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Exploiting Partial or Complete Geometrical 

Symmetry in Boundary Integral Equation 

Formulations of Elastodynamic Problems 

Marc Bonnet 

Laboratoire de Mecanique des Solides (UMR CNRS 7649) 
Ecole Polytechnique, F-911 28 Palaiseau Cedex, FRANCE 

Abstract. Procedures based on group representation theory, allowing the exploita­

tion of geometrical symmetry in symmetric Galerkin BEM formulations of 3D elas­

todynamic problems, are developed. They are applicable for both commutative 

and noncommutative finite symmetry groups and to partial geometrical symmetry, 

where the boundary has two disconnected components, one of which is symmetric. 

1 Introduction 

When a linear boundary-value problem (BVP ) exhibits geometrical symme­
try, taking full advantage of it yields substantial computational benefits. In 
Bossavit [4], the linear representation theory for finite groups [8,9] is shown
to lead to the correct definition of (i) decomposition of function spaces into
orthogonal subspaces of symmetric, skew-symmetric, . . .  functions, and (ii) 
reconstruction of the global solution from these components; the (domain­
based, FEM-oriented) weak formulation is thus recast into a block-diagonal
form, each 'subproblem' being defined on a 'symmetry cell' (a subdomain of
smallest measure that, under the action of the symmetry group, generates the 
entire initial domain) and associated to the corresponding projection of the
boundary data. The procedure, being essentially an elaborate superposition 
technique, assumes linear constitutive properties. Similar principles are used 
by Allgower et al. [1] to block-diagonalize the discretized equations. 

The adaptation of the former approach to boundary element methods 
(BEMs) is not straightforward, mostly because the symmetry cell usually
involve the definition of new boundaries, a feature which is unimportant in 
FEMs but clearly undesirable in BEMs, where subproblems should be stated 
only on symmetry cells of the boundary. In an earlier work [2], this issue 
was adressed for collocation BEMs and commutative symmetry groups (see
also [6]). Using standard methods to set up and solve the matrix equations, 
the theoretical computational gains (in relative terms, compared to using the
same discretization without symmetry) were found to be 1/n, 1/n and 1/n2 
for the matrix storage requirement, matrix set-up time and solution time, 
respectively, where n is the number of elements in the symmetry group (e.g.
n = 8 for the group of symmetries with respect to three orthogonal planes) .
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This contribution aims at extending the concepts and results of [2] in
three directions. Firstly, the exploitation of geometrical symmetry is consid­
ered here in the framework of symmetric Galerkin BEM formulations. Sec­
ondly, procedures are developed for both commutative or noncommutative 
symmetry groups. Thirdly, the approach is generalized to partial geometrical 
symmetry, where the boundary has two (or more) disconnected components,
one (or more) of which being invariant under a symmetry group. For instance,
in defect identification problems, bodies with external geometrical symme­
try but containing internal cracks, voids, inclusions . . .  of arbitrary shape and 
location might be encountered. The formulations developed herein are ex­
pected to bring significant gains in computational efficiency by exploiting 
symmetries of the external boundary. 

2 Governing equations 

In this paper, the use of geometrical symmetry is fully developed for the Neu­
mann BVP of linear elastodynamics in the frequency-domain, using double­
layer integral representations. These BVPs are chosen as representative model 
problems, and the developments to follow are expected to be easily adaptable 
to other scalar or vector linear BVPs (e.g. from electromagnetics) . 

The displacement vector u, strain tensor e and stress tensor CT in a three­
dimensional isotropic elastic medium are governed by the dynamic equilib­
rium, constitutive and compatibility field equations: 

div u + pw2u + f = 0 
CT = µ[1��v Tr(c:)l + 2c:] 

e =(Vu+VTu)/2 
(1) 

(withµ: shear modulus, v: Poisson ratio, p: mass per unit volume, /: body
force distribution) , which, upon elimination of e and u, yield the well-known
Navier equation, an elliptic second-order vector PDE for the primary field u. 

In particular, a time-harmonic unit point force (i.e. f = o(x - x)ek) 
applied in an infinite elastic body at the fixed point x and along the k­
direction defines at x E JR3 \ { x} the well-known elastodynamic fundamental 
solution. The fundamental displacement Uik(x, x), stress tensor Et(x, x) and

traction vector Tik ( x, x) are given by:

Uik(x, x) = 2(1 -v)[F,aa + kLF]oik -F,ik (2) 
k ( - ) [ 2v k k k JEii x, x = µ 1 -2v oiiua ,a + Ui,i + Ui,i 

Tik(x, x) = Etni
in terms of the Somigliana potential [5] F: 

1 "k "k 1 F(x, x) = ---(e' LT - e' TT ) -47rµk:j. r 

(3) 
(4) 

(5) 
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(k} = pw2 / µ and k'i, = ,,,k}, with ,.,, = 2(1��): transversal and longitudinal

wave numbers; r =Ix - xl = [(x-x).(x-x)]112: Euclidian distance betweenx, x). F satisfies the equation:

F = kf (/'i,2eikLr_eikTr)�,aabb 4 7rµ r (6) 

In this paper, solutions to (1) are assumed to be given by a double-layer
integral representation formula: 

(7) 

where Sis a bounded surface, either closed or open (or possibly a set of several
such surfaces) and the density <P depends on the boundary conditions; the
case of an open surface is usually associated with scattering of elastodynamic 
waves by cracks. Representations of the form (7) are often used to formulate
boundary integral equations (BIEs) for interior or exterior problems on the
domain Q bounded by S with Neumann boundary data p over S. In partic­
ular, such problems lead to symmetric Galerkin BIE (SGBIE) formulations
through a weighted-residual statement of the Neumann boundary condition: 

ls[Tn A<P](x).c/>*(x) dS;; =ls fJ(x).c/>*(x) dS;; (Ve/> E V) (8) 

where the traction vector operator Tnu is defined by Tnu = u(u).n. The
operation [Tn A<P](x) gives rise to hypersingular kernels involving a r-3 sin­
gularity. After a well-documented regularization process [3,7] involving two
integrations by parts over S, the actual SGBIE formulation, which is the
basis for the present development, is: 

A( </J, </>*) = £( </>*) (9) 
where the linear form .C and the symmetric bilinear form A are given by:

-
1
1 -.C(</J*) = - fJ(x).</J(x) dS;;2 s 

(10) 
A(</J, </>*) =ls ls B(x, x; </J, </>*) dSx dS ;; (11) 

B(x, x; </J, </>*) = Bikqs(x, x)Rs</Jk(x)Rq�(x) + k}Aik(x, x)</Jk(x)�(x)
where the two kernel functions Bikqs and Aik are given by:

Bikqs(x, x) = -eiepek9rµ2[4vopqOrs + 2(1 -v)(oprOqs + OpsOqr)]F,e9 
Aik(x, x) = [[2(1 -v)(oikOjt + Ojkou) + 2: oijoki] F �rb 

+ (1 - 2v)(oikF',jt + OjtF,ik + OjkF,u + OitF,jk)
4v2 ] + 1_2v OijOkR.F,aa + 4v(oijF,kR. + OktF,ij) nj(x)nR.(x)
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and where Rd denotes the i-th component of the surface curl of a scalar
function f [7] (eabc: permutation tensor):

Rd= ei;kn;f,k (12) 
Besides, if the surface S is defined by a mapping Ll c JR2 -+ S, e -+ x(e), 
one has 

(13) 
which shows in particular that Ri is a tangential differential operator. Both 
Bikqs and Aik are weakly singular in view of (5) and (6) and have symmetry
properties which ensure the overall symmetry of A( </J, {p*) through:

B(x, :i:; <P, (/>*) = B(:i:, x; </J, {p*) = B(x, :i:; (/>*, <P) (14) 

3 Geometrical symmetry assumptions 

The most important assumption for the present purposes is that the boundary 
S has either full or partial geometrical symmetry. By this, we mean that there 
exists a finite group S = {si, . .. , sn} of n isometries of JR3 (n is the order 
of S) and a partition of the boundary S into two disconnected components 
S1

' 82 such that 81 is invariant under s whereas 82 is not:

(Vs ES) 

One can therefore introduce a symmetry cell for 81, i.e. a subset C of 81 
such that 

Area(C) = Area(S1)/n and 81 = LJ s(C)
sES 

For example, 81 is the (symmetric) external boundary while 82 is a (col­
lection of) interior hole(s) or crack{s) of arbitrary shape and location. Full
symmetry refers to the case where 81 = s and 82 = 0, i.e. the whole bound­
ary S (and hence also Q) is invariant under S. Recall that an isometry of JR3 
is a linear application s : IR3 -+ IR3 such that i sxl = lxl (Vx E JR3), where
lxl = (x.x)112 is the usual Euclidean norm in JR3. 

Exploiting (partial) symmetry in the SGBEM formulation {9) essentially
consists in transforming integrals over 81 into integrals over C, so that the
matrix operators produced by the discretization process are of smaller size 
than those corresponding to the original integral equations. Note that no 
symmetry is assumed regarding the Neumann data f>. 

In addition to geometrical symmetry, one must assume that the material 
properties are also invariant under the symmetry group S. Accordingly, the 
bilinear form A is said to have the equivariance property if: 

A(us,Vs) = A(u,v) (Vs ES, Vu,v E V1) {15) 
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(where Us ( x) = su( s-1 x)) which is a straightforward adaptation of the defi­
nition proposed in [4]. Since 81 is invariant under S, the changes of variables

(x, x)--+ (sx, sx) imply:

B(x, x; Us, Vs) = B(sx, sx; su, sv) 
and (15) thus implies:

B(sx,sx;su, sv) = B(x, x;u,v) 
In fact, it is easy to check that: 

('Vs E S, 'Vx,x E 81) 

Bikqs(sx, sx) = SijSk£SqrSstBj£rt(X, x) 

from (262) and the identities:

r(sx, sx) = sr(x,x) r(sx, sx) = r(x, x) 
where r(x, x) = x - x and r(x, x) =Ix, xl; then (16) follows easily.

An immediate and useful consequence of property (16) is:

(16) 

B(sx, sx; su, sv) = B(tx, x; tu, v) ('Vs, s ES) with t = ss-1 (17)

4 Using geometrical symmetry: the Abelian case 

The present approach is based on the exploitation of some basic results 
from the the theory of linear representations of finite groups. In this respect, 
Abelian (or commutative, i.e. 'Vs, t ES, st = ts) and non-Abelian symmetry
groups lead to quite different formulations. In this section, S is a commuta­
tive finite group of order n; this includes the common cases of group Pm of
symmetries w.r.t. m orthogonal planes (with n = 2m and 1 ::; m::; d) and the
group Cn = {Id, r, r2, . . .  , rn-l} of cyclic symmetry generated by a rotation
r of angle 27r/n, with 2::; n). The non-Abelian case is deferred to section 5.

Review of basic definitions [4,8,9}. Any finite Abelian group S of order n 
possess n irreducible linear representations, i.e. n applications p11: S --+ C
which satisfy the following relations: 

IPv(s)I = 1 Pv(st) = Pv(s )Pv(t) (18) 
for any s, t ES, 1 :S v :Sn (z* denotes the complex conjugate of z) , as well
as the 'orthogonality relation': 

_!. LPv(s)p�(s) = 5µ11n sES 
(19)
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The Pv are known for all usual groups; they are shown in table 1 for the
groups P1, P2, P3 while for the group Cn, one has 

Pv(r) = exp(2irrv/n) (v = 0, ... , n - 1) (20) 
The Pv: S ---+ <C can be view as a group isomorphism between S and GL(<C) ,
the multiplicative group of linear endomorphisms of <C, and are said to be of 
degree one. In contrast, when S is not commutative, some of the irreducible
linear representations are necessarily of degree ::'.'. 2. 

Any vector function v defined on 81 then admits the decomposition [4]: 

where the linear operators P v defined by:

1v---+ [Pvv](x) = -;:; LPv(t)t-1v(tx) 
tES 

(21) 

(22) 

are readily shown using (19) to be orthogonal projectors for the L2 scalar
product: if V is a space of functions defined on 81, then one has

µ=f-v 

and 

Let Vv denote the restriction on C of Pvv. Then, from the properties
(18), it is easy to show that, for any x E C and any s E S: 

IPII Id SI I 
PI +1 +1

p2 +1 -1 

PI +1 +1 +1

p2 +1 -1 +1

P3 +1 +1 -1 

P4 +1 -1 -1

+1 
-1 
-1 
+1 

PI +1 +1 +1 +1 

P2 +1 +1 +1 -1 

p3 +1 -1 +1 +1 

P4 +1 -1 +1 -1 

p5 +1 +1 -1 +1 

P6 +1 +1 -1 -1 

p7 +1 -1 -1 +1 

PB +1 -1 -1 -1 

(23) 

+1 +1 +1 +1 
-1 -1 +1 -1 
+1 -1 -1 -1 
-1 +1 -1 +1 
-1 +1 -1 -1 
+1 -1 -1 +1 
-1 -1 +1 +1 
+1 +1 +1 -1 

Table 1. Irreducible representations for plane symmetries with respect to
one, two and three coordinate planes (respective orders n = 2, 4, 8). 
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Moreover, let Is = {:i: E C, sx E C}, i.e. Is is the set of points of C whose 
images under a given s are in C (in fact, such points necessarily belong to 
8C for C to be actually a symmetry cell). Identity {23) then implies that the 
Vv obtained from a given v E V must satisfy the constraints: 

Vv(sx) - Pv(s-1)svv(x) = 0 (Vs ES, Vx E Is) (24) 
Let Vv denote the set of functions defined on C for which (24) holds. 

Finally, for any x E C and any s ES, the value v(sx) of v at the image 
sx of x can be expressed in terms of the Vv: 

n 
v(sx) = L Pv(s-1)svv(x) (25) 

v=l 
Exploiting partial symmetry. Under the assumption of partial geometrical 
symmetry, one can map each s(C) onto C by x EC-+ z = sx E s(C) and 
express integrals over B1 as sums of integrals over C, with the help of the 
identities 

dB(sx) = dB(x) n(sx) = s[n(a:)] (26) 
which stem from the fact that s is an isometry. In particular, the bilinear 
form A(q,, 4>*) and linear form £(4>*) defined by (11) and (10) take the form: 

A( q,, 4>*) = B( q,1, 4>1*) + C( q,1, 4>2*) + cT (q,2' 4>1*) + V( q,2' 4>2*) (27) 
£(4>*) = :F(4>1*) + Q(4>2*) (28) 

where q,1, 4>1* E V = [H112(B1 )]3 and q,2, 4>2* E W = [H112(B2)]3, and with 

and 

B(t/>1, 4>1*) = L L r r B(sx, sx; q,10s,4>1* 0 s) dBx dB;; {29) 
sES sES le le 

C(q,1, 4>2*) = L r r B(sx, x; q,10s,4>2*) dBx dS;; (30) 
sES ls2 le 

V(q,2,4>2*) = L r r B(x,x;t/>2,4>2*) dBxdB;; (31) 
sES ls2 ls2 

:F(4>1*) = � L r p(s:i:).4>1(s:i:) dB;;2 
_ 8le sE 

Now, inserting the decomposition (25) for both q,1 and 4>1 in B(q,1, 4>1*) 
defined by (29), one has: 

n n 

B(q,1,4>1*) = LLLLP�(S-1)pµ(s-1) 
µ=1 v=l sES iES
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since B(x, :i:; q,1, �1*) is bilinear in q,1 and �1*. Next, using the change of
variable t = 9-1s (i.e. s = st) together with property (18), one gets: 

n n 

B(<P1' �1*) = L L L L p:(s-1)pµ(r1)pµ(S-1) 
µ=1 v=l tES sES 

ii B(stx, s:i:; st<Pv, s��) dSx dSx

The equivariance property (17) implies that: 

ii B(stx, sii:; s</Jv, s��) dSx dSx = Bt(<Pv, ��) (32) 

having put 

Bt(u,v) = ii B(tx,ii:;tu,v)dSxdSx

Then, by virtue of the orthogonality property (19): 
n n 

B(<P1, �1*) = L L L pµ(r1){L Pv(s)pµ(s-1) }Bt(<Pv• ��) µ=1 v=l tES sES 
n 

= L:{nLPv(t-1)Bt(<Pv,�:)} v=l tES 
n 

= LBv(</Jv,�:) v=l 

(33) 

(34) 

The bilinear form B(cp1,�1*) is thus seen to have been reduced in block­
diagonal form. 

One establishes in a similar way the decompositions: 

n 

= LCv(<P2.�:) 
v=l 

-1 � 1 r - � -:F(<P *) = w 2 Jc [Pvfi] .</>: ds = w:Fv(<I>:) v=l C V=l 

(35)

(36) 

Gathering results (34) (35) and (36), the initial integral equation (9) re­
duces to a set of SGBIE problems of the form: 

. 2 - -2 Fmd <Pv E Vv, <P E W; V<Pv E Vv, <P E W

{ 
n 

Bv(</>v,4'�) + Cv(</J2,��) = :Fv(4'�) 
L c; ( <Pv, �2*) + V( </>2' �2*) = 9( 4>2*) v=l 

(1 :5 v :5 n) 
(37)
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5 Using geometrical symmetry: the non-Abelian case 

In this section, S is a non-Abelian finite group of order n, i.e. there exist 
s, t E S such that st f- ts. This includes the important practical case of the 
dihedral symmetry group Dm, i.e. the group of order n = 2m of the affine 
transformations that leave a regular m-gon unchanged. 

Review of basic results [4,8,9}. Here, the irreducible representations Pv of S
are of integer degree dv ::'.: 1: 

i.e. each Pv(s) is a linear endomorphism of a dv-dimensional complex vector 
space; moreover, the number R( S) of such representations and their degrees 
dv are such that at least one of them is ::'.: 2 and: 

The properties of the irreducible representations Pv include the preservation 
of group structure: 

dv 
/j (st) = L P!!<(s)p�j (t) (Vs, t ES)

k=l 
which implies in particular, since Pv is unitary, that: 

and the 'orthogonality relation': 

PI +1 +1 +1 +1 +1 +1 

p2 +1 +1 +1 -1 -1 -1 

PF 1 j j2 0 0 0 (with j = exp(2i11"/3)) 
p�l 0 0 0 1 j j2
p�2 0 0 0 1 j2 j
p�2 1 j2 j 0 0 0 

Table 2. Irreducible representations for dihedral symmetry S = Da. 

(38) 

(39) 

(40) 
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A space V of vector functions defined on 81 is decomposed into orthogonal
subspaces [4]: 

(41) 

with the projectors Pij defined by:

From this definition and the properties of the representations, one has for 
any s E S and v E V: 

d., 
[Piju](sx) = LP�i(s-1)s[P�iu](x) (42) 

k=l 
Hence, for a given s E S and a point x E C, the value v( sx) of v at the images 
of x can be expressed by virtue of (41) and (42) in terms of the restriction 
v�i on C of the projections p�iv: 

R(S) d,. 
v(sx) = L L p�i(s-1)sv�i(x) 

µ=l j,k=l 
(43) 

Moreover, let again 18 = {x E 80, sx E 80}. It is then easy to show, from 
(42), that the dv-uple {v:,.1, 1 � i � dv} of functions defined on Care subject 
to the following constraints: 

d., 
v:f (x) - L P�i(s-1)sv�i(s-1x) = 0 (44) 

k=l 
(note that the constraint does not depend on the rightmost index j). Accord­
ingly, for the non-Abelian case, let Vv denote the set of dv-tuples of functions 
vl (l � l � dv) defined on C and such that any pair ( vi, vk) is linked through
the constraints (44) (with the index j omitted). 

Exploiting partial symmetry. Again, the decomposition (27) holds. Inserting 
the decomposition ( 43) for both </J1 and 4'1 in B( </J1. 4'1*) defined by (27), 
one obtains: 

R(S) R(S) d,. d., 
B(</J,4'*) = L L L L LLP�i*(S-1)p:i(s-1)

µ=1 v=l j,k=l i,l=l sES iiES 
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Then, making the change of variables= st and using (38), (39):

R(S) R(S) d,.. d., d., 

B(<jJ,(p*)= L L L L LLLµ=1 11=1 j,k=l l,i=l m=l tES sES 

p�l(s)p�m(r1)p;:'i(s-1) ii B(stx, sx; s</J�i, s(p�li) dSx dS;;

so that, using (40) and the equivariance property (32), one obtains:

R(S) R(S) dµ d., d., 

B(<fJ,{p*) = L L L L L L:{LP�l(s)p;:'i(s-1)}
µ=1 11=1 j,k=l l,i=l m=l tES sES 

p�m(t-1 )Bt( <P�J, (p�li)
R(S) R(S) d,.. d., d., 

= L L L L L L; p�m(t-l)oijOtm0µ11Bt(<P�i,(p�Ri)
µ=1 11=1 j,k=l l,i=l m=l tES 11 
R(S) d,.. d,.. 

= L L L {L:; P�t(r1)}Bt(<P�i,;p�u)
11=1 i=l k,l=l tES II 

R(S) d., d., 

= L L LB�e(<P�i,(p�li)
11=1 k,l=l i=l 

One establishes in a similar way the decompositions: 

(45) 

C(</J2,(p1*) = �{ t ?=P�t(s) 112 B(x,sx; </J2,s(p�u)dSxdS;; } 
11=1 l,i=l sES C S 

and 

R(S) d., 
= L L c�i(<P2, ;p�ei)11=1 l,i=l 

R(S) d., 

:F((p1*) = � L L L p�t(t) 1 p(tx).t(p�li(x) dS;;
11=1 tES i,l=l C 
R(S) d., 

= � L ; L 1 [P�ifJ](:i:).(p�li(:i:) dS;;
11=1 v i,l=l c 

d.,

= L L :F�i((p�Ri)
II i,£=1 

(46) 

(47) 
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Gathering results (45) , (46) and (47) , the initial integral equation (9) 
reduces to a set of SGBIE problems of the form: 

4 4 4 
L 8�t( <l>�i, ;p�t) + L c�i( <1>2, ;p�t) = L F�i( ;p�t) 
k,l=l l=l l=l 

R(S) dv 
(1:::; v :::; R(S), 1:::; i:::; dv) (48)

L L [C�i]T(</>�i, (j,2*) + V(</J2, (j,2*) = Q((/,2)
v=l l,i=l 

6 Calculation of field values at interior points 

Displacement values at selected interior points x can be computed explicitly
using the representation formula (7) once the density <P is known, and related 
quantities (strains, stresses) at x can be easily obtained as well.

Let u = u1 + u2 in (7) , where u1 is the contribution of the integration
over 81. Exploiting symmetry affects the computation of u 1. Inserting the
decomposition ( 43) into (7) and following the now usual pattern, one obtains: 

R(S) dv 
u�(sx) = L L L p�b(s-1) 1 Tik(sx, sx)sii[tP�bli(x) dSx

sES v=l a,b=l C 

Then, putting again s = st and using the equivariance property (16), which
holds also for the kernel Tf', one obtains:

R(S) dv 
u�<sx) = 2: 2: 2: p�b<s-1)

sES v=l a,b,c=l 

{P�c(t-1) la SktTl(r1x, x)[4>�b]i(x)dSx } (49)

(note that sts = sst = Id) . A close examination of (49) thus reveals that, for
a given interior point x, the same numerical quadrature effort is required by
(7) and (49) . However, the terms within curly brackets in (49) do not depend
on s, so that the same numerical integrations can be reused (with different
weights p�b ( ;s-1)) to evaluate u 1 at all the n images of x under S.

7 Computational implications 

7. 1 Reduction of numerical quadrature effort

It is obvious from (56) that a reduction of both setup and solution compu­
tational efforts results from the block-diagonalization of the operator B. The 
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numerical quadrature effort consists in evaluating discretized versions of 

Bt(u, v) = l l B(tx, x; tu, v) dSx dSx

for all t E S instead of

B(u, v) = f f B(x, x;u, v)dSxdSxJ si lsi 
Moreover, a useful consequence of equivariance (16) and the symmetry prop­
erties (14) of B is:

(50) 

From this identity and the symmetry of the original bilinear form B, the
block-diagonalized B is seen to entail a numerical quadrature effort n times
smaller than the original B. 

7.2 Symmetry properties of the matrix equations

Abelian case. The irreducible representations p11 are usually complex-valued
functions over S (e.g. (20) for cyclic groups). In that case, it can be shown
that the p11 can be associated by conjugate pairs, i.e. that for any v such that
p11 is complex-valued, there exists v* such that p11.(S) = p�(S). In that case,
from (24) , v E V11 =} v* E V11•. Besides, using (50) , one can show that:

complex-valued P11 (51) 

i.e. that, although B is symmetric, the B11( u, v) are not individually sym­
metric, but have a 'reciprocal symmetry'. In some cases, including the very 
common one of symmetry with respect to coordinate planes, the p11 are real­
valued (see table 1) ; then, v E V11 =} v* E vii and the B11 are symmetric:

B11(u, v) = [B11f(u, v) real-valued P11 (52) 

Non-Abelian case. The symmetry properties of the matrices associated with
degree one representations are as in the Abelian case. Otherwise, one has 
from (45) : 

B�i(u, v) = ; L p�£(t-1)Bt(u, v)
11 tES' 

+ ; L {P�i(t)Bt(v, u) + p�ik(t)Bt(u, v)} (53)
II tES" 

where S' = { t E S, t = C1} and S" c S is chosen such that S' n S" = 0 and
S = S' US" U {C1, t ES"}. First, as a consequence of (50) :

Bt(u, v) = Bt-1 (u, v) (54) 
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Also, whenever the irreducible representations Ptf. and p� are real-valued,
one has 

Besides, from (44): 

{ vf.}i=:;t=:;d., E Vv =? { vl*}i9=:;d., E Vv 

Thus, if all Pti(t) are real-valued for a given v, the bilinear form

d., 
L Bii(uk, v*l) 
k,l=l 

(where {ukh=:;t=:;d., E Vv and {vlh::;t=:;d., E Vv) is symmetric. On the other
hand, if some Ptl(t) are complex-valued, it is not clear how to establish
the symmetry of the above bilinear form from the general properties of the 
representations. 

Besides, it is also important to note that in ( 48) the same bilinear form

E��l=l B�l(uk, v*l) appears dv times; it should thus be assembled and fac­

tored once and then used to solve for all dv-uples { </>�i }i9::;d., with i =
1, . . .  ,dv. 

Example: the dihedral group S = D3. Let Er and Es denote two distinct
planes in IR.3 which intersect along the coordinate line Oxa and such that
the angle (Eri Es) is 7r /3. The dihedral group Da, which is the simplest non­
Abelian one, is generated by the symmetry s w.r.t. E8 and the 27r/3 rotation
r around Oxa. Its irreducible representations are shown in Table 2; one has
R(S) = 3, di = d2 = 1, da = 2.

For the case v = 3, more explicit expression for the B�f. are obtained as
follows, using Table 2 and (50): 

BJ1(u1, v1*) = B!d(u1, v1*) + jBr(u1, v1*) + j2Br(v1*, u1) 
B�1(u2, v1*) = Bs(u2, v1*) + jBsr(u2, v1*) + j2Bsr2(u2, v1*) 
BJ2(ul' v2*) = Bs(Ul' v2*) + j2Bsr(ul' v2*) + jBsr2 (ul' v2*) 
B�2(u2, v2*) = B!d(u2' v2*) + j2Br(u2, v2*) + jBr(v2*, u2) 

It appears that BJ1(u, v) = .B§2(v, u); besides, since s = s-1, sr = (sr)-1 
and sr2 = (sr2)-1, (54) implies that B§1(u, v) and BP(u, v) are symmetric
(in both cases disregarding for the moment the constraints (44)). 

In addition, the constraints ( 44) reduce to two independent restrictions,
as follows. If x E Es, x = sx, thus:

ls= 8CU Es 
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whereas if x E E8, x = srx, which yields: 

lsr = 8Cu Er 

From these, it is easy to infer that 

(55) 

Hence, the one-to-one substitution {v2*, v1*} E V3 = {w1, w2} E V3 can be
made, and the contributions for v = 3 in (48) are recast into a form which is 
symmetric in ( { </>1, </>2}, { (i>1, (i>2} ):

2 2 2
L B�l(q,�i, (i>�) + Lc�l(q,2, (i>�) = LJ="[((i>e) (i = 1, 2; l = 3 - e)

k,l=l l=l l=l 

Similar conclusions can be reached for all dihedral symmetry groups Dm· 

7.3 Reduction in solution time

Let N and 1N denote the number of degrees of freedom supported by the 
BEM discretization of 51 and 52 respectively. The system of equations (37) 
or ( 48) takes the general form: 

(56) 

where the matrix B is block-diagonal: B = Diag(B�) (1 ::; v ::; R(S), 1 ::;
i::; d11). Each block B� is approximately of size (d11/n) x N (the constraints
(44) causing slight variations in size for the same value of d11). Besides, as
mentioned before, all blocks B� (1 ::; i::; d11) are the same for a given v. 

Solving the original (symmetric) SGBEM system thus entails a T = 
0((1 + 1)3 N3 /6) solution time. For solving the system (56), one must first
solve the block-diagonal part, whereby each { q,�e} is expressed in terms of
{ F�} and { <J>2}, and then substitute these results into the remaining part

I 0 0.1 0.2 0.5 1 2 

R (S = P1) 0.25 0.3238 0.3924 0.5556 0.7188 0.8611 
R (S = P2) 0.0625 0.1266 0.1971 0.3889 0.6016 0.7986 
R (S = Da) 0.0463 0.1206 0.1973 0.3964 0.6100 0.8042 
R (S =Pa) 0.015625 0.06320 0.1265 0.3194 0.5488 0.7691 

Table 3. Expected asymptotic ratios R of solution CPU time with and without 

exploitation of partial symmetry, for some groups and various values of I (ratio of 

numbers of DOFs on the surfaces S1 and S2) 
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of the system in order to build and solve a final system with a (symmetric) 
1N x 1N matrix. The estimated time T8 for solving {56) (retaining only the
O(N3) contributions) is

N3 3 1 R(n) 
Ts = 0( 6 (ra + 312 + (n� + n 3 ) � d�])

assuming that all blocks either are symmetric or have reciprocal symmetry. 
Let R = T8/((1 +1)3N3 /6); for instance, with 'Y = 0 (i.e. full symmetry), one

has R = {1/n3) E���) d�. Table 3 displays R for the groups P1,2,a and D3
and various values of 'Y· Obviously, the highest gains in solution time occur

for n large (i.e. high degrees of symmetry) and 'Y small. Also, E��) d� = n
if S is Abelian, hence in that case R = 1/n2 with 'Y = 0 as expected. 

Elastostatic problems, Abelian case. In the limit of zero frequency {i.e. kr = 

0), the problem (1) becomes real-valued, as does the kernel function B. How­
ever, when the Pv are complex, Eqs. {22), {34), {35), {36) show that the
subproblems {37) are in general complex-valued even in that case. In fact, it
is easy to show in this case that: 

Bv•(U, v) = [Bv]*(u, v) Cv•(u, v) = [Cv]*(u, v) 
Thus, the equations for the v-subproblem and the v*-subproblem, and hence 
their solutions (</>v, <f>v• ), are conjugate to each other and thus redundant. It 
is sufficient to solve (say) the v-subproblem for Uv. The contribution of the
conjugate pair ( <f>v, <f>v•) to the reconstruction of the (real) global solution u 
is then: 

[Pv</>](sx) + [Pv•</>](sx) = p�(s)</>v + Pv(s)</>� = 2Re(p�(s)</>v)

In the FEM framework, adequate combinations of the two conjugate equa­
tions are known to yield two coupled real-valued subproblems defined on the
(volumic) symmetry cell. Here, a similar approach could be applied to the
symmetry-reduced SGBEM. However, contrarily to the FEM case, this would 
result in one subproblem of size 2N /n, and hence would not bring any ad­
vantage over solving directly the complex-valued subproblem of size N/n . 

8 Conclusion 

The analysis, conducted here for the simple case of Neumann boundary­
value problems, can be extended to the SGBEM formulations of more general 
boundary-value problems. This strategy is especially interesting when 82 is
'small' {iri terms of the number of degrees of freedom involved). This is for
instance the case for externally symmetric bodies containing holes, cracks 
or other defects of arbitrary shape and location. This work is expected to 
be highly beneficial to some computationally intensive problems like defect 
identification in complex bodies exhibiting geometrical symmetry. 
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