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Abstract This paper concerns a procedure, based on the symmetric Galerkin

boundary element equations, for computing the stiffness matrix of an 
elastic region without body forces in terms of boundary nodal displace­
ments. This domain can thus be treated as a macro-element in a FEM 
calculation. In the present case, the implementation has been done 
in the CASTEM 2000 FEM environment. Sample numerical examples 
are presented; they yield numerical results in good agreement with the 
corresponding exact solutions. 
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1. INTRODUCTION

The boundary element methods (BEMs) are often disadvantaged with 
respect to finite element methods (FEMs) due to the fully populated 
and unsymmetric character of the matrix resulting from the discretiza­
tion of the integral equations. This fact has in particular hindered the 
development of coupled BEM-FEM solution procedures. Although the 
BEM-modelled region will in any case lead to fully populated matri­
ces, it is possible to reduce both computer time and storage by devising 
symmetric coupling procedures. 

In this paper, this goal is achieved by exploiting the fact that the 
Symmetric Galerkin BEM (SGBEM) equations, adequately combined, 
yield the strain energy corresponding to any given boundary displace­
ment field, i.e. provide the (symmetric) stiffness matrix of the elastic 
region modelled by BEM. This technique thus treats the latter as a 
macro-element and is therefore very well suited for implementation into 
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a FEM code. It is currently being implemented by the present authors 
into the CASTEM 2000 [4] FEM environment. Some preliminary numer­
ical results are presented in section 5 

The choice of this approach, in which the SGBEM is introduced into 
FEM, can be justified by the historic advance of FEM, for which many 
powerful and popular packages are available, and whose environments of­
fer consistent backgrounds for further developments (the CASTEM 2000 
environment is, by design, very flexible in this respect) . 

2. SYMMETRIC GALERKIN BEM
FORMULATION

Consider a three-dimensional elastic body n, whose boundary r is a 
piecewise closed surface: r = UcS°', a = 1, . . . where each f°' is a closed 
surface that may be split into a displacement-prescribed part r� and a 
traction-prescribed part f? such that f°' = r� u f? and r� n f? = 0. 
Let (u, t) denote any compatible pair of displacements and tractions on
the boundary r, i.e. u, tare the trace on the boundary of an elastostatic
state u, u(u) inn (where u(u) = C: Vu is the tensor of elastic stresses,
C denoting the fourth-order tensor of elastic moduli) . In the absence 
of body forces, the elastic strain energy associated with (u, t) can be
expressed in terms of boundary fields (Clapeyron formula) : 

W = � l u(x) :c(x) d!1 = � £ t(x).u(x) df x (1) 

Following Hsiao [5], we will refer to the second term in the above equation 
as boundary energy. 

Since (u, t) are assumed to be compatible, the boundary energy is
in fact a function of either u or t alone. In order to build a stiffness
operator in the usual sense, the displacement u is taken as the primary
variable and W = W(u) in Eq. (1) .

The explicit form of the mathematical link between u and t on r is ei­
ther the displacement boundary integral equation (Somigliana identity) 
or, equivalently, the traction boundary integral equation. Here, both 
integral equations are invoked in Galerkin, i.e. weighted residual, form 
(see the survey paper [3] for more details and many references on the
symmetric Galerkin boundary element methods). 

First consider the traction t as being induced by given displacements
u (i.e., r� = f°' and f? = 0). The following governing Galerkin integral
equation for t is obtained by weighting the displacement BIE with a
traction-like test function t and following a regularization procedure:

Find t E Vr Bu(t, t) = But(u, t) + Dut(u, t) (Vt E Vr) (2)
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 where 

Bu(t,t) = hh tk(x)ti(x)Uik(x,x)dfxdfx (3) 

But(u,t) =Lr r tk(x)[ui(x)-ui(x)JThx,x)dfxdfx
a Jra}ra 

+ L 11- tk(x)ui(x)Tik(x,x)dfxdfx (4) 
ii#a ra ra 

'Dut(U, t) = L fl-a r Uk(x)tk(x) dr x (5) 
a Jra 

Then consider the displacement u as induced by given tractions t (i.e. ,
ff = ra and r� = 0). The following governing Galerkin integral equa­
tion for u is obtained by weighing the traction BIE with a displacement­
like test function it and following a regularization procedure [1] which is
not shown here: 

Find u E Vu Buu(u, it) = Btu(t, it) + 'Dtu(t, it) (Vu E Vu) (6)

where 

Buu(u, it)= hh (Ru)iq(x)(Ru)k3(x)Bi kqs(x, x) dfx df x (7) 

Btu(t,it) =Lr r tk(x)[ui(x)-ui(x)]Tik(x,x)dfxdfx
a Jralra 

+ L 1"'16 tk(x)ui(x)Thx,x)dfxdfx (8) 
ii#a r r 

vtu(t,u) = L(K-a -1) r tk(x)uk(x)drx (9) 
a Jr<> 

In Eqs. (2) and (6), Vu and Vr denote the spaces of admissible dis­
placements and tractions on the boundary, and it and t are test func­
tions. Also, Uik ( x, x) and Th x, x) are the i-components of the Kelvin
fundamental solution (displacement and traction generated at x by a
unit point force applied at x along the k-direction) . The unit normal
n is exterior to n. In Eqs. (5) and (9), one has either K-a = 0 (if n 
is exterior to r a, e.g. when r a is the external boundary of a bounded
body) or K-a = 1 (if n is interior to r a, e.g. when r a is the boundary of
an unbounded medium or of a cavity) .

The SGBIE formulations (2)-(5) and (6)-(9) are in regularized form:
the various double surface integrations consist of a weakly singular inner 
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integral followed by a regular outer integral. This is achieved by means 
of a combined use of indirect regularization and Stokes theorem (see 
e.g. [1, 2] ) .  In particular, the latter operation uses the surface curl
operator, first introduced in [6] and defined (with ejfq: components of 
the permutation tensor) by: 

and the fourth-order tensor Bikqs, given by: 

1 
µ

2Bikqs = -40qsF,ik + [4oik8qs - 4v8is8kq - 2(1 - v)8iq8ks]F,pp 

with 

F(x -x) = r 
l67rµ(l - v) 

F ( - ) 1 
x-x - ----,pp 

- 87rµ(l - v)r 

F ik( x - x) = 
6 ( 

1 
) 

( 8ik - r ir k)' 1 ?rµ 1 - v r ' ' 

3. CONSTRUCTION OF THE STIFFNESS
MATRIX

(10) 

Assume now that the SGBEM equations (2)-(5) and (6)-(9) have 
been discretized using boundary element interpolations of the surfaces 
I'°' and the boundary fields (u, t) and associated test functions (u, t). 
Further, let the latter be chosen specifically as u = u and t = t. 

In that case, the discretized SGBEM equations (2) and (6) describing 
respectively the Dirichlet and Neumann problems yield the identities: 

{t}T[Bu]{t} = {u}T([But] + [Dut] ) {t} 
{u}T[Buu]{u} = {t}T([Btu] + [Dtu] ) {u} 

Then, subtracting Eq. (11) from Eq. (12) , we obtain: 

(11) 
(12) 

{u}T[Buu] {u}- {t}T[Bu]{t} = {t}T[Dtu]{u} - {u}T[Dut] {t} (13) 
having used the symmetry property [ButV = [Btu] · Besides, one can
observe from Eqs. (5) and (9) that: 

Dtu(t, u) -Dtu(u, t) = [(/'\: - 1) -/'\:] Ir t(x) .u(x) dr x 

= -h t(x) .u(x) dr x 

= -2W(u) 
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Going back to the discretized problem, one then has in an approximate 
sense (see [8] for a detailed discussion of this issue) : 

or, returning to Eq. (13: 

(14) 

Finally, solving Eq. ( 11) for { t} (note that this system is always uniquely
solvable) and substituting the result into Eq. (14) yields the result: 

(15) 

where the stiffness matrix [K] is given by:

Thus, the above equation provides the symmetric stiffness matrix for 
the subdomain n, which can be added to the stiffness matrix for the 
complementary subdomain, obtained e.g. by the FEM approach. It is 
however important to point out that Eqs. (11) and (12) are not exactly 
satisfied by the same pair {u}, {t} due to discretization error (in other
words Eqs. (13) is true only in an approximate sense) , although their 
continuous versions are exactly satisfied. 

4. NUMERICAL IMPLEMENTATION

The evaluation of all integrals calls for the integration of kernels hav­
ing at most a 1/r singularity, i.e. leading to simple surface integrations 
that are convergent in the usual sense; this is the main advantage of the 
analytical regularization. The present Galerkin procedure employs stan­
dard BEM modeling: the boundary r of the subdomain n is divided into 
quadrilateral, eight-noded isoparametric elements. In order to evaluate 
numerically the entries of the matrices [Buu] etc. , the double surface
integrals over all pairs of quadrilateral elements must be computed and 
three situations arise as follows: 

(i) Disjoint elements : the two elements do not have any common 
edge or vertex, so the double integration is nonsingular and is evaluated 
by using the standard Gaussian quadrature product rule with a variable 
order. The severity index, as defined in [7], is computed, in order to ad­
just the number of Gauss points to the distance between both elements. 
When this distance is sufficiently large, the evaluation of the double reg-
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ular integrals can be accurately achieved with (2x2) Gauss points on
each element. 

(ii) Coincident elements : the inner integral being weakly singular,
its evaluation is based on a subdivision of the element into triangles for 
which the common shared vertex is a Gauss point for the (nonsingu­
lar) outer integration. This transformation introduces a Jacobian which
cancels the weak singularity of the inner integral. The evaluation of the 
outer one is straightforward using Gaussian quadrature. One notice that 
in practice this integration procedure slightly alterates the overall sym­
metry due to the use of different quadrature schemes for inner and outer 
integrations. Another integration scheme, which preserves exact sym­
metry by treating the double integration as a whole and using relative 
intrinsic coordinates, is under implementation. 

(iii) Adjacent elements: this case is specific to SGBEMs, and is like (ii) ,
a case of singular integration, but the singularity is weaker and occurs 
when the outer point and the inner one are simultaneously located on 
the side or on the vertex shared by the two elements. This integration 
is, as of now, performed for simplicity using a nonsingular (Gaussian) 
integration scheme, and in particular the numerical examples presented 
in the next section rely on this imperfect treatment. However, another 
integration scheme, in which this weak singularity is correctly treated, 
is currently under implementation. 

Once the stiffness matrix [K) is computed, coupling can directly be 
performed thanks to the standard high-level operators available in the 
CASTEM 2000 environment, which confers a great versatility to the 
method. 

5. NUMERICAL EXAMPLES

Several example elastostatic problems for which analytical solutions 
are available are now presented in order to illustrate the accuracy and 
versatility of the three dimensional SGBEM-FEM coupling. 

Rectangular prism submitted to uniaxial tension. An elas­
tic bar (length: 3 units, E = 1, v = 0.3) with square section (Fig. 5) 
is divided into 3 subregions: the surface 802 is discretized by quadri­
lateral boundary elements, while 01 and 03 are filled with standard 
parallelepipedic finite elements. Symmetry conditions (i.e. zero normal
displacement and tangential tractions) are prescribed on the coordinate
planes Xi = 0, Vi E [1, 2, 3] (notice that displacements can be prescribed
without difficulty along boundary elements thanks to standard CASTEM 
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Figure 1 Rectangular prism submitted to uniaxial tension : discretization of the 3 
subregions 

2000 operators) . A uniform traction CT22 = 1 is imposed on the bar end
defined by x2 = 3. 

Displacements in the BEM subregion are found to be in good agree­
ment with the analytical solution. Table 1 contains the results for the 
displacements components when 24 quadrilateral boundary elements are 
used for 802. 

Table 1 Nodal displacements along the edge x1 = X3 in the B.E. subregion. 

direction X2 Numerical Analytical Ilelative error (91a) 
1.00 0.99722 1.00000 -0.278 
1.25 1.24620 1.25000 -0.380 

Longitudinal 1.50 1.50000 1.50000 +0.000 
1.75 1.75000 1.75000 +0.000 
2.00 2.00107 2.00000 +0.107 

1.00 0.29904 0.3 -0.095 
1.25 0.30180 0.3 +0.180 

Transversal 1.50 0.29550 0.3 -0.449 
1.75 0.30246 0.3 +0.246 
2.00 0.30069 0.3 +0.069 
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Figure 2 Sphere submitted to external uniform pressure(a), three quadrilateral
boundary elements (b). 

One note that this problem is characterized by discontinuous tractions 
along the edges of the BE subdomain. This point, which is somewhat 
cumbersome to deal with in regular collocation methods (especially if one
wants to equate the number of equations and unknowns) , is taken into
account without any special consideration, excepted the mention of these 
discontinuities in the data field. This point constitutes an additional 
useful feature of SGBIE. 

Sphere submitted to external uniform pressure. The problem 
of a sphere of radius r = 1 submitted to external uniform pressure 
(Fig. 2a) is considered, again using E = 1 and 11 = 0.3. The FE-BE
interface is made of 24 quadratic quadrilateral isoparametric elements 
{Fig. 3a) and 74 nodes. The load is applied on the external boundary of
the FE subregion. 

The relative error produced by the coupled FEM-SGBEM analysis, 
for the radial displacement Ur in the BE subregion is found not to exceed 
0.03253, which is a quite good accuracy given the relatively coarse mesh. 

Spherical cavity in infinite body under uniform pressure. 
Finally, the hollow spherical cavity in an infinite elastic body (with again
E = 1 and v = 0.3) , submitted to a uniform internal pressure, is studied.
Figure 3b illustrates the discretization. The mesh of the BE-FE interface 
is again made of 24 elements. The spherical symmetry of the problem 
is, like in the previous example, not exploited. Here, the stiffness matrix 
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(b) 

FE-BE interface 

Figure 3 BE and FE domains for (a) the sphere under uniform external pressure. 
(b) the spherical cavity in an infinite body under to uniform pressure 

[K] evaluated with Eq. (16) accounts for the infinite elastic region, with 
implicitly enforced decay conditions at infinity. 

The relative error produced by the coupled FEM-SGBEM analysis, 
for the radial displacement Ur in the BE-FE interface is found not to 
exceed 0.233, which is again good given the relatively coarse mesh. The 
higher relative error (the FE-BE mesh being the same as for the finite
sphere problem) is probably explained by the fact that the BE-modelled 
region is much larger (recall that Eq. (16) relies on an equality which is
only approximate for discretized problems) .

6. CONCLU SION

A procedure for coupling the symmetric Galerkin boundary element 
method and the finite element method has been developed for three­
dimensional problems. The procedure creates the stiffness matrix for 
the BEM-modelled subdomain, for which elastic equilibrium without 
body forces is assumed. This subdomain is thus treated as a macro­
element. This procedure has been implemented into the CASTEM 2000 
FEM environment. 

Sample numerical examples (rectangular prism submitted to uniform
tension, characterized by discontinuous tractions; sphere subjected to 
external pressure; spherical cavity in infinite body under uniform pres-
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sure) yield numerical results in good agreement with the corresponding 
exact solutions. 
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