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Abstract The identification of distributed elastic moduli of damaged materials or 

crack like defects in elastic media are inverse problems known as gen­
eralized elastic tomography. It consists of recovering the damaged zone 
or the crack in a 3D body using mechanical overdetermined boundary 

data. For 21 distributed unknowns which are small perturbations of 
elastic isotropy, a linear system of rank 5 may be derived directly from 
the observation equations which involves both domains and boundary 

integrals, with actual mechanical fields and the proposed adjoint fields. 

It is found that the generalization of Calderon's method in elasto-statics 
provided a linear system of rank 5, hence identification problems for 

small symmetry up to 5 elastic moduli fields could be solved. Finally, 

the problem of identification of a plane crack in 3D elastic body illus­

trates the ability of the observation equation method to provide closed 

form solution for the identification of the crack plane and the crack 

geometry. 
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Introduction 

The identification of spatially distributed elastic moduli is an inverse 
problem generally denoted as generalized elastic tomography. In a cer­
tain number of cases the origin of distributed elastic moduli is damage or 
microcracking. This also implies that the interior distribution is a priori 
unknown and generally not measurable by direct methods. One can only 
imagine to know certain quantities like applied forces or displacements 
on the boundary of the body and to identify the distribution of interior 
of elastic moduli from these measurements. 

This problem has been discussed in the last years in a series of papers 
generally devoted to the linearized identification problem and a series of 
results have been obtained. Thus, the linearized identification problem 
in elasticity has been solved for the isotropic case (2 unknowns : Young 
and Poisson moduli fields ) by Ikehata (1990), Nakamura and Uhlmann
(1991). The case of general anisotropy has been discussed by Constan­
tinescu (1994) under the assumption that the orientation angles of the 
material symmetries and the eigentensors are known a priori. Theses 
works generalize to elasticity previous results obtained for inverse elec­
tricty problems, Calderon (1980), Kohn and Vogelius (1984). 

The case of general anisotropie present a series of difficulties in both 
electricity and elasticity. Kohn and Vogelius (1987) discussed an example 
of non uniqueness in anisotropic conductivity problem and Constanti­
nescu (1994) made similar analyses for anisotropic elasticity. 

The present paper is first devoted to such problems by presenting a se­
ries of integrals equations which can be used for solving elastic identifica­
tion problems. The method considered here is based on the observation 
equation. As a starting point, we shall consider the observation equation 
established initially for the electrostatic linear identification problem by 
Calderon (1980). This equation conducts to different formulations of 
the identification problem and to uniqueness results in the isotropic and 
anisotropic cases. Finally the paper is devoted to plane crack identifica­
tion in 3D elastic body. Most works in the literature are concerned with 
the control of the crack and the use of classical boundary integral equa­
tions with singular Green function kernels. These methods are used for 
numerical purposes. Here we shall rather discuss the observable equa­
tion method using appropriate adjoint fields which conducts to a closed 
form solution of the inverse problem, recently given by Andrieux et al 
(1997). 
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1. THE DIRECT AND THE IN VERSE
PROBLEM

Let us consider an elastic body n under the hypothesis of small strains 
and rotations. The displacement, strain and respectively stress fields, 
denoted by u, E, a are subject, considering the absence of a body force, 
to the following set of equations: 

e (u)

a = L :e 

div a 0 

where L represents the forth order tensor of elastic moduli. 

(1) 

The direct elasticity problem consists of computing a solution of the 
system of partial differential equations (1) with known elastic moduli 
L and given one of the following boundary conditions on 80: imposed 
displacements u l an or imposed tractions an l an = T. The pairs of cor­
responding boundary conditions ( u, T) can be more generally described 
in terms of the Dirichlet-to- Neumann data map: 

(2) 

which maps a given boundary displacement in the corresponding bound­
ary traction. 

The inverse elasticity problem seeks to determine the unknown elas­
tic moduli L from the partial knowledge of the Dirichlet-to- Neumann 
data map AL. This means from a series of overdetermined boundary 
conditions, i.e. simultaneously known displacements u and tractions T. 

Let us now suppose that the elastic moduli L can be expressed as: 

L(x) =Lo + oL(x) 

where Lo is a homogenous distribution of isotropic elastic moduli and 
oL(x) is a small perturbation of Lo representing a heterogeneous distri­
bution of anisotropic elastic moduli. 

The linearized identification problem seeks to determine only the anisotropic 
perturbation oL ( x) from the partial know ledge of the Dirichlet-to- Neumann 
data map. 

2. THE OBSERVATION EQUATION

The derivation of an explicit observation equation using the boundary 
data (u, T) is a classical result ( Ikehata (1990), Nakamura and Uhlmann 
(1991), Bui (1993)) and a straightforward generalization of the technique 
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used previously in electricity (Calderon (1980), Friedmann and Vogelius 
(1989)). 

The observation equation is based on the variational formulation of the 
direct problem (1) and the use of special choosen adjoint test functions. 

Let us consider the adjoint elastic fields u0, elastic solution on n with 
elastic moduli Lo and boundary conditions given by the traction vector 
T*. 

For the same given traction vector T on on, let us denote two actual 
displacement fields: 

• the perturbed solution u, computed with elastic moduli L = Lo +
8L, and

• the unperturbed solution uo computed with unperturbed elastic
moduli Lo

For the linearized inverse problem, where the unknown is the pertur­
bation 8L, one can write two observation equations corresponding to the 
actual displacements fields. Thus, the nonlinear observation equation is 
given by: 

- k \7u0: 8L: \7udn = { (u* . T - u · T*) dS (3) 
lan 
{ (u* · AL(u) - u · AL(u*)) dS := 1)

lan 
while the linearized observation equation is similarly expressed as: 

- k \7u0: 8L: \7u0dn = { ( u * · T - u · T*) dS ( 4) 
lan 
{ (u* · AL(u) - u · AL(u*)) dS := 1)

lan 
The right hand side 1) represents the boundary data and is in both cases 
the same. Its value is known from the true boundary data on the actual 
solid ( u, T) and from the computed boundary values of the choosen 
adjoint fields on the unperturbed solid ( u*, T*). 

From the general form of the observation equation it is obvious that a 
convenient method for computing field distributions is provided by the 
boundary integrals equations. 

3. THE LOADING TYPES AND THE
PARAMETERS

In the sequel, we shall adress the identification problem as expressed 
by the linearized observation equation ( 4). 
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One can remark that, the equation (4) alone is not sufficient for the 
identification of the anisotropic moduli tensor <5L(x) with the 21 compo­
nents <5Lijkl ( x). The identification depends on the different "types" of 
mechanical loadings provided during the experiments on the body and 
creating the data set: Y = fDm}mEM. 

In order to obtain identifiability, one important task is to provide 
data, rich enough to span the whole space of the 21 unknown functions 
X = {<5Lijk1(x)}, or in other terms to construct a one-to-one mapping 
X--+ Y. 

As it will be shown in the next sections on different examples, this 
task is not a straightforward one. 

4. AN EXAMPLE OF NON-UNIQUENESS 

The identifiability of the perturbation of elastic moduli 8L from the 
complete knowledge of the Dirichlet-to- Neumann data map, has been 
proven in the case of an isotropic perturbation in a series of papers ( Ike­
hata (1990), Nakamura and Uhlmann (1991)). Constantinescu (1994,1995) 
studied the case where 3 Euler angles associated with the material sym­
metries and 6 second order eigentensors N k, k = 1, 6 are known (with 
unit norm tr N kN = 1) and conjectured the identifiability of 6 Kelvin's 
eigenelastic moduli ck, L = ckN k 181 N k, from the Dirichlet-to- Neumann 
map. The complet anisotropic case, without apriori knowledge of the 
anisotropy or of the spatial distribution is to our knowledge still an 
open problem as presented in the sequel. 

Let us suppose that a symmetric and positive definite tensor of elastic 
moduli L(x) is given. Is it possible to find another tensor of elastic mod­
uli L'(y) over the same domain 0, such that the Dirichlet-to-Neumann 
maps coincide AL = AL', for both elastic bodies ? 

Based on a result on the conductivity problem by Kohn and Vogelius 
(1987), Constantinescu (1994) gave in certain cases a positive answer to 
this nonuniqueness question. 

Let us choose a one-to-one differentiable map on 0, 'I/; : x ---7 y = 'l/;(x) 
such that 'I/; ( x) = x on the boundary 80. 

For an actual displacement field u( x) corresponding to a solution 
with elastic moduli L, let us define the displacement field u' (y) as the 
"parallel transport" of the actual field: 

u'(y) = u(1/;-1(y)) (5) 

If we define the elastic moduli L' as: 
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we remark that u' is an elastic solution with moduli L'. Moreover u 
and u' have the same boundary displacement, the same traction vector 
T and will create the same deformation energy. 

It can be checked that L' is positive definite, because L is assumed 
positive definite and det('lfi) = 0. However, the symmetries conditions: 

L�jkl = Ljikl = L�lij (7) 

have yet to be satisfied in order to obtain a complete elasticity tensor. 
A closer look at the preceding system of equations (7) shows that, 

for a given L, there are more equations than unknowns. For example, 
in the linear case, there are 18 linearized equations for determining the 
vector field 'lfi(x) - x, which vanishes on the boundary. The linearized 
solution of (7) is generally 'lfi (x) - x = 0, except for some particular L. 
The non-uniqueness in this identification problem corresponds to some 
particular choice of both L and 1fi satisfying (7). 

In what follows, we shall restrict ourself to the case of a homogeneous 
isotropic L0, but we shall accept that the perturbation <5L(x) = L(x) -
L0 may be anisotropic and heterogenous. 

5. THE LINEARIZED INVERSE PROBLEM

5.1. GENERALIZATION OF CALDERON'S 
METHOD 

In order to find the unknown perturbation of the elastic moduli <5L(x ), 
we will assume that <5L(x) = 0 on an, and apply the technique outlined 
by Calderon (1980) in electricty or Ikehata (1990) in isotropic elasticity. 

Let us introduce the complex vectors Z, Z* E C3, by:

(8) 

where ( = ((1, (2, (3) E R3 and (-1 is a vector perpendicular to ( and
having the same norm. 

The elastic field uo is introduced using the scalar harmonic field 
Bo(x) := exp (-iZ · x) as follows: 

uo ·- V' Bo(x), -Z 0 Z exp (-iZ · x), 
(9) 

uo · - 2µo V'V' Bo(x), T -2µ0Z(Z · n)exp(-iZ · x) 

where n is the unit outward normal on the boundary an and µ0 is the 
shear moduli corresponding to Lo. 
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Similarly the adjoint elastic field u0 is derived from the scalar har­
monic field B0(x) := exp(-iZ* · x); 

c0 = -Z*®Z*exp(-iZ*·x), 

a* 0 -2µoZ*(Z* ·n)exp(-iZ* · x ) 
(10) 

The linear observation equation (4) becomes: 

In (Z ® Z) :  JL(x) (Z* ® Z*) exp(-i (  · x)dDx 

f (u* · T - u · T*) dS := 'D((, CJ_)
lan 

The right hand side of ( 11) is the data D ( C, CJ_). 

(11) 

Let us extend formally the definition of 8L(x) on the whole space R3 
by letting JL(x) = 0, x E R3 \ n and introduce the Fourier trans form
F[JL](C) of 8L(x). Then equation (11) becomes: 

(Z ® Z) : .F[JL](() : (Z* ® Z*) = { (u* · T - u · T*) dS (12)
lan 

5. 2. THE LOADING TYPES AND 
PARAMETERS 

In order to construct a linear system for the Fourier trans form .F[JL]((), 
let us choose a series of CJ_ in the the plane perpendicular to C. Their 
position is completely determined by an angle in this plan denoted by ¢. 
An "experiment" and the corresponding adjoint field are now completly 
characterized by ( and ¢. Using this notation one can write equation 
(12) in the following form: 

aij((; ¢).F[JL]ijhk(()bhk((; ¢) = 'D((; ¢). (13) 

with aij((; ¢) and bhk(C; ¢) polynomes of degree 4 in cos(¢). 
Choosing different "types" of experiments with different angles ¢en a = 

1, 2, 3, ... creates the linear system for the Fourier trans form: 

The general anisotropic case corresponds to 21 elastic coefficients which 
can be expressed by: 6 eigenelastic moduli ck corresponding to the 
eigentensors N ki k = 1, ... , 6, (subject to the normalization condition 
trNk ® N k = 1), 6 traces trN k, 6 traces trN k ® N k ® N k and 3 Euler 
angles of the material symmetry, Cowin and Mehrabadi (1990). If the 
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Euler angles of the material symmetry and the 6 eigentensors N k are 
known, the variations b"ck ( z ) are determined by the 6 x 6 linear systems

6 

L Fb"q(C)(Z . N k. Z)(Z* . N k . Z*) = V((; ¢1), l = 1, 6 (14) 
k=l 

Unfortunately, the construction (14) cannot determine more than 5 un­
knowns,because it can be proved that the rank of the linear system is only 
5. This is due to the fact that s0 := 2µ0'\l'\JB0(x), is a deviatoric field
and thus it does not span the space of symetric second order tensors. To 
obtain higher rank of the linear system, more adjoint fields with non zero 
traces are needed. Even with the incomplete adjoint fields, the equation 
(14) may ensure the identifiability of some elastic moduli or orientation 

angles but not all, for hexagonal (5), cubic (3) and isotropic (2) sym­
metries. For tetragonal (6), and trigonal ( 6), we need complementary 
informations (for example one orientation angle). The identification of 
the orthotropic symmetry (9) is possible if the orientation angles of the 
material symmetry are known. Finally, the identification of the general 
triclinic elastic perturbation ( 21 unknowns), by the present method, is 
still an open problem, since we need new appropriate adjoint fields to 
complete those given above. 

6. PLANAR CRACK IDENTIFICATION IN
ELASTOSTATICS

In this section, we present the analytical solution to the inverse prob­
lem of the identification of a planar crack in 3D elasticity, given recently 
by Andrieux et al (1997 ) who derived their solution using the observation
equation. The crack opening displacement discontinuity �u� satisfies the
integral equation over the unknown crack S with the normal N to one 
crack face: 

fs�u� · Lo : e(v) · NdS { (T(w) · v - w · Lo : e(v) · n)d�15) 
lan 
V(v; w, T(w)), 

where v ( x) is the adjoint field corresponding to the uncracked body,
hence a twice differentiable field. The right hand side V is a linear func­
tional of v, with coefficients depending on the data pair (w, T(w)). The
observation equation (15) is very similar to (3). By choosing appropri­
ately the adjoint fields, one can determine the normal n, the crack plane 
position and what is more important, the crack geometry. The normal 
is determined by the adjoint fields v, linear functions of the coordinates
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such that the corresponding stresses are constant, defined by: 

(16) 

with all indexes taking values in the set {1, 2, 3}. 
Two data sets (w1, T(w1)) and (w2, T(w2)) are required for identi­

fying the normal N on the crack plane. The proof, more technical than
difficult, can be found in Andrieux et al (1997). Once the normal is 
determined, a change of coordinates permits to define the axes Ox1x2 
parallel to the crack plane. The position of the crack plane defined as 
x3 = c is then determined by the adjoint field v ( x) , a polynome of second
order of x1 and x2 corresponding to the bending solution in elasticity. 

Let us sketch the determination of the crack geometry with more 
details. The adjoint fields are defined by the following equations. One 
introduces the index ( = ((1, (2, 0) running over R2 

and the family of
complex vector fields Z and its conjugate Z* belonging to the complex
vectorial space C3 defined by:

z = (( + ilCIN) Z* = (( - ilCIN) 
Two kinds of adjoint fields are considered : 

v+ (x, () = V'exp(-iZ · x) + V'exp(-iZ* · x) ,
v- (x, ·) = V' exp(-iZ · x) - V' exp(-iZ* · x) . 

(17) 

(18) 

(19) 

Equation (15) can be splitted into 2 equations for the Fourier transforms 
of the normal and tangential components of the discontinuity D(() := 

�u�(() . 

where E, v are respectively the Young modulus and the Poisson ratio. 
Choosing the indexes ( = ( (1,0, 0), ( = (0,(2,0), we obtain from

equation (21) the partial Fourier transforms of the tangential compo­
nents of the discontinuity. And finally, the crack discontinuity, hence 
the crack itself, is explicitly known from the boundary data ( w, T ( w)) 
as proven in Andrieux et al. (1997). 
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