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Introduction

When a linear boundary-value problem (BVP) exhibits geometrical symme try, taking full advantage of it yields substantial computational benefits. In Bossavit [START_REF] Bossavit | Symmetry, groups and boundary value problems : a progres sive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry[END_REF], the linear representation theory for finite groups [START_REF] Serre | Linear representations of finite groups[END_REF][START_REF] Vinberg | Linear representations of groups[END_REF] is shown to lead to the correct definition of (i) decomposition of function spaces into orthogonal subspaces of symmetric, skew-symmetric, ... functions, and (ii) reconstruction of the global solution from these components; the (domain based, FEM-oriented) weak formulation is thus recast into a block-diagonal form, each 'subproblem ' being defined on a 'symmetry cell ' (a subdomain of smallest measure that, under the action of the symmetry group, generates the entire initial domain) and associated to the corresponding projection of the boundary data. The procedure, being essentially an elaborate superposition technique, assumes linear constitutive properties. Similar principles are used by Allgower et al. [START_REF] Allgower | Numerical Exploita tion of Equivariance[END_REF] to block-diagonalize the discretized equations. The adaptation of the former approach to boundary element methods (BEMs) is not straightforward, mostly because the symmetry cell usually involve the definition of new boundaries, a feature which is unimportant in FEMs but clearly undesirable in BEMs, where subproblems should be stated only on symmetry cells of the boundary. In an earlier work [START_REF] Bonnet | On the use of geometrical symmetry in the boundary element methods for 3D elasticity[END_REF], this issue was adressed for collocation BEMs and commutative symmetry groups (see also [START_REF] Lobry | Geometrical symmetry in the boundary element method[END_REF]). Using standard methods to set up and solve the matrix equations, the theoretical computational gains (in relative terms, compared to using the same discretization without symmetry) were found to be 1/n, 1/n and 1/n2 for the matrix storage requirement, matrix set-up time and solution time, respectively, where n is the number of elements in the symmetry group (e.g. n = 8 for the group of symmetries with respect to three orthogonal planes) .

This contribution aims at extending the concepts and results of [START_REF] Bonnet | On the use of geometrical symmetry in the boundary element methods for 3D elasticity[END_REF] in three directions. Firstly, the exploitation of geometrical symmetry is consid ered here in the framework of symmetric Galerkin BEM formulations. Sec ondly, procedures are developed for both commutative or noncommutative symmetry groups. Thirdly, the approach is generalized to partial geometrical symmetry, where the boundary has two (or more) disconnected components, one (or more) of which being invariant under a symmetry group. For instance, in defect identification problems, bodies with external geometrical symme try but containing internal cracks, voids, inclusions ... of arbitrary shape and location might be encountered. The formulations developed herein are ex pected to bring significant gains in computational efficiency by exploiting symmetries of the external boundary.
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Governing equations

In this paper, the use of geometrical symmetry is fully developed for the Neu mann BVP of linear elastodynamics in the frequency-domain, using double layer integral representations. These BVPs are chosen as representative model problems, and the developments to follow are expected to be easily adaptable to other scalar or vector linear BVPs (e.g. from electromagnetics) .

The displacement vector u, strain tensor e and stress tensor CT in a three dimensional isotropic elastic medium are governed by the dynamic equilib rium, constitutive and compatibility field equations:

div u + pw 2 u + f = 0 CT = µ[ 1 ��v Tr(c:)l + 2c:] e =(Vu+VTu)/2 (1) 
(withµ: shear modulus, v: Poisson ratio, p: mass per unit volume, /: body force distribution), which, upon elimination of e and u, yield the well-known Navier equation, an elliptic second-order vector PDE for the primary field u.

In particular, a time-harmonic unit point force (i.e. f = o(xx)ek) applied in an infinite elastic body at the fixed point x and along the k direction defines at x E JR3 \ { x} the well-known elastodynamic fundamental solution. The fundamental displacement U i k (x, x), stress tensor Et(x, x) and traction vector T i k ( x, x) are given by: U

i k (x, x) = 2(1 -v)[F,aa + kLF]oik -F,ik (2) k ( - ) [ 2v k k k J E ii x, x = µ 1 -2v oiiua,a + Ui,i + Ui,i T i k (x, x) = Etni
in terms of the Somigliana potential [5] F:

1 "k "k 1 F(x, x) = ---( e '
LTe ' TT ) - 47r µk:j. (k} = pw2 / µ and k'i, = ,,, k}, with ,.,, = 2 (1��): transversal and longitudinal wave numbers; r =Ixxl = [(x-x).(x-x)]112: Euclidian distance between x, x). F satisfies the equation: In this paper, solutions to (1) are assumed to be given by a double-layer integral representation formula: 

(Ve/> E V) (8) 
where the traction vector operator Tnu is defined by Tnu = u(u).n. The operation [Tn A<P](x) gives rise to hypersingular kernels involving a r-3 sin gularity. Afuer a well-documented regularization process [START_REF] Bonnet | On symmetric galerkin boundary element method[END_REF][START_REF] Nedelec | Integral equations with non integrable kernels[END_REF] involving two integrations by parts over S, the actual SGBIE formulation, which is the basis for the present development, is:

A( </J, </>*) = £( </>*) (9) 
where the linear form .C and the symmetric bilinear form A are given by:

-1 1 -.C(</J*) = -fJ(x).</J(x) dS ;; 2 s (10)

A(</J, </>*) =ls ls B(x, x; </J, </>*) dSx dS ;;

(11) B(x, x; </J, </>*) = Bikqs(x, x)Rs</Jk(x)Rq�(x) + k}Aik(x, x)</Jk(x)�(x)

where the two kernel functions Bikqs and Aik are given by: Bikqs(x, x) = -e iep e k9rµ 2 [4vopqOrs + 2(1 -v)(oprOqs + OpsOqr)]F,e9

Aik(x, x) = [[2(1 -v)(oikOjt + Ojkou) + 2 : oijoki] F � r b + (1 -2v)(oikF',jt + OjtF,ik + OjkF,u + OitF,jk) 4v2
] + 1 _ 2v OijOkR.F,aa + 4v(oijF,kR. + OktF,ij) nj(x)nR.(x) and where Rd denotes the i-th component of the surface curl of a scalar function f [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF] (eabc: permutation tensor):

Rd= ei;kn;f,k (12) 
Besides, if the surface S is defined by a mapping Ll c JR2 -+ S, e -+ x(e), 
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Geometrical symmetry assumptions

The most important assumption for the present purposes is that the boundary S has either full or partial geometrical symmetry. By this, we mean that there exists a finite group S = {si, ... , s n } of n isometries of JR3 (n is the order of S) and a partition of the boundary S into two disconnected components S 1

' 82 such that 81 is invariant under s whereas 82 is not: is a linear application s :

IR3 -+ IR3 such that i sxl = lxl (Vx E JR3), where lxl = (x.x) 1 1 2 is the usual Euclidean norm in JR3.
Exploiting (partial) symmetry in the SGBEM formulation {9) essentially consists in transforming integrals over 81 into integrals over C, so that the matrix operators produced by the discretization process are of smaller size than those corresponding to the original integral equations. Note that no symmetry is assumed regarding the Neumann data f>.

In addition to geometrical symmetry, one must assume that the material properties are also invariant under the symmetry group S. Accordingly, the bilinear form A is said to have the equivariance property if:

A(us,Vs) = A(u,v) (Vs ES, Vu,v E V 1 )

{15)

(where Us ( x) = su( s-1 x)) which is a straightforward adaptation of the defi nition proposed in [START_REF] Bossavit | Symmetry, groups and boundary value problems : a progres sive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry[END_REF]. Since 81 is invariant under S, the changes of variables (x,x)--+ (sx, sx) imply: B(x, x; Us, Vs) = B(sx, sx; su, sv)

and (15) thus implies:

B(sx,sx;su, sv) = B(x, x;u,v)

In fact, it is easy to check that:

('Vs E S, 'Vx,x E 81)

Bi k qs(sx, sx) = SijS k£ SqrSstBj £ rt(X, x)

from (26 2 ) and the identities: r(sx, sx) = sr(x,x) r(sx, sx) = r(x, x)

where r(x, x) = x -x and r(x, x) =Ix, xl; then (16) follows easily.

An immediate and useful consequence of property (16) is: The present approach is based on the exploitation of some basic results from the the theory of linear representations of finite groups. In this respect, Abelian (or commutative, i.e. 'Vs, t ES, st = ts) and non-Abelian symmetry groups lead to quite different formulations. In this section, S is a commuta tive finite group of order n; this includes the common cases of group P m of symmetries w.r.t. m orthogonal planes (with n = 2 m and 1 ::; m::; d) and the group C n = {Id, r, r2, ... , r n -l} of cyclic symmetry generated by a rotation r of angle 27r/n, with 2::; n). The non-Abelian case is deferred to section 5 . The Pv are known for all usual groups; they are shown in table 1 for the groups P1, P2, P 3 while for the group Cn, one has

Review of basic definitions

Pv(r) = exp(2irrv/n) (v = 0, ... , n -1)
(20)

The Pv: S ---+ <C can be view as a group isomorphism between S and GL(<C) , the multiplicative group of linear endomorphisms of <C, and are said to be of degree one. In contrast, when S is not commutative, some of the irreducible linear representations are necessarily of degree ::'.'. 2.

Any vector function v defined on 8 1 then admits the decomposition [START_REF] Bossavit | Symmetry, groups and boundary value problems : a progres sive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry[END_REF]:

where the linear operators P v defined by:

1 v---+ [Pvv](x) = -;:; LPv (t)t-1v(tx) tES ( 21 
) ( 22 
)
are readily shown using (19) to be orthogonal projectors for the L2 scalar product: if V is a space of functions defined on 8 1 , then one has µ =f-v and Let V v denote the restriction on C of Pvv. Then, from the properties (18), it is easy to show that, for any x E C and any s E S:

IPII Id SI I PI +1 +1 p2 +1 -1 PI +1 +1 +1 p2 +1 -1 +1 P3 +1 +1 -1 P4 +1 -1 -1 +1 -1 -1 +1 PI +1 +1 +1 +1 P2 +1 +1 +1 -1 p3 +1 -1 +1 +1 P4 +1 -1 +1 -1 p5 +1 +1 -1 +1 P6 +1 +1 -1 -1 p7 +1 -1 -1 +1 PB +1 -1 -1 -1 (23) +1 +1 +1 +1 -1 -1 +1 -1 +1 -1 -1 -1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 +1 -1 Table 1.
Irreducible representations for plane symmetries with respect to one, two and three coordinate planes (respective orders n = 2, 4, 8).

Moreover, let Is = {:i: E C, sx E C}, i.e. Is is the set of points of C whose images under a given s are in C (in fact, such points necessarily belong to 8C for C to be actually a symmetry cell). Identity {23) then implies that the Vv obtained from a given v E V must satisfy the constraints:

Vv(sx) -Pv(s -1)svv(x) = 0

(Vs ES, Vx E I s) (24) Let Vv denote the set of functions defined on C for which (24) holds.

Finally, for any x E C and any s ES, the value v(sx) of va t the image sx of x can be expressed in terms of the Vv:

n v(sx) = L Pv(s -1)svv(x) (25) v =l
Exploiting partial symmetry. Under the assumption of partial geometrical symmetry, one can map each s(C) onto C by x EC-+ z = sx E s(C) and express integrals over B1 as sums of integrals over C, with the help of the identities

dB(sx) = dB(x) n(sx) = s[n(a:)] ( 26 
)
which stem from the fact that s is an isometry. In particular, the bilinear form A(q,, 4>*) and linear form £ (4>*) defined by (11) and (10) take the form:

A( q,, 4>*) = B( q,1, 4>1*) + C( q,1, 4> 2 *) + cT (q, 2 ' 4>1*) + V( q,2 ' 4>2*) (27)

£ (4> * ) = :F (4>1 * ) + Q (4> 2 * ) (28) 
where q,1, 4>1* E V = [H 1 12(B1 )]3 and q, 2 , 4>2* E W = [H 1 12 (B2) ]3 , and with and B( t/> 1, 4>1*) = L L r r B (sx, sx; q,10s,4>1* 0 s) dBx dB;;

{29)

sES sES le le C(q,1, 4>2 *) = L r r B (sx, x; q,10s,4>2*) dBx dS;;

(30) sES ls2 le V(q, 2 ,4> 2* ) = L r r B (x,x; t/>2 ,4>2*) dBxdB;;

(31) sES ls2 ls2

:F ( 4> 1*) = � L r p(s:i:).4>1(s:i:) dB;; 2 _ 8le sE Now, inserting the decomposition (25) for both q,1 and 4>1 in B(q,1, 4>1*) defined by (29), one has: v =l sES iES since B(x, :i:; q,1, �1 *) is bilinear in q,1 and �1* . Next, using the change of variable t = 9-1s (i.e. s = st ) together with property (18), one gets:

n n B(<P 1 ' � 1 *) = L L L L p :( s -1 ) p µ(r 1 ) p µ(S -1 ) µ=1 v=l tES sES ii B ( stx, s:i:; st<P v , s � �) dSx dSx

The equivariance property (17) implies that:

ii B ( stx, sii:; s </Jv, s ��) dSx dSx = Bt(<Pv, ��)

(3 2) having put Bt( u,v ) = ii B(tx,ii:;tu,v)dSxdSx
Then, by virtue of the orthogonality property (19): 

The bilinear form B( cp1, �1 * ) is thus seen to have been reduced in block diagonal form.

One establishes in a similar way the decompositions:

n = LCv(<P2.�:) v=l -1 � 1 r - � - :F( <P *) = w 2 J c [Pvfi].</>: ds = w :Fv(<I>:) v=l C V=l (35) ( 36 
)
Gathering results (34) (35) and (36), the initial integral equation (9) re duces to a set of SGBIE problems of the form:

. 2 - -2 Fmd <P v E V v, <P E W; V<P v E V v, <P E W
{ n Bv(</>v,4'�) + Cv(</J2,��) = :Fv(4'�) L c; ( <P v , �2*) + V ( </>2' �2*) = 9( 4>2*) v=l = � L ; L 1 [P� i fJ](:i:).(p� li ( :i: ) dS;;

11=1 v i,l=l c d., = L L :F� i ((p�R i ) II i,£=1 (46) 
(47)

Gathering results (45), ( 46) and (47) , the initial integral equation ( 9) reduces to a set of SGBIE problems of the form: (1:::; v :::; R(S), 1:::; i:::; dv) (48)

L L [C � i]T(</> � i, (j,2*) + V ( </J 2, (j,2*) = Q((/,2) v=l l, i =l

6
Calculation of field values at interior points Displacement values at selected interior points x can be computed explicitly using the representation formula (7) once the density <P is known, and related quantities (strains, stresses) at x can be easily obtained as well.

Let u = u1 + u2 in ( 7), where u1 is the contribution of the integration over 81. Exploiting symmetry affects the computation of u 1. Inserting the decomposition ( 43) into [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF] and following the now usual pattern, one obtains:

R(S) dv u�(sx) = L L L p �b(s-1) 1 Ti k (sx, sx)sii[tP� b li(x) dSx sES v=l a, b =l C
Then, putting again s = st and using the equivariance property (16), which holds also for the kernel Tf', one obtains: R(S) dv u�<sx) = 2: 2: 2: p� b<s-1) sES v=l a, b , c =l { P� c (t-1) la S k t Tl(r1x, x)[4>�b ] i (x)dSx } (49) (note that s t s = ss t = Id) . A close examination of (49) thus reveals that, for a given interior point x, the same numerical quadrature effort is required by (7) and (49). However, the terms within curly brackets in (49) do not depend on s, so that the same numerical integrations can be reused (with different weights p�b ( ;s-1)) to evaluate u 1 at all the n images of x under S. Thus, if all Pti(t ) are real-valued for a given v, the bilinear form d.,

L B ii (uk, v*l)
k, l =l (where { u kh=:;t=:;d., E Vv and { v lh::;t=:;d., E Vv) is symmetric. On the other hand, if some Pt l (t) are complex-valued, it is not clear how to establish the symmetry of the above bilinear form from the general properties of the representations.

Besides, it is also important to note that in ( 48) the same bilinear form E�� l =l B �l(uk, v*l) appears dv times; it should thus be assembled and fac tored once and then used to solve for all dv-uples { </>� i }i9::;d., with i = 1, ... ,dv. Example: the dihedral group S = D 3 . Let E r and E s denote two distinct planes in IR. 3 which intersect along the coordinate line Oxa and such that the angle (Eri Es) is 7r /3. The dihedral group Da, which is the simplest non Abelian one, is generated by the symmetry s w.r.t. E8 and the 27r/3 rotation r around Oxa. Its irreducible representations are shown in Table 2; one has R(S) = 3, di = d 2 = 1, da = 2.

For the case v = 3, more explicit expression for the B �f. are obtained as follows, using Table 2 and( Solving the original (symmetric) SGBEM system thus entails a T = 0((1 + 1) 3 N 3 /6) solution time. For solving the system (56), one must first solve the block-diagonal part, whereby each { q, �e} is expressed in terms of { F�} and { <J>2}, and then substitute these results into the remaining part of the system in order to build and solve a final system with a (symmetric) 1N x 1N matrix. The estimated time T8 for solving {56) (retaining only the

O(N 3 ) contributions) is N3 3 1 R(n) Ts = 0( 6 (r a + 31 2 + ( n � + n3 ) � d �])
assuming that all blocks either are symmetric or have reciprocal symmetry.

Let R = T8/((1 + 1) 3N3 /6); for instance, with 'Y = 0 (i.e. full symmetry), one has R = {1/n3) E���) d�. Elastostatic problems, Abelian case. In the limit of zero frequency {i.e. kr = 0), the problem (1) becomes real-valued, as does the kernel function B. How ever, when the Pv are complex, Eqs. {22), {34), {35), {36) show that the subproblems {37) are in general complex-valued even in that case. In fact, it is easy to show in this case that:

Bv•(U, v) = [Bv] *(u, v) Cv•(u, v) = [Cv] *(u, v)
Thus, the equations for the v-subproblem and the v*-subproblem, and hence their solutions ( </>v , <f>v• ), are conjugate to each other and thus redundant. In the FEM framework, adequate combinations of the two conjugate equa tions are known to yield two coupled real-valued subproblems defined on the (volumic) symmetry cell. Here, a similar approach could be applied to the symmetry-reduced SGBEM. However, contrarily to the FEM case, this would result in one subproblem of size 2N /n, and hence would not bring any ad vantage over solving directly the complex-valued subproblem of size N/n.

Conclusion

The analysis, conducted here for the simple case of Neumann boundary value problems, can be extended to the SGBEM formulations of more general boundary-value problems. This strategy is especially interesting when 8 2 is 'small ' {if terms of the number of degrees of freedom involved). This is for instance the case for externally symmetric bodies containing holes, cracks or other defects of arbitrary shape and location. This work is expected to be highly beneficial to some computationally intensive problems like defect identification in complex bodies exhibiting geometrical symmetry.

  r

F=

  k f ( /'i, 2e ik Lr _e ik Tr )

( 7 )

 7 where Sis a bounded surface, either closed or open (or possibly a set of several such surfaces) and the density <P depends on the boundary conditions; the case of an open surface is usually associated with scattering of elastodynamic waves by cracks. Representations of the form (7) are often used to formulate boundary integral equations (BIEs) for interior or exterior problems on the domain Q bounded by S with Neumann boundary data p over S. In partic ular, such problems lead to symmetric Galerkin BIE (SGBIE) formulations through a weighted-residual statement of the Neumann boundary condition: ls[ Tn A<P](x).c/>*(x) dS;; =ls fJ(x).c/>*(x) dS ;;

  which shows in particular that Ri is a tangential differential operator. Both B i kqs and A i k are weakly singular in view of (5) and (6) and have symmetry properties which ensure the overall symmetry of A( </J, {p*) through: B(x, :i:; <P, (/>*) = B(:i:, x; </J, {p*) = B(x, :i:; (/>*,<P) 

(

  Vs ES) One can therefore introduce a symmetry cell for 81, i.e. a subset C of 81 such that Area(C) = Area(S 1 )/n and 8 1 = LJ s(C) sES For example, 81 is the (symmetric) external boundary while 82 is a (col lection of) interior hole(s) or crack{s) of arbitrary shape and location. Full symmetry refers to the case where 81 = s and 82 = 0, i.e. the whole bound ary S (and hence also Q) is invariant under S. Recall that an isometry of JR3

  , sx; su, sv) = B(tx, x; tu, v) ('Vs, s ES) with t = ss-1 (17) 4 Using geometrical symmetry: the Abelian case

  [4,8,9}. Any finite Abelian group S of order n possess n irreducible linear representations, i.e. n applications p11: S --+ C which satisfy the following relations: I Pv(s) I = 1 Pv(st) = Pv(s )Pv(t) (18) for any s, t ES, 1 :S v :Sn (z * denotes the complex conjugate of z) , as well as the 'orthogonality relation': _!. L Pv(s)p�(s) = 5µ 11 n s ES

  1,4>1*) = LLL L P � ( S-1) pµ (s -1) µ= 1

  1, � 1 *) = L L L p µ(r 1 ){L Pv( s ) p µ( s -1 ) }Bt(<Pv• ��) µ= 1 v=l tES sES n = L: {n LP v(t-1 )Bt(<P v ,�: )} v=l tES n = LBv(</J v ,�:) v=l (33)

( 1 : 8 A

 18 5 v :5 n) (37) space V of vector functions defined on 8 1 is decomposed into orthogonal subspaces[START_REF] Bossavit | Symmetry, groups and boundary value problems : a progres sive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry[END_REF]:(41) with the projectors Pij defined by : From this definition and the properties of the representations, one has for any s E S and v E V:d., [Piju](sx) = L P�i(s-1)s[P�iu](x) (42)k=l Hence, for a given s E S and a point x E C, the value v( sx) of v at the images of x can be expressed by virtue of (41) and (42) in terms of the restriction v�i on C of the projections p�iv :R(S) d,. v(sx) = L L p�i(s-1)sv�i(x) µ=l j,k=l(43)Moreover, let again 18 = {x E 80, sx E 80}. It is then easy to show, from (42), that the dv-uple {v:,.1, 1 � i � dv} of functions defined on Care subject to the following constraints: d., v:f (x) -L P�i(s-1)sv�i(s-1x) = 0 (44) k=l (note that the constraint does not depend on the rightmost index j). Accord ingly, for the non-Abelian case, let Vv denote the set of dv-tuples of functions v l (l � l � dv) defined on C and such that any pair ( v i , v k ) is linked through the constraints (44) (with the index j omitted). Exploiting partial symmetry. Again, the decomposition (27) holds. Inserting the decomposition ( 43) for both </J1 and 4'1 in B( </J1. 4'1*) defined by (27),

  /J,4'*) = L L L L LLP�i *(S-1) p :i(s-1) µ= 1 v=l j, k=l i ,l=l sES iiES Then, making the change of variables= st and using (38), (39): R(S) R(S) d,.. d., d., B( <jJ ,(p *)= L L L L LLL µ=1 11=1 j,k=l l,i=l m=l tES sES p� l ( s)p� m (r 1 ) p;:'i ( s -1 ) ii B ( s tx, sx; s </J �i, s(p� li ) dSx dS;; so that, using (40) and the equivariance property (32), one obtains: R(S) R(S) dµ d., d., B(<fJ,{p*) = L L L L L L:{LP� l ( s)p;:'i(s -1 )} µ=1 11= 1 j,k=l l, i =l m=l tES sES p � m (t -1 )Bt( <P � J , (p � li ) R(S) R(S) d,.. d., d., = L L L L L L; p� m (t -l )oijO t m0µ11B t (<P �i, (p � R i ) µ=1 11= 1 j,k=l l,i=l m=l tES 11 R(S) d,.. d,.. = L L L {L:; P�t( r 1 )}Bt(<P �i, ;p �u) 11=1 i=l k,l=l tES II R(S) d., d., = L L L B � e (<P � i ,(p� li ) 11= 1 k,l=l i =l One establishes in a similar way the decompositions: (45) C(</J2 ,(p 1 *) = �{ t ?=P � t( s) 112 B ( x,s x; </J2,s(p�u)dSxdS;; } 11=1 l,i=l sES C S and R(S) d., = L L c�i (<P2, ;p � e i ) 11=1 l,i=l R(S) d.,:F((p 1 *) = � L L L p �t( t) 1 p(tx).t (p� l i (x) dS;;

4 4 4 L

 4 8�t ( <l> �i, ;p�t ) + L c�i ( <1> 2, ;p�t ) = L F�i ( ;p�t ) k ,l=l l=l l=l R(S) dv

1

 1 Reduction of numerical quadrature effortIt is obvious from (56) that a reduction of both setup and solution compu tational efforts results from the block-diagonalization of the operator B. The Also, whenever the irreducible representations Ptf. and p� are real-valued, one has Besides, from (44): { v f.}i=:;t=:;d., E Vv =? { vl* }i9=:;d., E Vv

3

 3 50): BJ1(u1, v1*) = B! d (u1, v1*) + jBr(u1, v1*) + j2Br(v1*, u1) B�1(u2, v1*) = Bs(u2, v1*) + jBsr(u2, v1*) + j2Bsr2(u2, v1*) BJ2(ul' v2*) = Bs(Ul' v2*) + j2Bsr(ul' v2*) + jBsr2 (ul' v2*) B�2(u2, v2*) = B! d (u2' v2*) + j2Br(u2, v2*) + jBr(v2*, u2) It appears that B J1(u, v) = . B §2(v, u) ; besides, since s = s-1, sr = (sr)-1 and sr2 = (sr2)-1, (54) implies that B §1 (u, v) and B P(u, v) are symmetric (in both cases disregarding for the moment the constraints (44)).In addition, the constraints ( 44) reduce to two independent restrictions, as follows. If x E E s, x = sx, thus:ls= 8CU E s whereas if x E E8, x = srx, which yields: lsr = 8Cu ErFrom these, it is easy to infer that (55)Hence, the one-to-one substitution {v2* , v1*} E V 3 = {w1, w2} E V 3 can be made, and the contributions for v = 3 in (48) are recast into a form which is symmetric in ( { </> 1 , </> 2} , { (i> 1, (i> 2} ) : 2 2 2 L B �l ( q,� i, (i>� ) + Lc�l ( q, 2 , (i>� ) = LJ="[ ( (i>e) (i = 1, 2; l = 3 -e)k,l=l l=l l=l Similar conclusions can be reached for all dihedral symmetry groups D m • 7.Reduction in solution timeLet N and 1N denote the number of degrees of freedom supported by the BEM discretization of 51 and 52 respectively. The system of equations (37) or ( 48) takes the general form:(56)where the matrix B is block-diagonal: B = Diag(B�) (1 ::; v ::; R(S), 1 ::; i::; d11). Each block B� is approximately of size (d11/n) x N (the constraints (44) causing slight variations in size for the same value of d11). Besides, as mentioned before, all blocks B� (1 ::; i::; d11) are the same for a given v.

RTable 3 .

 3 (S = P 2 ) 0.0625 0.1266 0.1971 0.3889 0.6016 0.7986 R (S = Da) 0.0463 0.1206 0.1973 0.3964 0.6100 0.8042 R (S =Pa) 0.015625 0.06320 0.1265 0.3194 0.5488 0.7691 Expected asymptotic ratios R of solution CPU time with and without exploitation of partial symmetry, for some groups and various values of I (ratio of numbers of DOFs on the surfaces S 1 and S 2 )

  It 

  is sufficient to solve (say) the v-subproblem for Uv. The contribution of the conjugate pair ( <f>v, <f>v•) to the reconstruction of the (real) global solution u is then: [P v </>] (sx) + [Pv•</>]( sx) = p� ( s ) </>v + Pv(s) </>� = 2 R e( p� (s) </>v )

Table 3

 3 displays R for the groups P1, 2 , a and D 3 and various values of 'Y• Obviously, the highest gains in solution time occur for n large (i.e. high degrees of symmetry) and 'Y small. Also, E��) d � = n if S is Abelian, hence in that case R = 1/n2 with 'Y = 0 as expected.

Using geometrical symmetry: the non-Abelian case

In this section, S is a non-Abelian finite group of order n, i.e. there exist s, t E S such that st f-ts. This includes the important practical case of the dihedral symmetry group Dm, i.e. the group of order n = 2m of the affine transformations that leave a regular m-gon unchanged. [4,8,9}. Here, the irreducible representations Pv of S are of integer degree dv ::'.: 1:

Review of basic results

i.e. each Pv(s) is a linear endomorphism of a dv-dimensional complex vector space; moreover, the number R( S) of such representations and their degrees dv are such that at least one of them is ::'.: 2 and:

The properties of the irreducible representations Pv include the preservation of group structure: dv /j (st) = L P!!<(s)p�j (t) (Vs, t ES) k=l which implies in particular, since Pv is unitary, that: and the 'orthogonality relation ' :

(with j = exp(2i11"/3)) p � l 0 0 0 1 j j 2 p � 2 0 0 0 1 j 2 j p � 2 1 j 2 j 0 0 0 (50)

From this identity and the symmetry of the original bilinear form B, the block-diagonalized B is seen to entail a numerical quadrature effort n times smaller than the original B.

7.2

Symmetry properties of the matrix equations

Abelian case. The irreducible representations p11 are usually complex-valued functions over S (e.g. (20) for cyclic groups). In that case, it can be shown that the p11 can be associated by conjugate pairs, i.e. that for any v such that p11 is complex-valued, there exists v* such that p11.(S) = p�(S). In that case, from (24), v E V11 =} v* E V11•. Besides, using (50) , one can show that: complex-valued P11

i.e. that, although B is symmetric, the B11( u, v) are not individually sym metric, but have a 'reciprocal symmetry ' . In some cases, including the very common one of symmetry with respect to coordinate planes, the p11 are real valued (see table 1); then, v E V11 =} v* E vii and the B11 are symmetric:

Non-Abelian case. The symmetry properties of the matrices associated with degree one representations are as in the Abelian case. Otherwise, one has from (45) :

B �i (u, v) = ; L p� £ (t-1)Bt(u, v) 11 tES' + ; L {P � i (t)B t ( v , u) + p �i k (t)Bt(u, v) } (53)

II tES" where S' = { t E S, t = C1} and S" c Sis chosen such that S' n S" = 0 and S = S' US" U {C1, t ES"}. First, as a consequence of (50) :

Bt(u, v) = B t -1 (u, v)