a well-balanced scheme is built based
on local hydrostatic reconstructions.
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In [57], the authors propose a high order weighted essentially non-oscillatory
finite volume scheme (WENO), and Runge-Kutta discontinuous Galerkin fi-
nite element methods (RKDG), for solving hyperbolic systems of conservation
laws with source term.
Xing and Shu in [61] develop a well balanced high order finite volume WENO
scheme for the SWE, wich is non-oscillatory, well balanced (satisfying the
exact property) for still water, and genuinely high order in smooth regions.
Other first and second order schemes have been applied to the SWE using the
idea of balancing the source term and the flux gradients, for example the wave
propagation algorithm by LeVeque [46], the kinetic scheme by Xu [62], and
Perthame and Simeoni [48], central-upwind schemes proposed by Kurganov
and Levy [39], and a family of flux-splitting numerical solvers proposed in
[51]. It is worth pointing out that the contributions mentioned above, devoted
to the numerical solution of hyperbolic problems with stiff source terms, do
not address in general the question of convergence of the method, in particular
when the system is singular.

In a different field, two phase flow problems raise numerous difficulties as
regards the application of classical numerical methods. This is mainly due to
non-linear interphase interactions. Finite Elements methods have been used in
the context of two phase flows, when one is mainly interested in steady states,
and wave effects are neglected [29].
Finite volume methods have been also extended to two phase problems. One
way is to consider the mixture equilibrium model which enables the applica-
tion of classical upwind schemes [30].
But in mixtures where the kinematic or thermal nonequilibrium is significant,
one has to consider a system of equations for each phase, and two-fluid mod-
els have to be attacked [37]. In this case, the presence of non-conservative
products introduces some conceptuel difficulties [19]. Nevertheless consider-
able improvements in the application of finite volumes to two phase flows
have been achieved ([50], [56], [25], [15] [41]). For example in [59], the authors
consider the case of a small difference between the liquid and gas velocities,
and in [18], the case of a small ratio of gas to liquid densities, and in both
cases these hypothesis are used to introduce some interesting simplifications.
But only few works have been presented in the case of multidimensional two-
fluid problems in high non-equilibrium configurations ([26], [1]). These works
present highly elaborate and efficient methods, dedicated specifically to two
phase flows.
The challenge remains to devise finite volume schemes for general non homo-
geneous systems (either single or multiphase flows), which are at the same
time accurate and stable, and not too CPU expensive.
The above mentioned appropriate finite volume schemes for two-phase flows,
often rely upon approximate Riemann solvers that are computationally ex-
pensive due to the need for the calculation of exact or approximate jacobian
field decompositions.
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In order to construct simpler and less expensive methods a particular class of
non conservative problems is considered in this work: It is assumed that the
solution to the Riemann problem associated with system (1) is self similar.
This happens, for instance, if the source term can be written as:

Q(x, W ) = H(W )
∂G(x, W )

∂x
. (4)

where H and G are vector functions, which is the case for many problems of
interest in fluid dynamics and in particular for the examples mentioned above.
This work is a first step towards a multidimensional finite volume solver for
non homogeneous systems, keeping in mind the need for simplicity, low cost
and efficiency.
The non-homogeneous Riemann solver proposed in this paper (hereafter called
SRNH) belongs to a large family of methods using only physical flux compu-
tations and average states instead of jacobian eigenvectors [58] and reveals to
be both robust and accurate as well as computationally cheap. Moreover the
extension to 2D calculations is easy and efficient ([9], [10]).

The SRNH scheme depends upon a local diffusion controlling parameter. A
mathematical analysis of the scheme both in the scalar equation, and in the
case of a linear system of equations, shows that if one seeks a monotone scheme,
this parameter can only be equal to a fixed value, which leads to the introduc-
tion of a sign matrix in the scheme. The method so constructed will be called
SRNHS in reference to the use of the sign matrix.

After giving a description of the method, its analysis is presented. As an
illustration of the scheme efficiency, we present some results for singular prob-
lems like a dam break over a discontinuous bed, the shock tube problem of
gas dynamics in a duct of discontinuous cross section and the classical Ran-
som Faucet problem in one space dimension. Results obtained show that the
proposed scheme respects the well known equilibrium C-property for Shallow-
water equations, and gives accurate solutions for the two-phase problem with
few mesh points. It will also be shown that, in general, schemes not based
upon exact Godunov solvers are not able to converge uniformly to the exact
solution when the source function is singular although the numerical solution
computed on a mesh of given finite size can be acceptable in many cases.

2 Construction of SRNH scheme

Numerical approximations to the solution of (1-3) are sought within a finite
volume formulation. For this end the domain of integration is discretised into
finite volume cells. The approximate solution is assumed constant within each
cell, i.e.: un

i denotes the average of W (x, t) within cell i at time tn. The length
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of cell i is ∆xi = xi+1/2 − xi−1/2 and the time step ∆t = tn+1 − tn. Unless
otherwise specified, the mesh spacing will be assumed constant.

In deriving the scheme it will be assumed that the system admits an exact or
approximate jacobian, which is strictly hyperbolic (diagonalisable in IR), and
which is invertible. Nevertheless it will be shown that the method can also be
applied to systems that are not strictly hyperbolic or that are hyperbolic only
in a limited region of the phase space.

Let us recall the recent theoretical result of J.M. Hong [36]. Suppose A(W ) =
∂F (W )

∂W
is diagonalizable in IR, with distinct eigenvalues λk(W ), such that

λk(W ) 6= 0 ∀ W, ∀ k; in case G = G(x) is a Lipschitz continuous function of
x, the Cauchy problem (1)-(2) admits a weak solution.
To establish the proof, the author uses Glimm’s random choice method, con-
structs solutions of local Riemann problems of extended systems, and show
convergence by regularisation.
The author shows that, provided the system is strictly hyperbolic, and for
initial Riemann data close enough, the solution of a local Riemann problem,
exists, is unique, self-similar, and consists of connecting left and right states
by shock waves, contact discontinuities, rarefaction waves and a stationary

wave discontinuity.
In a Godunov type scheme the solution is advanced in time by solving the
Riemann problems that arise at cell interfaces after discretisation. Assume
the self similar solution to the Riemann problem associated to equation (1)
with initial conditions:

W (x, 0) = u0(x) =











uL if x < 0

uR if x > 0
(5)

is:

W (x, t) = Rs

(

x

t
, uL, uR, G

)

(6)

For some forms of the function G(x, W ) the Riemann solution Rs can be ex-
actly computed (see [3] for the Shallow Water equations, [43] for the isentropic
Euler equations and [5] for the full non-isentropic Euler equations).

Integration of equation (1) over the domain
[

xi−1/2, xi+1/2

]

× [tn, tn+1] leads
to:

W n+1
i = W n

i − ∆t

∆x

[

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

)]

+ ∆tQn
i (7)

where Wi+1/2 is, in principle, the Riemann solution at cell interface i + 1/2:

Wi+1/2 = Rs

(

0, Wi, Wi+1, G(x − xi+1/2)
)

(8)
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xi xi+1xi+1/2

W n
i+1

W n
i

Rs(x/t)

Fig. 1. The Riemann problem solution at a cell interface.

and Qn
i an approximation of:

Qn
i =

1

∆x∆t

tn+1
∫

tn

x
i+ 1

2
∫

x
i− 1

2

Q (x, W ) dxdt (9)

The practical calculation of Rs can be computationally very expensive for
arbitrary initial data. Moreover, discretisation of the source term can lead to
singularities at the cell interface for some forms of G(x, W ). This makes Rs

become discontinuous at the interface (see figure 1).

In order to avoid these difficulties and find an estimate for ui+1/2 at less cost,
the system of differential equations is integrated again, this time over the
domain [X−, X+] ×

[

tn, tn + θn
i+1/2

]

that contains xi+1/2 as figure 2 shows. In

general the following we will take: X− = xi and X+ = xi+1, but other choices
could also be considered. This leads to:

W n
i+1/2 =

1

2
(W n

i + W n
i+1) −

θn
i+1/2

∆x

[

F (W n
i+1) − F (W n

i )
]

+ θn
i+1/2Q

n
i+1/2 (10)

where un
i+1/2 can be thought of now as an approximation to the average of the

Riemann solution Rs over the length [xi, xi+1] at time θn
i+1/2. By doing so any

discontinuities in W at the cell interface are smeared out.

Also Qn
i+1/2 must be evaluated as an approximation to:

1

∆x θn+1/2

xi+1
∫

xi

tn+θn+1/2
∫

tn

Q (x, W ) dxdt (11)

in a judicious way (to be dealt with later).

In [8], θn
i+1/2 is taken as a fraction of the current time step:

θn
i+1/2 = αn

i+1/2

∆t

2
(12)
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xX+
xi+ 1

2

X−
tn

tn+θ

tn+θ̄

t

W n
i W n

i+1

Fig. 2. Integration of the equations around cell-edge xi+1/2

Where αn
i+1/2 is a real positive number that remains arbitrary in principle.

It is worth noting that in view of (12), the evaluation of W n
i+1/2 (the predictor

or intermediate state) is made with a local time step. Also, at least in principle,
in order that equation (10) be consistent, θn

i+1/2 should not be larger than a

certain limit θ̄n
i+1/2 that corresponds to the time taken by the fastest wave

generated at xi+1/2 to leave the cell [X− = xi, X
+ = xi+1] (see figure 2):

θn
i+1/2 ≤ θ̄n

i+1/2 , θ̄n
i+1/2 =

∆x

2 Sn
i+1/2

(13)

where Sn
i+1/2 is an approximation to the modulus of the velocity of the fastest

wave in the system. Otherwise the flux at either xi or xi+1 could not be
taken as F (ui) or F (ui+1) respectively. Since it is costly to obtain the exact
solution of the Riemann problem at xi+1/2 and hence the speed of the waves,
an approximation to Sn

i+1/2 can be taken as the local Rusanov velocity [54]:

Sn
i+ 1

2

= max
p=1,...,m

(

max
(∣

∣

∣λn
p,i

∣

∣

∣ ,
∣

∣

∣λn
p,i+1

∣

∣

∣

))

(14)

λn
p,i being the pth eigenvalue of the flux jacobian evaluated at the state W n

i .
In view of this definition one can simply take θn

i+1/2 as a fraction of θ̄n
i+1/2:

θn
i+1/2 = αn

i+1/2 θ̄n
i+1/2 (15)

what gives simply:

θn
i+1/2 =

∆x

2

αn
i+1/2

Sn
i+1/2

(16)

The analysis performed in next section will provide the appropriate expression
for αn

i+1/2 that makes the global scheme fulfill certain stability properties. The
choice (16) instead of (12) has considerable advantages when the scheme is
extended to two dimensions since it makes cancel the ∆x factor in both the
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flux difference and the source term. Recall that in this work we are dealing with
source terms of the form (4) that, after discretisation, give rise to expressions
of the form:

Qn
i+1/2 = Hn

i+1/2

Gn
i+1 − Gn

i

∆x
(17)

Hence the SRNH scheme can be formally written:







































































W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

(

F
(

W n
i+1

)

− F (W n
i )
)

+
αn

i+ 1

2

2Sn
i+ 1

2

Hn
i+1/2

(

Gn
i+1 − Gn

i

)

W n+1
i = W n

i − ∆t

∆x

(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

+
∆t

2∆x
Hn

i

(

Gn
i+1 − Gn

i−1

)

(18)

Hn
i+1/2 and Hn

i being judicious approximations of H at interface xi+1/2 and
cell i respectively, and αn

i+1/2 remains a local parameter that must be chosen.

Remark

that the SRNH scheme appears as an upwind method in which instead of
upwinding the numerical flux, the variables are upwinded to construct an
average state at the interface, W n

i+1/2, which is then used in the physical flux
and source functions. The hyperbolic character of the system is not strongly
needed here.

3 Analysis of SRNH scheme in the scalar case

The choice of αn
i+1/2 in the SRNH scheme remains arbitrary. For instance in

the linear case if α = 1, the SRNH scheme reduces to first order upwind
method and for α = a∆t/∆x, it falls back to Lax-Wendroff method. For
large values of alpha, the numerical diffusion of the scheme correspondingly
increases. A careful choice of the parameter can furnish the scheme (in the
homogeneous case) with desirable properties such as stability, monotonicity
and a maximum principle. In the following an anlysis of SRNH scheme is
made in the homogeneous case, with the aim of ensuring the above mentioned
properties.
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In the case of a homogeneous scalar equation, SRNH scheme can be written:























un
i+ 1

2

=
1

2

(

un
i+1 + un

i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

(

f(un
i+1) − f(un

i )
)

un+1
i = un

i − r
(

f
(

un
i+ 1

2

)

− f
(

un
i− 1

2

))

(19)

where Sn
i+ 1

2

= max
(

|f ′(un
i+1)|, |f ′(un

i )|
)

is the local Rusanov velocity, and r =

∆t/∆x.

Proposition 1 Suppose f is a monotone C1 function, then under the two
conditions:

i)
Sn

i+1/2

|f ′(an
i+1/2)|

≤ αn
i+1/2 ≤ γ

Sn
i+1/2

|f ′(an
i+1/2)|

, ∀i ∈ Z, n ∈ N

ii) rγA ≤ 1

where: γ ≥ 1, A = max|f ′(X)| such that |X| ≤ γ||u0||L∞(R), and an
i+1/2 is a

Roe state, determined by the mean value theorem:

f(un
i+1) − f(un

i ) = f ′(an
i+1/2)(u

n
i+1 − un

i ), (20)

the scheme (19) respects the local maximum principle:

min
i∈Z

un
i ≤ min

i∈Z

un+1
i ≤ max

i∈Z

un+1
i ≤ max

i∈Z

un
i . (21)

PROOF. The result is obtained by writing

δn
i+ 1

2

=
αn

i+ 1

2

sn
i+ 1

2

f ′(an
i+ 1

2

) (22)

un
i+ 1

2

=
1

2
[1 + δn

i+ 1

2

]un
i +

1

2
[1 − δn

i+ 1

2

]un
i+1 (23)

and
un+1

i = un
i − rf ′(an

i )
(

un
i+ 1

2

− un
i− 1

2

)

(24)

Then expressing un+1
i as a convex combination of un

i−1, u
n
i , and un

i+1 ends the
proof.

Proposition 2 Suppose that f ′ does not change sign. Under the two following
conditions:

1) αn
i+1/2 = γ̄

Sn
i+1/2

∣

∣

∣f ′(an
i+1/2)

∣

∣

∣

, ∀i ∈ Z, n ∈ N with γ̄ a constant, and γ̄ ∈ [1, γ],
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2) rγA ≤ 1.

Then scheme (19) is monotone.

PROOF. A sufficient condition for fulfilling the first condition is to fix γ̄ ∈
[1, γ] and choose:

αn
i+1/2 = γ̄

Sn
i+1/2

∣

∣

∣f ′
(

an
i+1/2

)∣

∣

∣

. (25)

In such case the predictor step becomes:

un
i+ 1

2

=
1

2
(1 + γ̄ sgn (f ′)) un

i +
1

2
(1 − γ̄ sgn (f ′))un

i+1 (26)

and the corrector step can be written in the following conservative form:

un+1
i = un

i − r
(

f
(

un
i+1/2

)

− f
(

un
i−1/2

))

, (27)

=H
(

un
i−1, u

n
i , u

n
i+1

)

(28)

The scheme (27) is monotone if operator H is increasing with respect to each
one of its arguments: un

i , un
i−1 and un

i+1 [21].

∂H
∂un

i−1

(

un
i−1, u

n
i , un

i+1

)

=
r

2
(sgn (f ′) + γ̄) |f ′(an

i )| , (29)

∂H
∂un

i+1

(

un
i−1, u

n
i , u

n
i+1

)

= −r

2
(sgn (f ′) − γ̄) |f ′(an

i )|, (30)

∂H
∂un

i

(

un
i−1, u

n
i , u

n
i+1

)

= 1 − rγ̄f ′(an
i ). (31)

Since γ̄ ≥ 1 and rγ̄A ≤ 1, the operator H is an increasing function and thus
it follows that the scheme SRNH is monotone.

Remark 3 The truncation error of the scheme in the homogeneous case is:

TE(u)(x, t) = −∆t
∂

∂x

[

B
∂u

∂x

]

(32)
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where:

B =
| f ′(u) |

2r
(ᾱ(u) − r|f ′(u)|) (33)

where one assumes αn
i+1/2 = α(un

i , u
n
i+1), and lim

u1,u2→u
(α(u1, u2)) = ᾱ(u).

That clearly shows αn
i+1/2 as a parameter controlling the local numerical dif-

fusion, and if αn
i+1/2 is close to the CFL number, then the SRNH scheme is

quasi-second order accurate.

3.1 Optimization of parameter α

Remark that the second part of the first condition of Proposition (2) above, is
to ensure that the state un

i+ 1

2

and hence an
i remains finite. Instead of this one

can impose the sufficient but more restrictive condition that the intermediate
state un

i+1/2 remains between the minimum and maximum of states un
i and

un
i+1. From (22) this is realized if: 1 + δn

i+ 1

2

≥ 0 and 1 − δn
i+ 1

2

≥ 0. Then it

follows that:
∣

∣

∣δn
i+ 1

2

∣

∣

∣ ≤ 1 ⇐⇒ αn
i+ 1

2

≤
Sn

i+ 1

2
∣

∣

∣

∣

f ′(an
i+ 1

2

)

∣

∣

∣

∣

. (34)

which is equivalent to putting γ = 1 in i) of Proposition (1) and then:

αn
i+ 1

2

=
Sn

i+ 1

2
∣

∣

∣

∣

f ′

(

an
i+ 1

2

)∣

∣

∣

∣

(35)

Substituting back in (19) and using (20) gives the following form for the SRNH
scheme:



























un
i+ 1

2

=
1

2

(

un
i+1 + un

i

)

− 1

2
sgn

[

f ′
(

an
i+ 1

2

)] (

un
i+1 − un

i

)

un+1
i = un

i − r
(

f
(

un
i+ 1

2

)

− f
(

un
i− 1

2

))

(36)

where sgn(x) stands for:

sgn(x) =















x

|x| if x 6= 0

0 if x = 0
(37)

It appears that the predictor step leads to the upwinding of the variables in a
similar way to the VFRoe scheme [22].
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4 Linear homogeneous systems

The following linear strictly hyperbolic system is considered:















∂W

∂t
+ A∂W

∂x
= 0, (x, t) ∈ D × R

∗
+, D ⊂ R

W (x, 0) = u0(x), x ∈ D
(38)

with W : D × R+ → Ω a vector of m conserved quantities, or state variables,
Ω is a bounded open domain in R

m, A is a square matrix Mm(R).

We denote λ1 ≤ λ2 ≤ ... ≤ λm the eigenvalues associated to the eigenvectors
{r1, ..., rm}, and denote B = {r1, ..., rm} the base of R

m eigenvectors of A.
Taking R = [r1, ..., rm], it follows that A = RΛR−1, where Λ is the diagonal
form of A and R−1 is the inverse of R.

For this problem the SRNH scheme presented in [8] and [55] reads:



















W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

A
(

W n
i+1 − W n

i

)

W n+1
i = W n

i − rA
(

W n
i+ 1

2

− W n
i− 1

2

)

(39)

where

Sn
i+ 1

2

= max
p=1,...,m

(|λp|) = ρ (A) , (40)

with ρ(A) the spectral radius of A and αn
i+ 1

2

is a control parameter as before.

Writing the above system in characteristic form (V = R−1W ), one gets:



















V n
i+ 1

2

=
1

2

(

V n
i+1 + V n

i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

Λ
(

V n
i+1 − V n

i

)

,

V n+1
i = V n

i − rΛ
(

V n
i+ 1

2

− V n
i− 1

2

)

,

(41)

which, for each component vp, leads to:



















(vp)
n
i+ 1

2

=
1

2

(

(vp)
n
i+1 + (vp)

n
i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

λp

(

(vp)
n
i+1 − (vp)

n
i

)

,

(vp)
n+1
i = (vp)

n
i − rλp

(

(vp)
n
i+ 1

2

− (vp)
n
i− 1

2

)

.

(42)

for p = 1, ..., m.
This is the scheme SRNH applied to the characteristic unknowns vp.

Proposition 4 Under the two following conditions:
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1) αn
i+ 1

2

= Diag(αn
i+ 1

2
,p
) where αn

i+ 1

2
,p

=
Sn

i+ 1

2

|λp|
, ∀(i, n) ∈ Z×N, ∀p ∈ {1, ..., m}

such that λp 6= 0,

2) r ρ(A) ≤ 1.

the scheme satisfies the two extremum principles.

min
i∈Z

(vp)
n
i ≤ min

i∈Z

(vp)
n+1
i ≤ max

i∈Z

(vp)
n+1
i ≤ max

i∈Z

(vp)
n
i . (43)

min
(

(vp)
n
i , (vp)

n
i+1

)

≤ (vp)
n
i+ 1

2

≤ max
(

(vp)
n
i , (vp)

n
i+1

)

Proof

The proof follows from using the analysis of section 3 and writing the SRNH
scheme for the characteristic unknowns vp under the form (36).

One then finds that the control parameter αn
i+ 1

2

depends on the local eigenvalue

for each characteristic equation. Hence it is clear that for the overall system
it must have a diagonal matrix form:

αn
i+ 1

2

=

























Sn

i+ 1
2

|λ1|
0 . . . 0

0
Sn

i+ 1
2

|λ2|
. . .

...
... 0

. . . 0

0 . . . 0
Sn

i+ 1
2

|λm|

























= Sn
i+ 1

2

|Λ|−1 (44)

Going back to the conservative form (W = RV ) one gets:



















W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

− 1

2
sgn (A)

(

W n
i+1 − W n

i

)

,

W n+1
i = W n

i − r
(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

,
(45)

with sgn (A) = R sgn (Λ)R−1 and sgn (Λ) = diag

(

λk

|λk|

)

.

13



5 Extension of SRNHS scheme to non homogeneous non linear

hyperbolic systems

The SRNH scheme (18) can be directly applied to system (1), but αn
i+1/2 must

be optimized as it has been done in the linear case. In order to follow the
strategy of previous section, the problem is first localy linearized. We suppose
that there exists an average state W̄

(

W n
i , W n

i+1

)

, such that the relation:

F
(

W n
i+1

)

− F (W n
i ) = A

(

W̄
(

W n
i , W n

i+1

)) (

W n
i+1 − W n

i

)

. (46)

is realized; for instance the Roe average state [52] of the system verifies exactly
this property. The predictor step becomes then:

W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

−
αn

i+ 1

2

2Sn
i+ 1

2

Ān
i+1/2

(

W n
i+1 − W n

i

)

+
αn

i+ 1

2

2Sn
i+ 1

2

Hn
i+1/2

(

Gn
i+1 − Gn

i

)

(47)

where
Ān

i+1/2 = A
(

W̄
(

W n
i , W n

i+1

))

= R̄n
i+ 1

2

Λ̄n
i+ 1

2

(R̄n
i+ 1

2

)−1 (48)

In analogy with the linear case we introduce the local characteristic variables
V = R−1W around cell interface xi+1/2 as follows:

V n
i+1/2 = (R̄n

i+ 1

2

)−1 W n
i+1/2

V n,−
i+1/2 = (R̄n

i+ 1

2

)−1 W n
i

V n,+
i+1/2 = (R̄n

i+ 1

2

)−1 W n
i+1

(49)

what leads to the following expression for the predictor step of SRNH scheme
for the local charateristic variables:

V n
i+ 1

2

=
1

2

(

V n,+
i+1/2 + V n,−

i+1/2

)

−
αn

i+ 1

2

2Sn
i+ 1

2

Λ̄n
i+1/2

(

V n,+
i+1/2 − V n,−

i+1/2

)

+
αn

i+ 1

2

2Sn
i+ 1

2

(R̄n
i+ 1

2

)−1Hn
i+1/2

(

Gn
i+1 − Gn

i

)

(50)

Following the same reasoning as in the linar system case, it turns out that α
must be a matrix of the form αn

i+ 1

2

= Sn
i+ 1

2

|Λ̄i+ 1

2

|−1 what leads to:

V n
i+ 1

2

=
1

2

(

V n,+
i+1/2 + V n,−

i+1/2

)

− 1

2
|Λ̄i+ 1

2

|−1Λ̄n
i+1/2

(

V n,+
i+1/2 − V n,−

i+1/2

)

+
1

2
|Λ̄i+ 1

2

|−1(R̄n
i+ 1

2

)−1Hn
i+1/2

(

Gn
i+1 − Gn

i

)
(51)
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then coming back to the conservative variables:

W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

− 1

2
R̄n

i+ 1

2

|Λ̄i+ 1

2

|−1Λ̄n
i+1/2(R̄

n
i+ 1

2

)−1
(

W n
i+1 − W n

i

)

+
1

2
R̄n

i+ 1

2

|Λ̄i+ 1

2

|−1(R̄n
i+ 1

2

)−1Hn
i+1/2

(

Gn
i+1 − Gn

i

)

(52)
the SRNHS scheme for problem (1) can thus be written:



































































W n
i+ 1

2

=
1

2

(

W n
i+1 + W n

i

)

− 1

2
sgn

[

Ān
i+1/2

] (

W n
i+1 − W n

i

)

+
1

2
| Ān

i+1/2 |−1 Hn
i+1/2

(

Gn
i+1 − Gn

i

)

W n+1
i = W n

i − ∆t

∆x

(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

+
∆t

2∆x
Hn

i

(

Gn
i+1 − Gn

i−1

)

(53)

where
sgn

[

Ān
i+1/2

]

= R̄n
i+ 1

2

|Λ̄n
i+ 1

2

|−1Λ̄n
i+ 1

2

(R̄n
i+ 1

2

)−1 (54)

and
| Ān

i+1/2 |−1= R̄n
i+ 1

2

|Λ̄n
i+ 1

2

|−1(R̄n
i+ 1

2

)−1 (55)

The particular approximation used to discretize the source term, Hn
i+1/2 and

Hn
i above, are left open until the particular system of equations to be solved

is chosen in order to fulfill particular steady state properties of the system
considered.

Remark

The practice shows that the simple classical average state:

W̄
(

W n
i , W n

i+1

)

=
1

2

(

W n
i+1 + W n

i

)

. (56)

can be used instead of the exact Roe state at considerably less computational
cost.

6 Application of the SRNHS scheme to the Shallow Water Equa-

tions with irregular topography

We consider here the movement of a layer of fluid in one dimension over a fixed
bed. The bed elevation with respect to a fixed horizontal datum is prescribed
by function z(x). The fluid layer is h(x, t) deep and moves horizontally with
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velocity u(x, t). The elevation of the fluid surface is ζ(x, t) = h(x, t) + z(x).
Pressure is assumed to be hydrostatic. Under these assumptions the SWE
read:

∂

∂t







h

hu





+
∂

∂x







hu

hu2 +
1

2
gh2





 =







0

−gh
dz

dx





 (57)

and g is the acceleration of gravity. It is clear that the source term is of the
form (4), with G(x) = z(x). The SWE present so called equilibrium solutions
for fluid at rest whereby the momentum flux and source term cancel each other
leading to a flat free surface i.e.: For u(x, t) = 0, ∂h/∂t = 0 and the second
equation gives:

1

2

∂(gh2)

∂x
(x, t) = −gh

∂z

∂x
(x) ⇐⇒ ζ(x, t) = h(x, t) + z(x) = C (58)

This type of solutions should also be kept at the discrete level.

Definition 5 [11] [12] A numerical scheme for solving (57) verifies the C−property
if for a stationary equilibrium solution it yields:

hn
i + zi = C, and un

i = 0 ∀(i, n) ∈ Z × N, (59)

Proposition 6 Under one of the following two forms of discretisation of the
source term at the corrector step:

i)

(

gh
dz

dx

)n

i

=
g

4∆x

(

hn
i+1/2 + hn

i−1/2

)

(zi+1 − zi−1),

or

ii)

(

gh
dz

dx

)n

i

=
g

8∆x

(

hn
i+1 + 2hn

i + hn
i−1

)

(zi+1 − zi−1),

the SRNHS scheme verifies the C−property.

PROOF. Let W (x, t) be a stationary solution. Hence u(x, t) = 0. In such
case, system (1) is equivalent to:

∂F (W (x, t))

∂x
= Q (x, t) , (60)

with W (x, t) =









h(x, t)

0









, F =











0

1

2
gh2(x, t)











and Q =











0

−gh
∂z

∂x











The eigenvalues of the flux jacobian are:

λ̄1 = −c̄ and λ̄2 = c̄ (61)
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with c̄2 = g
hn

i + hn
i+1

2
and approximation to the speed of gravity waves at cell

interface xi+1/2. The change matrix R and the inverse change matrix R−1 are:

R =









1 1

−c̄ c̄









and R−1 =
1

2c̄









c̄ −1

c̄ 1









, (62)

According to (17), the predictor step gives:

W n
i+ 1

2

=











hn
i + hn

i+1

2
c̄

2

(

hn
i+1 + zi+1 − hn

i − zi

)











=











hn
i + hn

i+1

2
c̄

2

(

ζn
i+1 − ζn

i

)











(63)

and the corrector step:









hn+1
i

qn+1
i









=









hn
i

qn
i









− rg

2









0

(hn
i+1/2)

2 − (hn
i−1/2)

2









+ ∆tQn
i (64)

In order that the solution remains stationary W n+1
i = W n

i , and the flux and
source discretizations must cancel out. This leads to:

g

2

[

(

hn
i+1/2

)2 −
(

hn
i−1/2

)2
]

= −g

(

h
dz

dx

)n

i

(65)

or, since hi+1/2 = (hi+1 + hi)/2, to:

g

8∆x

(

hn
i+1 + 2hn

i + hn
i−1

)

(hi+1 − hi−1) = −g

(

h
dz

dx

)n

i

(66)

but for a stationary solution: hi+1 − hi−1 = zi−1 − zi+1. Hence:

g

8∆x

(

hn
i+1 + 2hn

i + hn
i−1

)

(zi+1 − zi−1) = g

(

h
dz

dx

)n

i

(67)

which is equivalent to:

g

4∆x

(

hn
i+1/2 + hn

i−1/2

)

(zi+1 − zi−1) = g

(

h
dz

dx

)n

i

(68)

when un
i = 0 ∀i, what completes the proof.

In order to show the performance of the SRNHS for computing solutions of
the SWE, several examples are shown in the following paragraphs.
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Fig. 3. The lake at rest problem. The free surface of water remains horizontal (left)
and the flow rate stays exactly zero (right).

6.1 The lake at rest problem

This example was first proposed by [11] to test the C−property compliance of
a method. A lake with an irregular bottom is filled with water. The free surface
must remain horizontal and water velocity should be zero at all times. Figure
3 shows the computed free surface (left) and velocity (right) after several
thousand time steps. As expected the body of water remains exactly at rest.

6.2 Flow over a bump

The exact steady state solution shows a constant dicharge (q = hu) but vari-
able free surface and velocity due to the influence of the bed forcing. Depend-
ing on the discharge and the inflow and outflow depths, three different flow
regimes appear: Subcritical flow all along the reach, transcritical (subcritical to
supercritical) without shock and transcritical with shock (smooth subcritical
to supercritical, then back to subcritical across a shock). The bump equation
used in the following examples is the one given in [60]:

z(x) =











0.2 − 0.05(x − 10)2 , if 0 < x < 12

0 otherwise
(69)

The following examples have been computed on a mesh with 100 cells. Figure
4 shows a comparison between the exact and numerical solution, for the first
(subcritical) regime. Left plot displays free surface elevation and right plot
Froude number (F = u/

√
gh). The agreement between the numerical and the

exact solution can be considered satisfactory. The smooth transcritical regime
can be seen in Figure 5. Again satisfactory agreement between the exact and
numerical solution is found. The transcritical case with shock is presented in
Figure 6. The shock is well captured with only a small glitch visible in the
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Fig. 4. Comparison between numerical and exact solution for subcritical flow over
bump. Free surface (Left) and Froude number (Right).
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Fig. 5. Transcritical flow over a bump without shock. Free surface (Left) and Froude
number (Right).
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Fig. 6. Transcritical flow over a bump with shock. Free surface (Left) and Froude
number (Right).

free surface plot at the downstream end of the shock. The results presented in
these examples are comparable to those found in the literature.
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Table 1
Initial data for the dam break over a step problem

Left Right

h 5.0 1.0

u 0.0 0.0

z 0.0 1.0

 0
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 5

 0  2  4  6  8  10  12  14  16  18  20

h

Bed Step

x

Exact
Numerical
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u

x

Exact
Numerical

Fig. 7. Dam break problem over a step computed with 200 cells. Water depth (left)
and velocity (right) at t=0.7s. 200 cells.

6.3 Dam break flow over a step

This example corresponds to a Riemann problem with a singular source func-
tion. It is hence doubly singular (regarding the initial condition and the source
term that becomes a Dirac delta). The particular initial data and bed elevation
of the example are displayed in Table 1.

The solution can be exactly computed [3], and for the data above it consists of
an expansion wave, a nonlinear discontinuity at the bed step and a travelling
shock wave.

Figure 7 shows the numerical solution computed with 200 cells superimposed
to the exact one. Left plot corresponds to water depth and right plot to water
velocity. All the waves are correctly captured with some smearing of the ex-
pansion fan. Figure 8 shows the same comparison for flow rate, q = hu, and
total head, H = h+ z +u2/2g. These quantities should be constant across the
bed step, as it can be realized in the figure, except for a very small pertur-
bation in two points neighbouring the bed discontinuity. The perturbation is
more remarkable for the flow rate but almost negligible for the head.

Table 2 provides a comparison of the numeric values of the two constant states
that make up the Riemann solution computed exactly and numerically. It can
be said that the constant states are sufficiently well captured by the numerical
scheme in the 200 cell mesh used. Figure 9 depicts an error convergence plot
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Fig. 8. Dam break problem over a step computed with 200 cells. Flow rate (left)
and total head (right) at t=0.7s.

Table 2
Comparison between exact and numerically computed constant states on a 200 cell
mesh

Constant State 1 Constant State 2

Exact Numerical Exact Numerical

h 3.611 3.601 2.262 2.262

u 2.102 2.115 3.355 3.357

Fr 0.353 0.356 0.713 0.713

-4
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-2

-1

 0

 1
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 3

-8 -7 -6 -5 -4 -3 -2 -1

log(err)

log(dx)

err(u)
err(h)

Fig. 9. L1 Convergence plot of the velocity and the depth for the dam break over a
step.

in the L1 norm for the water depth and the velocity. The two curves have an
average slope slightly in excess of 0.6. However this value shows a tendency
to decrease as the mesh is refined, eventually leading to a stagnation of the
convergence. This undesirable behaviour is problem dependent and manifests
itself more strongly for some initial data than for others. The stagnation ten-
dency appears also for other systems of equations with singular source terms
as will be shown later for the Euler equations. Furthermore, most finite volume
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Fig. 10. Double rarefaction and dry out of a step. Free surface elevation (left) and
flow rate (rifgt) at t=1s. The step geometry can be seen in the left plot centred
around x=11m.

methods can suffer from this behaviour. An explanation of this phenomenon
together with a possible cure is discussed in section 9.

6.4 Dry out by a double rarefaction over a step

In this test, first proposed in [24] the combined ability of the method to deal
with a step bottom function and dry zones (h = 0) is shown. Two rarefaction
fans travelling in opposite directions create a dry zone or vacuum. The left
running rarefaction attains and passes over a stepped bed elevation. Here the
exact solution is not available, but results shown in Figure 10 compare well
with those presented in the original reference.

7 Application to the non-isentropic Euler equations in a duct of

variable cross section

In this paragraph the quasi one dimensional, unsteady, compressible flow of a
gas along a nozzle with variable cross section A(x) is considered. The governing
(Euler) equations can be written:

∂

∂t















ρA

ρAu

ρAE















+
∂

∂x















ρAu

ρA(u2 + p/ρ)

ρAuH















=















0

p
dA

dx

0















(70)
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where ρ, u and p are the gas density, velocity and pressure respectively. E and
H represent the total energy and total enthalpy:

E =
p

(γ − 1)ρ
+

u2

2
H =

γp

(γ − 1)ρ
+

u2

2
(71)

with γ the ratio of specific heats (in all numerical examples γ has been taken
as 1.4) and the perfect gas law applies. By calling the conservative variables
m1 = ρA, m2 = ρAu, and m3 = ρAE, system (70) can be written:

∂

∂t















m1

m2

m3















+
∂

∂x



















m2

(3 − γ)m2
2

2m1
+ (γ − 1)m3

(1 − γ)m2
2

2m1

+ γm3



















=

















0
(

(1 − γ)m2
2

2m2
1

+
(γ − 1)m3

2A

)

dA

dx

0

















(72)

which is clearly in the form (1) with source term (4).

The SRNHS can be applied straightforwardly to system (72). The source term
discretization at the predictor step can be performed as:

(

p
dA

dx

)n

i+1/2

=
pi+1 + pi

2∆x
(Ai+1 − Ai) (73)

And for the corrector step:
(

p
dA

dx

)n

i

=
pi+1 + 2pi + pi−1

4

(Ai+1 − Ai−1)

2∆x
(74)

although other choices are possible.

As an example of the performance of the method, the computation of a shock
tube problem with discontinuous cross section is shown. This test corresponds
also to a Riemann problem with a singular source term and the exact solution
can also be computed analytically (see [5]). The initial data are displayed in
Table 3 and the discontinuity is located at x = 5. For this case, the solution
consists of a left running rarefaction, a stationary discontinuity at x = 5 due
to the cross section area change, a right running contact and a shock.

Figure 11 shows a comparison between the exact and the numerical solution
for density (left) and Mach number (right). The cross section is also shown
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Table 3
Initial data for the shock tube problem

Left Right

ρ 2.0 1.0

u 0.0 0.0

p 6.0 1.0

A 0.15 0.1
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 0  1  2  3  4  5  6  7  8  9  10

M

x

Duct cross section

Exact
Numerical

Fig. 11. Shock tube problem with discontinuous cross section computed with 200
cells. Density (left) and Mach number (right) at t=2s (the duct cross section area
is plotted also as a dotted line in the Mach plot).

as a solid line in the Mach plot. Figure 12 corresponds to the same compar-
ison for the entropy (left) and the mass flow (right) that should be constant
across the duct cross section discontinuity. The performance of the scheme
is directly related to its ability to capture the constant states to both sides
of the cross section discontinuity as well as to resolve the different waves:
Rarefaction, stationary discontinuity, moving contact and shock. Overall the
numerical solution computed with 200 nodes shows good agreement with the
exact one. It is worth noting that the SRNHS scheme captures sharply the sta-
tionary contact with no intermediate points in this particular case. The right
running contact is a linear wave and hence it is diffused. Also the numerical
mass flow and entropy remain constant across the cross section discontinuity
as the theory predicts. Table 7 shows a comparison of the numerical versus
exactly computed constant intermediate states. The agreement can be consid-
ered good.

Figure 13 displays a convergence plot in the L1 norm for the gas density and
velocity. The average slope is slightly below 0.5 for the density and slighlty
above 0.4 for the velocity. In this case the convergence decay is more clearly
visible than for the SWE test (Figure 9), with both curves rapidly approaching
a stagnation condition. This phenomenon is analyzed in section 9.
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Fig. 12. Shock tube problem with discontinuous cross section computed with 200
cells. Mass flow (left) and entropy (right) at t=2s. Both quantities must be constant
across the cross section discontinuity.

Table 4
Comparison between exact and numerically computed constant states on a 200 cell
mesh

Constant State 1 Constant State 2 Constant State 3

Exact Numerical Exact Numerical Exact Numerical

ρ 1.433 1.427 1.285 1.287 2.208 2.211

u 0.661 0.666 1.105 1.107 1.105 1.107

p 3.764 3.747 3.231 3.237 3.231 3.238

M 0.345 0.347 0.589 0.590 0.772 0.773

-4

-3

-2

-1

-8 -7 -6 -5 -4 -3 -2 -1

ρ

log(err)

log(dx)

err(  )
err(u)

Fig. 13. L1 Convergence plot of the density and velocity for the shock tube problem
with cross section discontinuity.
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8 Application of the SRNHS scheme to a multiphase flow model

problem: The Ransom faucet problem

This section is devoted to the extension of the SRNHS scheme to biphasic
(liquid-gas) flow systems by means of a four equation single pression model.
The system can be written as (1):

∂W

∂t
+

∂F (W )

∂x
= Q1 + Q2 (75)

with conservative variables, W , and flux vector F :

W (x, t) =





















αvρv

αvρvuv

αlρl

αlρlul





















, F (W (x, t)) =





















αvρvuv

αvρvu
2
v

αlρlul

αlρlu
2
l





















(76)

α, ρ and u represent the mass fraction, density and velocity respectively of
the vapour (subindex v) or the liquid (subindex l). The source term Q(W ) is
split into two parts, Q1 and Q2. Q1 accounts for the interchange of momentum
between both phases and Q2 represents just the effect of the acceleration due
to gravity (g):

Q1(W ) = −























0

αv
∂p

∂x

0

αl
∂p

∂x























, Q2(W ) =





















0

αvρvg

0

αlρlg





















(77)

The pressure, p, is common to both phases. In order to close the system the
following relations apply: αv +αl = 1. The isentropic equation of state for the
gas phase, p = cργ

v , and a equation of state for the liquid: ρl = klp
a. Here C,

γ, a and kl are constants. Typical numerical values (in International System
units) are: C = 105, γ = 1.4, a = 4.37 × 10−5 and kl = 987, 57.

The system represented by equations (76) and (77) is not hyperbolic. Therefore
the flux jacobian ∇F (W ) can not be diagonalised in IR what makes it difficult
the computation of a sign matrix as required by the SRNHS scheme. In order
to overcome this difficulty the system is written as follows:

∂W (x, t)

∂t
+ ∇F (W (x, t))

∂W (x, t)

∂x
+ C(W )

∂W (x, t)

∂x
= Q2(x, W ) (78)
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with C(W )
∂W (x, t)

∂x
= −Q1(x, W ).

The source term Q2 has not the form (4) and hence does not fit within the
framework for which SRNHS scheme is developed. For this reason equation
(78) is integrated in two steps. The first step gets rid of the weight term, Q2,
by an explicit Euler time integration:















∂Ŵ

∂t
= Q2(Ŵ )

Ŵ (x, tn) = W n(x)

(79)

and then the SRNHS scheme is applied to the system:















∂W (x, t)

∂t
+

∂F (W (x, t))

∂x
+ Q1(x, W ) = 0

W (x, tn) = Ŵ n+1(x)

(80)

Taking A(W ) = ∇F (W (x, t)) + C(W ), the first equation of (80) can be
written in quasilinear form:

∂W (x, t)

∂t
+ A(W )

∂W (x, t)

∂x
= 0, (81)

with

A
(

W̄
)

=





















0 1 0 0

−ū2
v + γp̄

ρv
2ūv

γp̄
ρ̄l

0

0 0 0 1

ᾱl

ᾱv

γp̄
ρ̄v

0 −ū2
l + ᾱl

ᾱv

γp̄
ρ̄l

2ūl





















. (82)

The predictor step of SRNHS scheme is applied to the system (80) written in
the form (81) as follows:

W n
i+ 1

2

=
1

2

(

W n
i + W n

i+1

)

− 1

2
sgn

(

A(W̄ )
) (

W n
i+1 − W n

i

)

(83)

with W̄ = (W n
i+1 + W n

i )/2. The corrector step is simply:

W n+1
i = W n

i − r
(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

+ ∆t(Q1)
n
i (84)
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with the following approximation of (Q1)
n
i :

(Q1)
n
i =

1

2∆x





























0

(αv)
n
i

(

pn
i+1 − pn

i−1

)

0

(αl)
n
i

(

pn
i+1 − pn

i−1

)





























(85)

Keeping in mind that the first step of SRNHS scheme is essentially an up-
winding of the variables to compute W n

j+1/2, the only difficulty lies in the
calculation of the sgn(A) matrix because, as stated before, for this problem it
is not diagonalizable and its eigenvalues are complex.

In this work the method of Alouges [7] has been used to compute the real
part of the eigenvalues of A and from these an approximate sign matrix.
The predictor step of SRNHS scheme has been applied making use of the
approximate sign matrix.

Density perturbation method

Another way to overcome the problem of the calculation of the sign matrix
for multiphase flows is the method proposed by Toumi and his co-authors [18]
based upon an extension of the domain of hyperbolicity of system (76)-(77).
This is accomplished by means of a modifiction of the term Q1, that becomes:

Q1(W ) =





















0

αv
∂p
∂x

+ δ(p − pint
v )∂αv

∂x

0

αl
∂p
∂x

+ δ(p − pint
l )∂αl

∂x





















(86)

where formula:

δ
(

p − pint
k

) ∂αk

∂x
(87)

accounts for a pressure correction, and pint
k is the interfacial pressure between

both phases with δ a numeric constant. There are several forms of the pressure
difference (p−pint

k ) in the literature. Here we adopt the closure law for bubbly
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flow given by Lahey [42]:







p − pint
v = 0

p − pint
l = Cp(αv)ρl(uv − ul)

2 (88)

where Cp(αv) =
1

4
(1 − αv) for instance.

In what follows we will call: θl = δ (p − pint
l )

In order to calculate sgn (A) a perturbation analysis based on the density is

performed [18]. The dimensionless density of each phase is defined as: ρ̃v =
ρv

ρ0
v

and ρ̃l =
ρl

ρ0
l

. With ρ0
v and ρ0

l a reference density of the gas and liquid phase

respectively. Let the parameter ǫ =
ρ0

v

ρ0
l

, with ǫ << 1 in view of the density

difference between the liquid and vapour phases. Further assume that the
liquid phase is incompressible, i.e.: ρl = ρ0

l or ρ̃l = 1.

Now system (80) is written again in quasilinear form (81), with A(W ):

A(W ) =





















0 1 0 0

−u2
v + αvp,1 2uv αvp,3 0

0 0 0 1

ǫαlp,1 + θlαl,1 0 −u2
l + ǫαlp,3 + θlαl,3 2ul





















(89)

In such case following [Marc 98], [26] one has: αvp,1 =
γp

ρv
, p,3 =

γp

αvρl
, since

ρl = ρ0
l is constant one has p,3 =

γp

αvρ0
v

ρ0
v

ρ0
l

= ǫ
γp

αvρ0
v

, αl,1 = 0 and αl,3 =
1

ρl

.

Calling
γp

ρv
= c2

1 and c2
2 =

θl

ρl
, (90)

and going back to (89) one can write: A(W ) = A0(W ) + ǫH(W ) with

A0(W ) =





















0 1 0 0

−u2
v + c2

1 2uv 0 0

0 0 0 1

0 0 −u2
l + c2

2 2ul





















(91)
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and

H(W ) =





















0 0 0 0

0 0 γp
ρ0

v
0

0 0 0 0

αlp,1 0 αlp,3 0





















(92)

A0(W ) can be diagonalized. Its characteristic polynome is:

P0(λ) =
(

(λ − uv)
2 − c2

1

) (

(λ − ul)
2 − c2

2

)

(93)

that admits four distinct real eigenvalues:

λ1 = uv − c1, λ2 = uv + c1, λ3 = ul − c2, λ4 = ul + c2 (94)

The corresponding right eigenvector or change matrix, R, is:

R(W ) =





















1 1 0 0

λ1 λ2 0 0

0 0 1 1

0 0 λ3 λ4





















(95)

The perturbation theory of linear operators [35,14,38] states that if a linear
operator B is diagonisable in R with distinct eigenvalues and it is perturbed
to B′ = B + ǫ H with ǫ a small real number, then B′ can be also diagonalised
in R with distinct eigenvalues, these are close to the eigenvalues of B and the
following relation holds:

|λ′
j − λj| = ◦(ǫ). (96)

With this result in mind it is justifiable to apply SRNHS scheme to solve
system (80) as follows:



















W n
i+ 1

2

=
1

2

(

W n
i + W n

i+1

)

− 1

2
sgn

(

A0(W̄ )
) (

W n
i+1 − W n

i

)

W n+1
i = W n

i − r
(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

+ ∆t(S1)
n
i ,

(97)
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with:

(Q1)
n
i =































0

(αv)
n
i

2∆x

(

pn
i+1 − pn

i−1

)

0

(αl)
n
i

2∆x

(

pn
i+1 − pn

i−1

)

− 1

2∆x
δ(ρl)

n
i (αv)

n
i ((ul)

n
i − (uv)

n
i )

2
(

(αl)
n
i+1 − (αl)

n
i−1

)































(98)

8.1 Ransom faucet tests

The performance of SRNHS scheme for solving system (75) is shown in the
following examples computed. They regard the so called Ransom faucet prob-
lem [49] in which a water jet exits a faucet downwards in the vertical direction
surrounded by standing air. The initial condition corresponds to a cylindrical
jet. A sketch is shown in Figure 14. The liquid volume fraction, αl, is in this
case the ratio of the jet section to the total cross section and the void fraction,
αv, the ratio of the cross section occupied by the air to the total cross section.
By the effect of gravity the jet accelerates while narrowing its cross section.
This corresponds to a wave of void fraction propagating downstream. (The
hypothesis is made here that the jet does not break up in drops).

The initial and boundary conditions corresponding to the Ransom faucet test
are given in Figure 14 and Table 5:

  

g

inlet

outlet

g

12 m

ul = 10 m/s
uv = 0 m/s

αv = α0

P = 105Pa

gaz

liquid

Fig. 14. Sketch of the Ransom faucet problem.

Two tests are shown, one for a low initial void fraction (αv(t = 0) = 0.2) and
other for a larger one (αv(t = 0) = 0.6). It proves more difficult to compute

31



Table 5
Initial and boundary conditions for Ransom faucet problem:

Initial condition: Boundary conditions:

∀x ∈ [x0, xl], αv(t = 0) = α0, * inlet (x0 = 0): αv(0, t) = α0,

ul(t = 0) = 10, uv(t = 0) = 0, * inlet (x0 = 0): ul(0, t) = 10,

ρv(t = 0) = 1, ρl(t = 0) = 988, 0638, * inlet (x0 = 0): uv(0, t) = 0,

p(t = 0) = 105. * outlet (xl = 12): p (12, t) = 105.
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Fig. 15. Void fraction at t=0.6s for initial value of 0.6 (left) and 0.2 (right) computed
with SRNHS scheme on a sequence of meshes.

flows with lower void fractions.

The numerical results are compared to the exact solution We of an analogous
but well posed problem, obtained supposing the liquid and vapour densities
are constant. The reference solution is given by:

αv,e(x, t) =















1 − αl,initul,init
√

2gx + u2
l,init

if x ≤ ul,initt +
gt2

2

1 − αv,init , otherwise

(99)

and

ul,e(x, t) =







√

2gx + u2
l,init if x ≤ ul,initt + gt2

2

ul,init + gt , otherwise
(100)

Figure 15 shows the void fraction, αv, computed with different mesh sizes
(from 50 to 600 nodes) at time t = 0.6s for two initial values of the void frac-
tion αv(0).

The left plot corresponds to αv(0) = 0.6 and the right plot to αv(0) = 0.2. The
former case has been computed with the method of Alouges for the calculation
of the sign matrix in the predictor step. The second with the regularization
method of Toumi as explained ealier. The advantage of the method of Toumi
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Fig. 16. Time evolution of the void fraction (left) and the liquid velocity (right) for
an initial void fraction of 0.6

lies in that it proves more robust despite the need for the adjustable hyper-
bolicity parameter δ (equation 86). Actually, the case αv(0) = 0.6 can not
be computed with the method of Alouges due to numerical instabilites. Both
plots in figure 15 show a reasonable agreement with the exact solution that
improves with the mesh size and are comparable to those presented by other
authors. Nevertheless mid sized meshes (around 200 nodes) provide a suffi-
ciently accurate description of the phenomenon.

Figure 16 shows the evolution of αv (left) and the liquid velocity ul (right)
with time. The initial conditions correspond to αv(0) = 0.6 and the method
of Toumi has been used with δ = 5 · 10−4. The propagation of the front is well
predicted numerically with 200 nodes.

9 The convergence stagnation problem

This section is devoted to give an explanation to the convergence stagnation
phenomenon observed in the previous sections. We will show that for a linear
scalar equations with source terms of the form (4) with discontinuities in
the function G(x, W ), convergence of the numerical to the exact solution is
prevented. This gives an indication that a similar behaviour can be found for
nonlinear systems, as it has been indeed observed in previous examples. A
cure is also proposed that solves this problem from the theoretical point of
view. Let us consider the scalar equation:

∂u

∂t
+ a

∂u

∂x
= −u

dz

dx
(101)
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x
zL

zR

uR

a
u∗

uL

∆z

Fig. 17. The Riemann solution for the linear equation.

with a > 0 and the following source function:

z(x) =











zL if x < 0

zR if x > 0
(102)

In the following we will call:

∆z = zR − zL (103)

The Riemann problem is posed with the following initial conditions:

u(x, 0) = u0(x) =











uL if x < 0

uR if x > 0
(104)

Its solution is self similar and is made up of a standing discontinuity due to
the source term jump at x = 0 and a right travelling linear shock with speed
a. In between the two waves there is a constant state, u∗. In view that the
solution is self similar, it must be constant at x = 0− and at x = 0+. Further
u(0−, t) = uL and u(0+, t) = u∗. A sketch of the solution is displayed in Figure
(17). The intermediate constant state u∗ can be computed from the steady
state solution of equation (101):

a
du

dx
= −u

dz

dx
(105)

After integration one obtains the exact value of u∗ in terms of uL and the
problem parameters, a and ∆z:

u∗
exact = uL · e−∆z/a (106)

When a numerical solution to problem (101-104) is sought by means of a
time marching algorithm, the constant states to the left and right of the initial
discontinuity, u(0−, t) = uL and u(0+, t) = u∗

num, are computed as a steady
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state solution after a few time steps, when the right running shock is away
from the original discontinuity. Application of the SRNHS scheme to linear
equation (101) with a > 0 leads to:

un+1
j = un

j − ar
(

un
j − un

j−1

)

+
r

4

[

(un
j+1 + un

j )(zj+1 − zj) − (un
j + un

j−1)(zj − zj−1)
]

−r

8
(un

j+1 + 2 un
j + un

j−1)(zj+1 − zj−1)

(107)

where r = ∆t/∆x. In order to obtain the constant state u∗
num as computed by

the numerical method for large t, equation (107) is applied to all the points
in the domain, j = 1, 2, ..., jL, jR, ..., jshock, away and to the left of the right
travelling shock. Here jL stands for the last point where zj = zL and jR for
the first point where zj = zR. Note that jR = jL + 1. Also jshock stands for
the last point before the shock transition. For all points with j ∈ [1, jshock] the
solution does not change with time. It can be written:

un+1
j = un

j = ūj , j = 1, 2, ..., jshock (108)

Also away from points jL and jR the scheme reduces to:

un+1
j = un

j − ar
(

un
j − un

j−1

)

(109)

Thus for the steady state:

ūj = ūj − ar (ūj − ūj−1) (110)

or:
ūj = ūj−1 (111)

what leads to:

ūj = uL , j = 1, 2, ..., jL − 1 (112)

and

ūj = ujR
= u∗

num , j = jR + 1, jR + 2, ..., jshock (113)

since ujR
corresponds to the value of u(0+, t) = u∗ computed by the numerical

scheme.

For points jL and jR the scheme reads respectively:

un+1
jL

= un
jL
−ar

(

un
jL

− un
jL−1

)

+
r

4

(

un
jR

+ un
jL

)

∆z− r

8

(

un
jL−1 + 2un

jL
+ un

jR

)

∆z

(114)
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un+1
jR

= un
jR

− ar
(

un
jR

− un
jL

)

− r

4

(

un
jR

+ un
jL

)

∆z − r

8

(

un
jL

+ 2un
jR

+ un
jR+1

)

∆z

(115)

where ∆z = zR − zL as usual. At steady state this leads to:

0 = −ar (ūjL
− ūjL−1) +

r

4
(ūjR

+ ūjL
) ∆z − r

8
(ūjL−1 + 2ūjL

+ ūjR
) ∆z (116)

0 = −ar (ūjR
− ūjL

) − r

4
(ūjR

+ ūjL
)∆z − r

8
(ūjL

+ 2ūjR
+ ūjR+1) ∆z (117)

And now recalling (112) and (113):

0 = −ar (ūjL
− uL) +

r

4
(ūjR

+ ūjL
) ∆z − r

8
(ūL + 2ūjL

+ ūjR
) ∆z (118)

0 = −ar (ūjR
− ūjL

) − r

4
(ūjR

+ ūjL
) ∆z − r

8
(ūjL

+ 3ūjR
)∆z (119)

which constitute a system of two equations on the two unknowns ūjL and ūjR.
Its solution is:

u∗
num = ūjR

= uL

(

1 − ∆z

2a
+

3∆z2

64a2

)

(

1 +
∆z

2a
+

3∆z2

64a2

) (120)

and

ūjL
= ūjR

(

1 +
5∆z

8a

)

(

1 − 3∆z

8a

) (121)

Equations (120) and (121) above state: i) the structure of the transition at
the source term discontinuity is made of one point (ujL

) and ii) the value of
constant state u∗

num as computed by SRNHS scheme.

Note that equation (120) is the value of u∗ computed by the SRNHS scheme in
terms of uL and other problem variables but not any discretization parameter
such as ∆x or ∆t. A series development of (120) for ∆z/a small enough gives:

u∗
num = uL

(

1 − ∆z

a
+

1

2

(

∆z

a

)2

− 13

64

(

∆z

a

)3

+ ...

)

(122)

which is an approximation to u∗
exact (equation 106) to third order since:

u∗
exact = uL · e−∆z/a = uL

(

1 − ∆z

a
+

1

2

(

∆z

a

)2

− 1

6

(

∆z

a

)3

+ ...

)

(123)
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Comparing (122) with (123) it is clear that the numerically computed in-
termediate state is different than the true value. This contributes an error
that does not diminish with mesh refining thus leading to a stagnation in the
convergence rate.

The numerical solution will better approach the exact one for small values of
the ratio ∆z/a that make equation (120) closer to (106), but the numerical
solution will not show asymptotic convergence to the exact one with mesh
refining because the scheme computes u∗

num once and for all for a given ∆z/a
and its value does not depend on either ∆x or ∆t.

It is expected that other numerical schemes present a similar behaviour for
this type of problem. For instance Bermúdez and Vázquez’s numerical method
[11] reduces simply to upwinding the source term when applied to this linear
problem. Applying a similar analysis to the one shown above yields the result
that: i) there are no internal points in the transition at the source term dis-
continuity for Bermúdez and Vázquez scheme and ii) the following expression
for u∗

num is found:

u∗
num = uL

(

1 − ∆z

2a

)

(

1 +
∆z

2a

) = uL

(

1 − ∆z

a
+

1

2

(

∆z

a

)2

− 1

4

(

∆z

a

)3

+ ...

)

(124)

which is analogous to (120). This means that Bermúdez and Vázquez’s scheme
will also lead to stagnation of the convergence rate for this problem. An exam-
ple of this behaviour has been already shown in the SWE case for Bermúdez
and Vázquez and McCormack TVD methods in [4].

Figure (18) shows a comparison between the exact and numerical solution to
problem (101-104) for the limiting case ∆z/a = 1, as computed on a 102400
node mesh with SRNHS and Vázquez schemes. The numerical value of u∗ is
clearly wrong for both schemes. However the rest of the solution is computed
accurately thanks to the fine mesh used. Right plot represents the L1 error
convergence rate for SRNHS scheme. The initial error decay corresponds to
an increasingly better resolution of the solution away from the u∗ region (in
particular the travelling discontinuity). It must be recalled that in the case
of a linear equation a discontinuity is heavily smeared and error around it
decreases fast with mesh refinement. Once the error in this region reaches the
level of the mismatch between u∗

exact and u∗
num further reductions in it are

unimportant because the global error is dominated by the latter, that remains
constant, and convergence stops.

Despite this, numerical schemes based upon a true Godunov-type strategy like
for instance Greenberg and LeRoux’s method [31], [32] [17] made up of the
following steps:
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Fig. 18. Riemann problem for linear scalar equation with ∆z/a = 1. Initial discon-
tinuity at x = 20. Exact versus numerical solution with 102400 nodes (left). Error
convervenge rate (right).

• Piecewise constant discretization of variables within each cell.
• Exact solution of the non-homogeneous Riemann problem at each cell in-

terface.
• Projection (averaging) of the Riemann solution onto the cell.

should consistently approach the exact solution with mesh refining and hence
uniformly converge to the exact solution. The only drawback lies in their high
computational cost.

Another way of solving this problem avoiding the use of an exact Godunov
method is to regularize the source term discretization (and correspondingly
the initial data) to ensure that parameter ∆z/a is small at each cell interface.
This can be accomplished for instance by taking:

ẑ(x) =
zR + zL

2
+

zR − zL

2
· tanh

(

x

C∆xp

)

(125)

and

û0(x) =
uR + uL

2
+

uR − uL

2
· tanh

(

x

C∆xp

)

(126)

instead of (102) and (104) with C a numerical constant. The regularisation
(125-126) introduces an error into the source function computation as well as
in the initial conditions that is added to the truncation error of the scheme and
the machine round off error. In the L1 norm, the regularisation error can be
easily quantified. For instance for the error introduced in the source function,
Ez, one has:

Ez =
∫ +∞

−∞
|ẑ(x) − z(x)|dx = C (zR − zL) ln(2)∆xp (127)

and a similar expression for the error in the initial conditions is found.

The exponent p in (125) and (126) must be set slightly in excess of the asymp-
totic convergence order, q, of the numerical scheme with which the solution
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Fig. 19. Riemann problem for linear scalar equation with ∆z/a = 1. SRNHS scheme
with smooth initialization. Initial discontinuity at x = 20. Exact versus numerical
solution with 800 nodes (left). Error convervenge rate (right).

will be computed. This is so because if p < q, the global error convergence will
be driven by the initial and source function error due to the regularization
and will mask the convergence of the scheme. On the other hand, p > q can
lead to faster initial convergence rates driven by the initial solution and source
function regularization errors that will later, for finer meshes, fall back to the
asymptotic convergence rate of the numerical scheme. This can give the false
impression of a reduction of the convergence rate with mesh refinement. Put
in other words: in order that the asymptotic convergence rate of the numerical
method becomes apparent, the regularization of the initial conditions and the
source function must be made to the same or slightly higher order of accuracy
as that of the numerical scheme, p ≈ q.

The SRNHS method is a formally first order scheme. However it is well known
that first order methods applied to homogeneous linear equations with a dis-
continuous solution will yield only O(∆x0.5) convergence [20]. Numerical tests
performed on purpose with SRNHS scheme on problem (101-104) with zR = zL

show exactly O(∆x0.5) convergence. Hence in the linear case q = 0.5. In order
to not mask this tendency, in the following example, p = 0.6 has been chosen.

Figure (19) shows the same test case as figure (18) computed with source
function and initial condition given by expressions (125) and (126) with only
800 nodes (to be compared with 102400 nodes in Figure 18). Left plot depicts
the comparison between numerical and exact solutions. It is worth noting that
the u∗ state is exactly captured despite the smoothing of the transitions. Right
plot shows the L1 error convergence rate for a sequence of meshes. It is a clean
straight line with 0.5 slope, as expected.

For a system of nonlinear equations the U∗ state (s) affect the configuration
(speed and intensity) of the rest of the waves and hence the disagreement
between the numerical and exact solutions can extend over the whole domain
of integration leading to a further degradation of the convergence rate.
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Table 6
Comparison between exact and numerically computed constant states for the
smooth initialisation dam break test on a 200 cell mesh.

Constant State 1 Constant State 2

Exact Numerical Exact Numerical

h 3.611 3.602 2.262 2.260

u 2.102 2.112 3.355 3.355

Fr 0.353 0.355 0.713 0.712
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Fig. 20. Smoothed dam break problem over a smoothed step. Water depth (left)
and velocity (right) at t=0.7s.

The same regularization procedure of (125-126) can be applied to the system
case with similar results. In the following test, the dam break over a step
displayed in section 6.3 has been computed with a regularized initial condition
and source function. Since SRNHS scheme is a formally first order method
when applied to nonlinear homogeneous problems (q = 1) the theoretical
convergence rate, a value of p = 1.1 has been chosen in (125-126). Figures
(20) and (21) show the same problem as Figures (7) and (8) computed with
the bed and initial data regularisation on the same 200 cell mesh. The solution
is slightly more diffused at the expansion wave but the overall resolution is
equivalent. Further the regularisation prevents the small glitches at the bed
step position in the flow plot (q) of Figure (8) left. The constant states 1 and
2 are correctly computed to practically the same accuracy as with the abrupt
initialision run. They can be checked in Table 6, to be compared with those
in Table 2. Note however that the numerically computed states in Table 2
will not change with mesh refinement whereas those in Table 6 will uniformly
approach the exact values when the mesh is refined.

Finally, Figure (22) displays the L1 error, to be compared with that of Figure
(9). The error convergence rate is a straight line with slope 1 as expected.
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Fig. 21. Smooth dam break problem over a smoothed step. Flow rate (left) and total
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Fig. 22. L1 Convergence plot of the velocity and the depth for the dam break over
a step with smooth initialisation.

10 Conclusions

A numerical scheme has been presented for the computation of transient and
steady solutions of systems of partial differencial equations of the hyperbolic
type with source terms. The method is based upon an approximate integra-
tion of the equations over finite volume cells in two steps. This leads to the
appearence of the sign matrix of the flux jacobian in the first step giving rise
to a sort of upwinding of the characteristic variables. The final or updating
step relies solely on physical flux and source computations instead of upon nu-
merical flux or numerical source functions. It reverts to the so called VFRoe
method in the case of homogeneous linear systems.

The scheme is computationally cheap as compared to those relying upon the
calculation of an exact or approximate Riemann solution to be used á la
Godunov. The SRNHS method has been analysed in the scalar and in the
homogeneous linear system case and has been applied to several non linear
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problems of hyperbolic character with source terms of interest in fluid dynam-
ics. The numerical examples presented show a good behaviour of the method
for the Shallow Water and Euler equations with strong source terms forcing. In
particular it has been proven that it respects the equilibrium property in still
shallow water conditions. Furthermore, the construction of SRNHS method
allows a natural extension to systems of partial differential equations that are
not hyperbolic or that are so only within a limited domain in the phase space,
such as the Modified Common Pressure Bifluid Model. The tests concern-
ing the Ransom Faucet Problem exhibit as good resolution as other available
methods for similar conditions at, in our view, less cost.

The application of SRNHS scheme to problems with discontinuous source
functions has led to the analysis of the so called convergence stagnation phe-
nomenon. An explanation of this undesirable behavior as well as closed form
expressions for the numerically computed constant states associated with this
problem have been given for a model scalar linear equation. A regularization of
the initial and source functions is proposed to cure the convergence stagnation
phenomenon.

The SRNHS scheme seems to be a practical, robust numerical method for
hyperbolic and quasi hyperbolic systems of partial differential equations based
upon simple ideas and economy that works as well as more complex methods.
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