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Abstract

The aim of this paper is to answer an important issue in quantum me-

chanics, namely to determine if a quantum state of a light beam is pure or

mixed. The estimation of the purity is done from measurements by Quantum

Homodyne Tomography performed on identically prepared quantum systems.

The quantum state of the light is entirely characterized by the Wigner func-

tion, a density of generalized joint probability which can take negative values

and which must respect certain constraints of positivity imposed by quantum

physics. We propose to estimate a quadratic functional of the Wigner function

by a kernel method as the physical measure of the purity of the state. We give

also an adaptive estimator that does not depend on the smoothness parame-

ters and we establish upper bound on the minimax risk over a class of infinitely

differentiable functions.
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1 Introduction

In quantum mechanics, the quantum state of a system completely describes all as-

pects of the system. The instantaneous state of a quantum system encodes the

probabilities of its measurable properties, or "observables" (examples of observables

include energy, position, momentum and angular momentum). Generally, quantum

mechanics does not assign deterministic values to observables. Instead, it makes pre-

dictions about probability distributions; that is, the probability of obtaining each of

the possible outcomes from measuring an observable. In many applications of quan-

tum information, one of the important elements which affect the result of quantum

process, is the purity of quantum states produced or utilized. Hence, an interesting

and important problem in quantum information is to estimate the purity of a quan-

tum system [4, 30]. This problem is also strongly related to the estimation of the

entanglement of multiparty systems [15, 1]. A state is called pure if it cannot be

represented as a mixture (convex combination) of other states, i.e., if it is an extreme

point of the convex set of states. All other states are called mixed states. The mea-

surement technique of a quantum state is called Quantum Homodyne Tomography

(QHT) and has been put in practice for the first time in [25]. We will detail this

technique in Section 2.2. A quantum state is represented through two mathematical

objects: the density matrix ρ and the associated real function of two variables Wρ

called the Wigner function [29].
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In this paper we address the problem of estimating the quadratic functional d2 =
∫
W 2
ρ of the Wigner function of a monochromatic light in a cavity prepared in the

state ρ by using QHT data measurement performed on independent, identical sys-

tems. Our model takes into account the detection losses occuring in the measurement,

leading to an additional additive Gaussian noise. Our data consists of bivariate, in-

dependent, identically distributed observations in a double inverse Radon Transform

(tomography) and convolution Gaussian random variable model that we describe in

Section 2.4. The quantity d2 =
∫
W 2
ρ has an interest in itself as a physical measure

of the purity of quantum state. It allows us to distinguish between pure state and

mixed state since it always equals 1
2π

in case of pure states (see Section 2.1 for relation

between this quantity and the notion of purity) and is different from 1
2π

if the state

is mixed.

In general, Wρ is regarded as a generalized joint probability density of the electric

and magnetic fields of a laser beam, integrating to plus one over the whole plane.

It does not satisfy all the properties of a proper probability density as it can, and

normally does, go negative for states which have no classical model. It satisfies also

certain intrinsic positivity constraints in the sense that it corresponds to a density

matrix.

The problem of estimating quadratic functionals was studied in details in [6], where

the problem of estimating the integral of the squared derivative of a probability den-

sity function was considered and nonparametric rates were obtained. These results

have been extended in the density model on the estimation of general functionals of

a density f of the type
∫
f 2 in [7], of the type

∫
f 3 in [17] and of the type

∫
T (f)

in [21] where minimax rate have been established. Minimax rates have also been

obtained in [23] for the nonparametric estimation of ‖f‖r in the classical white noise

model. More recently, the estimation of
∫
f 2 in the convolution model have been

treated in [9] for application to the goodness-of-fit test in L2 distance.

The problem of adaptive estimation of general functionals in the white noise model
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has been considered in [13] for
∫ 1

0
f 2, in [27] for

∫
T (f) for arbitrary 4 times con-

tinuously differentiable functionals T and more rencently in [18] for sharp adaptive

estimation of quadratic functionals.

In a positron emission tomography (PET) perspective, the problem of estimating a

probability density from tomographic data at sharp minimax rates has been treated

in [16] for bivariate density and in [12] for multi-dimensional density. Some functional

estimation problems in the image model, like estimating the area of an image, have

been considered in [19].

Quantum statistic models are more recent, the estimation of the Wigner function

Wρ has been treated in [14] in the case of ideal detection, that is without noise. The

estimation of the Wigner function in our noisy model has been studied in a nonpara-

metric framework in [10, 3] where minimax rate was established for the pointwise

and the L2risk respectively.

We emphasize that in our paper we do not restrict ourselves to the parametric setting,

but suppose that the Wigner function belongs to a nonparametric class A(α, r, L, L′)

described in Section 2.4. We refer the interested reader to [2, 5] for further details

on physical background.

In this paper we propose a kernel estimator for the quantity d2 =
∫
W 2
ρ . We

investigate the rate of convergence of the procedure and show that the bandwidth

leading to the bias-variance trade-off depends on the parameter describing the func-

tional class containing Wρ. Therefore we propose an adaptive estimator based on a

data-driven choice of the bandwidth. This adaptive estimator is shown to have the

same rate of convergence. Let us briefly describe a possible application of our results

to goodness-of-fit test in L2-norm in quantum statistics. The physical interpretation

of such a test is to check whether the produced light pulse is in the known quantum

state ρ0 or not. This can be done via the Wigner functions as follows:





H0 : Wρ = Wρ0 ,

H1 : supWρ∈A(α,r,L,L′) ‖Wρ −Wρ0‖2 ≥ c · ϕn
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where ϕn is a sequence which tends to 0 when n → ∞ and it is the testing rate

and A(α, r, L, L′) is a class of smooth Wigner functions (see Section 2.4). We can

device a test statistic based on the estimator of d2 =
∫
W 2
ρ constructed in this paper.

Similary to [9] we conjecture that the testing rates are of the same order as the ones

found in this paper.

The rest of the paper is organized as follows. In Sections 2.1 and 2.2, we make

a short introduction to quantum mechanics. We formulate the statistical model in

Section 2.4. In Section 3 we construct an estimator of the quadratic functional of

the unknown Wigner function, and state a result on upper bound on the bias and

the variance terms (proof in Section 4). Then we propose a choice of bandwidth

independent of the smooth parameters yielding the same rate of convergence. Our

main theoretical results are presented in Section 3.3. We present some examples of

quantum states in Section 2.3.

2 Physical and statistical context

2.1 A short introduction to Quantum Mechanics

Quantum mechanics is a fundamental branch of theoretical physics, in the sense that

it provides accurate and precise descriptions for many phenomena on the atomic and

subatomic level. In the formalism of quantum mechanics, the state of a system at a

given time is described by a complex wave function (sometimes referred to as orbitals

in the case of atomic electrons), and more generally, elements of a complex vector

space. Generally, quantum mechanics only makes predictions about probability dis-

tributions; that is, the probability of obtaining each of the possible outcomes from

measuring an observable. Naturally, these probabilities will depend on the quan-

tum state at the instant of the measurement. There are numerous mathematically

equivalent formulations of quantum mechanics. Mathematically, the possible states

of a quantum system are represented by unit vectors (called "state vectors") residing
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in the associated complex separable Hilbert space H. In other words, the possible

states are points in the projectivization of a Hilbert space. Each state is represented

by a density matrix ρ which is a linear operator on the space H having the following

properties:

• Self-adjoint (or Hermitian): ρ = ρ∗, where ρ∗ is the adjoint of ρ.

• Positive: ρ ≥ 0, or equivalently 〈ψ, ρψ〉 ≥ 0 for all ψ ∈ H.

• Trace one: Tr(ρ) = 1.

A state is called pure if it cannot be represented as a mixture (convex combination)

of other states, i.e., if it is an extreme point of the convex set of states. Thus,

pure states are represented by one dimensional orthogonal projection operators i.e.

ρ = Pψj
. All other states are called mixed states and for a separable Hilbert space

H, they can be expressed as

ρ =
dimH∑

i

ρiPψi
.

Due to the previously stated properties of ρ, ρi ≥ 0 are the eigenvalues of ρ such that
∑

i ρi = 1, and Pψi
the projection onto the one dimensional space generated by the

eigenvector ψi ∈ H of ρ.

Equivalently a corresponding Wigner function Wρ : R
2 → R may be defined and

describes completely the quantum state ρ. In general, Wρ is regarded as a generalized

joint probability density of two variables P and Q (the electric and magnetic fields

of a laser beam). The Wigner function may take negative values but it integrates to

plus one over the whole plane. It satisfies also certain intrinsic positivity constraints

in the sense that it corresponds to a density matrix. (For further information on the

Wigner function, we invite readers to consult the paper in [2].)

The important relation between ρ and Wρ is the following one

2π

∫

R2

W 2
ρ (z)dz = Tr(ρ2) = Tr(

∑

i

ρ2
iPψi

) =
∑

i

ρ2
i .
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Then if the last sum
∑

i ρ
2
i = 1, it means ρi = δij, thus ρ = Pψj

is a pure state. We

propose in this paper to study the quantity
∫

R2 W
2
ρ (z)dz as a physical measure of

purity.

2.2 Quantum Homodyne Tomography

I1

I2

z = |z|eiφ

I1−I2√
2η|z| ∼ pη

ρ(x|φ)
vacuum2

vacuum1

beam splitter

signal

detector

oscilator

local

detector

Figure 1: QHT mesurement

The theoretical foundation of quantum homodyne tomography was outlined in

[28] and has inspired the first experiments determining the quantum state of a light

field, initially with optical pulses in [25, 26]. The physicists developed a monochro-

matic laser in state ρ in a cavity. In order to study it, one takes measurement by

QHT. This technique schematized in Figure 1 consists in mixing the light pulse in

which we are interested with a laser of reference of high intensity |z| >> 1 called local

oscillator. Just before the mixing the experimenter chooses the phase Φ of the local

oscillator, randomly, uniformly distributed. After the mixing there are two emerging

beams and each one is measured to give integrated currents I1, I2 proportional to

the intensities. the effective result of the measurement is X = I2−I1
|z| which together

with the phase Φ gives (X,Φ). It is widely admitted in the physical litterature (see

[22]) that an additive gaussian noise is mixed with ideal data X, giving for known
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efficiency η, data Y .

2.3 Examples

Table 1 shows five examples of quantum pure states and one example of mixed state

which can be created at this moment in laboratory. Among the pure states we

consider the vacuum state which is the pure state of zero photons, the single photon

state, the coherent state which characterizes the laser pulse with an average of N

photons. The squeezed states (see e.g. [8]) have Gaussian Wigner functions whose

variances in the two directions have a fixed product. The well-known Schrödinger

Cat state is also a pure state discribed by a linear superposition of two coherent

vectors (see e.g. [24]).

Table 1: Examples of quantum states

State Fourier transform of Wigner the Wigner function

function W̃ρ(u, v) Wρ(p, q)

Vacuum state exp
(

−‖(u,v)‖2
2

4

)
1
π

exp(−q2 − p2)

Single photon
(
1 − ‖(u,v)‖2

2

2

)
exp

(
−‖(u,v)‖2

2

4

)
1
π
(2q2 + 2p2 − 1) exp(−q2 − p2)

state

Schrödinger e
−‖(u,v)‖22

4 (cos(2uX0) e−p
2
(
e−(q−X0)2 + e−(q+X0)2

Cat X0 > 0 +e−X
2
0 cosh(X0v)

)
/(2(1 + e−X

2
0 )) +2 cos(2pX0)e

−q2
)
/(2π(1 + e−X

2
0 ))

Coherent state exp
(

−‖(u,v)‖2
2

4
+ i

√
Nv
)

1
π

exp(−(q −
√
N)2 − p2)

N ∈ R+

Squeezed state exp
(
−u2

4
e2ξ − v2

4
e−2ξ + ivα

)
1
π

exp(−e2ξ(q − α)2 − e−2ξp2)

N ∈ R+, ξ ∈ R

Thermal state exp
(

−‖(u,v)‖2
2

4(tanh(β/2))2

)
tanh(β/2)

π
exp(−(q2 + p2) tanh(β/2))

β > 0

Note that for pure states d2 = 1
2π

and for the thermal state which is a mixed
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state d2 = tanh(β/2)
2π

.

2.4 Problem formulation

The monochromatic laser in state ρ in a cavity is described by density matrices on

the Hilbert space of complex valued square integrable functions on the line L2(R).

Those functions are called Wigner functions. In the present paper we estimate the

integral of the square of the Wigner function from data measurement performed on

n identical quantum systems.

Our statistical problem can been formulated as follows:

consider (X1,Φ1) . . . (Xn,Φn) independent identically distributed random variables

with values in R× [0, π]. The probability density of (X,Φ) equals the Radon trans-

form ℜ[Wρ] of the Wigner function with respect to the measure λ/π, where λ is the

Lebesgue measure on R × [0, π]. Thus

pρ(x|φ) := ℜ[Wρ](x, φ) =

∫ ∞

−∞
Wρ(x cosφ+ t sinφ, x sinφ− t cosφ)dt (1)

is the density of X given Φ = φ. As we annouced in the introduction we do not ob-

serve the ideal data (Xℓ,Φℓ) ℓ = 1, . . . , n but a degraded noisy version (Y1,Φ1) . . . (Yn,Φn),

where

Yℓ :=
√
ηXℓ +

√
(1 − η)/2ξℓ. (2)

Here ξℓ are standard Gaussian random variables independent of all (Xk,Φk) and

0 < η < 1 is a known parameter. The parameter η is called the detection efficiency

and 1−η represents the proportion of photons which are not detected due to various

losses in the measurement process. We denote pηρ(x, φ) the density of (Yℓ,Φℓ). Thus,

pηρ(·, φ) is the convolution of the density 1√
η
pρ(

·√
η
, φ) of (Xℓ,Φℓ) with the density of

a centered Gaussian density having variance (1 − η)/2. Let us define the following

functional class F(α, r, L):

F(α, r, L) =

{
f : R

2 → R,

∫

R2

|f(u, v)|2e2α‖(u,v)‖r

dudv 6 (2π)2L

}
,
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where 0 < r ≤ 2, α > 0, L > 0 and ‖(u, v)‖ =
√
u2 + v2 is the euclidian norm.

All the typical states ρ prepared in laboratory have density matrix with diagonal

decreasing very fastly: for some C > 0, B > 0 and r ∈]0, 2]

|ρm,ℓ| ≤ C exp(−Bα(mr/2 + ℓr/2)) ∀m, ℓ ∈ N. (3)

Recently, one has shown in [3] that quantum states satisfying (3) have Wigner func-

tion Wρ in the class

A(α, r, L, L′) =
{
Wρ : R

2 → R, Wigner function, Wρ ∈ F(2rα, r, L′), W̃ρ ∈ F(α, r, L)
}
,

for some α, L, L′ > 0 where W̃ρ(u, v) denotes the Fourier transform of Wρ w.r.t two

variables. In this paper, we assume that the unknown Wigner function Wρ belongs

to the class A(α, r, L, L′) of infinitely differentiable functions.

3 Estimation procedure and main results

We are now able to define the estimation procedure of the quadratic functional

d2 =
∫
W 2
ρ of the unknown function Wρ based on data (Yℓ, φℓ). Next we state

an upper bound of the maximal risk uniformly over all Wigner functions in the class

A(α, r, L, L′).

3.1 Kernel estimator

Let us define our estimator as a U-statistic of order 2:

Definition 1. For any δ = δn > 0, we define the estimator

d2
n =

1

n(n− 1)

∑

j 6=k

∫

‖z‖≤1/δ

Kδ,n

(
[z,Φj] −

Yj√
η

)
Kδ,n

(
[z,Φk] −

Yk√
η

)
dz, (4)

where

Kδ,n(x) =
1

(2π)2

∫ 1/δ

−1/δ

|t|e−itxe t2

4
1−η

η dt =
1

(2π)2

∫ 1/δ

−1/δ

|t| cos(tx)e
t2

4
1−η

η dt. (5)
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Note that the Fourier transform of Kδ,n is K̃δ,n(t) = 1
2π
|t|e t2

4
1−η

η I(|t| ≤ 1/δ), where I

stands for the indicator function.

Let d2
n be the estimator defined by (4), having bandwidth δ > 0. We call the

bias and the variance of the estimator, respectively:

B(d2
n) := |Eρ[d2

n] − d2| and Var(d2
n) := Eρ

[
|d2
n − Eρ[d

2
n]|2
]
. (6)

3.2 Bias-variance decomposition

The following proposition plays an important role in the proof of the upper bound

of the risk as we split it into the bias term and the variance term.

Proposition 1. Let a = 1−η
2η

and d2
n be the estimator defined by (4) with δ → 0 such

that ea/δ
2
/(nδ2) → 0 as n→ ∞, then for all α > 0, L,L′ > 0 and 0 < r ≤ 2

sup
Wρ∈A(α,r,L,L′)

B2(d2
n) ≤ L2e−4α/δr

(1 + o(1)), (7)

sup
Wρ∈A(α,r,L,L′)

Var(d2
n) ≤ 32πL

na2δ2
e

a

δ2 (1 + o(1)). (8)

The proof of this proposition is given in Section 4.

3.3 Main results

Let d2
n be an estimator of d2 =

∫
W 2
ρ defined by (4). We measure the accuracy of d2

n

by the maximal risk over the class A(α, r, L, L′)

R(d2
n;A(α, r, L, L′)) = sup

Wρ∈A(α,r,L,L′)

Eρ[|d2
n − d2|2].

Here Eρ and Pρ denote the expected value and the probability when the true under-

lying quantum state is ρ.
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Theorem 1. Let (Yℓ, φℓ), ℓ = 1, . . . , n be i.i.d data coming from the model (2) where

the underlying parameter is the Wigner function Wρ lying in the class A(α, r, L, L′),

with 0 < r < 2, α > 0, L,L′ > 0. Let a = 1−η
2η

, then d2
n defined in (4) with bandwidth

δ := δopt chosen as the solution of the equation

a

δ2
opt

+
4α

δropt
= log n− (log log n)2, (9)

satisfies the following upper bound

lim sup
n→∞

ϕ−2
n R(d2

n;A(α, r, L, L′)) ≤ L2, (10)

where the rate of convergence is ϕ2
n = e−4α/δr

opt.

Remark 1. The previous theorem gives the upper bound of the risk. It is shown that

the rate of convergence is given by the dominating term (bias term) at the selected

bandwidth δ := δopt. Following the proof of the lower bound in [10], we can prove that

similar lower bound holds in our setting when the Wigner function Wρ belongs to the

class
{
Wρ : W̃ρ ∈ F(α, r, L)

}
which is strictly larger than A(α, r, L). Unfortunetly,

the Wigner functions constructed in [10] for proving the lower bound do not belong

to class F(2rα, r, L′).

Sketch of proof of Theorem 1 On the one hand, for 0 < r < 2 and by (7) and

(8), we select the bandwidth δ∗ as

δ∗ = arg min
δ>0

{
CV
nδ2

e
a

δ2 + CBe
−4α/δr

}
,

by taking derivatives, δ∗ is a positive real number satisfying

a

δ∗2
+

4α

δ∗r
= log(δ∗4−r) + log n+ const.

We notice that B(d2
n) ∼ (δ∗)r−2V ar(d2

n), so the rate of convergence for the upper

bound is given by the bias term of the estimator d2
n with δ = δ∗ i.e. ϕ2

n = B(d2
n)(1 +

12



o(1)). On the other hand, by taking δ := δopt the unique solution of the equation

a

δ2
opt

+
4α

δropt
= log n− (log log n)2,

the variance of the estimator d2
n with δ = δopt is still smaller than its bias and its bias

is of the same order as the bias of d2
n with optimal δ = δ∗ (see Lemma 8 in [11]). So,

when replacing δ∗ with the slightly modified δopt the upper bound of the minimax

risk will remain asymptotically the same.

Remark If we consider the case r ∈]0, 1], we can give a more explicit form for

the bandwidth verifing (9) and thus, for the rate of convergence which is asymptot-

ically equivalent to the bias term. Based on the results in [20], we make successive

approximations starting with

δ0 :=

(
log n− (log log n)2

a

)−1/2

,

and for all k ≥ 1, if r ∈ Ik =]2(k−1)
k

, 2k
k+1

], we get recursively δk by plugging δk−1 into

δk = (δ−2
0 − 4α

a
δ−rk−1)

−1/2. Then by choosing δopt = δk and if r ∈ Ik, we obtain the

following asymptotic equivalent of the rate of convergence

L2 exp
(
−4αδ−r0 + C1δ

2−r
0 − . . .+ Ck−1δ

2(k−1)−kr
0

)
.

Theorem 2. Let (Yℓ, φℓ), ℓ = 1, . . . , n be i.i.d data coming from the model (2) where

the underlying parameter is the Wigner function Wρ lying in the class A(α, r, L, L′),

with r = 2, α > 0, L,L′ > 0. Let a = 1−η
2η

, then d2
n defined in (4) with bandwidth

δ = δ∗ =
(

logn−log(log n/(4α+a))
4α+a

)−1/2

satisfies the following upper bound

lim sup
n→∞

ϕ−2
n R(d2

n;A(α, r, L, L′)) ≤ C, (11)

where the rate of convergence is ϕ2
n =

(
n

logn

)− 4α
4α+a

, for some constant C > 0.
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Sketch of proof of Theorem 2 For r = 2 and by (7) and (8), we select the

bandwidth δ∗ as

δ̃ = arg min
δ>0

{
CV
nδ2

e
a

δ2 + CBe
−4α/δ2

}
,

by taking derivatives, we notice that B(d2
n) ∼ V ar(d2

n) for δ = δ̃ and that the rate

of convergence is
(

n
logn

)− 4α
4α+a

. It is easy to check that if we choose δ∗ as bandwidth

we get the same rate.

In the previous theorems, the bandwidth δopt depends on the parameters α and

r of the class A(α, r, L, L′) which may be difficult to evaluate in practice. However,

it is possible to construct an adaptive estimator which does not depend on these

parameters and which has the same asymptotic behavior as in Theorem 1, provided

that these parameters lie in a certain set. Note that the parameter η is supposed to

be known. Define the set of parameters

Θ1 = {(α, r, L, L′) : α > 0, L, L′ > 0, 0 < r < 1}.

Theorem 3. Let (Yℓ, φℓ), ℓ = 1, . . . , n be i.i.d data coming from the model (2). Let

d2
ad,n be the estimator defined by

d2
ad,n =

1

n(n− 1)

∑

j 6=k

∫

‖z‖≤1/δad

Kδad,n([z,Φj] −
Yj√
η
)Kδad,n([z,Φk] −

Yk√
η
)dz,

with δ = δad = ( logn
a

− 2
√

logn
a

)−1/2. Then, for all (α, r, L, L′) ∈ Θ1,

lim sup
n→∞

sup
Wρ∈A(α,r,L,L′)

E[|d2
δ,n − d2|2]ϕ−2

n ≤ 1,

where ϕn is the rate defined in Theorem 1.

Sketch of proof of Theorem 3 Over the set Θ1, we easily check that, for

(α, r, L, L′) ∈ Θ1

L2 exp

(
− 4α

(δad)r

)
≤ L2 exp

(
− 4α

(δopt)r

)
(1 + o(1)),
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thus the upper bound of the bias of d2
ad,n is not larger than the upper bound of

the bias of d2
n with δ = δopt. As 0 < r/2 < 1/2 it is easy to remark that for n large

enough −( logn
a

−2
√

logn
a

)r/2 > − a
4α

√
logn
a

and 1
δ2
ad

≤ logn
a

and thus exp

(
−a
√

logn
a

)
≤

exp
(
− 4α

(δad)r

)
. Then the dominating term in the variance found in (8)

1

nδ2
ad

exp

(
a

δ2
ad

)
≤

(
log n

a

)
exp

(
−2a

√
log n

2a

)

≤
(

log n

a

)
exp

(
−a
√

log n

2a

)
exp

(
−a
√

log n

2a

)

≤
(

log n

a

)
exp

(
−a
√

log n

2a

)
exp

(
− 4α

δrad

)

≤ o(1) exp

(
− 4α

(δopt)r

)
.

Thus, d2
ad,n attains the rate ϕ2

n.

4 Proof of Proposition 1

Most of the proofs make extensive use of the following equations and properties of

Wigner functions. A remarkable relation links the Fourier transform of the Wigner

function to the Fourier transform of its Radon transform. If we denote

W̃ρ(u, v) := F2[Wρ](u, v),

then

W̃ρ(t cosφ, t sinφ) := F1[pρ(·|φ)](t) = Eρ[e
itX |Φ = φ], (12)

where F2, F1 denote the Fourier transform w.r.t two, respectively one variables. The

Fourier transform w.r.t one variable of the density pηρ(·|φ) of Y when Φ = φ is

F1[p
η
ρ(·|φ)](t) = F1[

1

η
pρ(

.

η
|φ)](t) · Ñη(t) (13)

= F1[pρ(·|φ)](
√
ηt) · Ñη(t), (14)

15



where Ñη(t) = e−
t2

4
(1−η) denotes the characteristic function of the random variable

√
(1 − η)/2ξ ∼ N (0; (1 − η)/2).

4.1 Proof of (7)

As (Yk,Φk) and (Yℓ,Φℓ) are i.i.d. for all k 6= ℓ, we get

E[d2
n] =

1

n(n− 1)

∑

j 6=k

∫

‖z‖≤1/δ

E[Kδ,n([z,Φj] −
Yj√
η
)]E[Kδ,n([z,Φk] −

Yk√
η
)]dz

=

∫

‖z‖≤1/δ

E[Kδ,n([z,Φ1] −
Y1√
η
)]E[Kδ,n([z,Φ2] −

Y2√
η
)]dz

=

∫

‖z‖≤1/δ

∣∣∣∣E[Kδ,n([z,Φ] − Y√
η
)]

∣∣∣∣
2

dz. (15)

Moreover

E[Kδ,n([z,Φ] − Y√
η
)] =

∫

R

∫ π

0

Kδ,n([z, φ] − y√
η
)pηρ(y, φ)dydφ

=

∫ π

0

1

2π

∫

R

F1[Kδ,n ∗
(√

ηpηρ(·
√
η, φ)

)
](t)e−it[z,φ]dtdφ

=

∫ π

0

1

2π

∫

R

K̃δ,n(t)F1[
√
ηpηρ(·

√
η, φ)](t)e−it[z,φ]dtdφ.

Then by using the expressions in (12), (13), (14) and a change of variables (t cosφ, t sinφ) =

w, we get

E[Kδ,n([z,Φ] − Y√
η
)]

=
1

(2π)2

∫ π

0

∫

R

|t|e t2

4
1−η

η I(|t| ≤ 1/δ)F1[pρ(·, φ)](t)Ñη(t/
√
η)e−it[z,φ]dtdφ

=
1

(2π)2

∫ π

0

∫

R

|t| I(|t| ≤ 1/δ)F1[pρ(·, φ)](t)e−it[z,φ]dtdφ

=
1

(2π)2

∫ π

0

∫

R

|t| I(|t| ≤ 1/δ)W̃ρ(t cosφ, t sinφ)e−it[z,φ]dtdφ

=
1

(2π)2

∫
I(‖w‖ ≤ 1/δ)W̃ρ(w)e−i〈z,w〉dw. (16)

16



Thus, the Fourier transform of E[Kδ,n([z,Φ]− Y√
η
)] as a function of z is W̃ρ · I(‖·‖ ≤

1/δ). We write then

E[Kδ,n([z,Φ] − Y√
η
)] = [Wρ ∗Kδ] (z), (17)

where K̃δ(w) = I(‖w‖ ≤ 1/δ). Let us study the bias term by (6). By (15) and (17)

B(d2
n)

=
∣∣d2 − E[d2

n]
∣∣ =

∣∣∣∣∣

∫

R2

W 2
ρ (z)dz −

∫

‖z‖≤1/δ

∣∣∣∣E[Kδ,n([z,Φ] − Y√
η
)]

∣∣∣∣
2

dz

∣∣∣∣∣

=

∣∣∣∣
∫

R2

W 2
ρ (z)dz −

∫

‖z‖≤1/δ

[Wρ ∗Kδ]
2(z)dz

∣∣∣∣

≤
∣∣∣∣
∫

R2

(
W 2
ρ (z)dz − [Wρ ∗Kδ]

2(z)
)
dz

∣∣∣∣+
∣∣∣∣
∫

‖z‖>1/δ

[Wρ ∗Kδ]
2(z)dz

∣∣∣∣

≤
∣∣∣∣
∫

R2

(
W 2
ρ (z) − [Wρ ∗Kδ]

2(z)
)
dz

∣∣∣∣+ 2

∣∣∣∣
∫

‖z‖>1/δ

|[Wρ ∗Kδ](z) −Wρ(z)|2 dz
∣∣∣∣

+2

∣∣∣∣
∫

‖z‖>1/δ

|[Wρ(z)|2 dz
∣∣∣∣

= A1 + 2A2 + 2A3, (18)

where A1, 2A2 and 2A3 are respectively the first, the second and the third term of

the previous sum (18). By the Plancherel formula and using the smoothness of Wρ

A1 =
1

(2π)2

∣∣∣∣
∫

R2

(
|W̃ρ(w)|2 − |W̃ρ(w)I(‖w‖ ≤ 1/δ)|2

)
dw

∣∣∣∣

=
1

(2π)2

∫

‖w‖>1/δ

|W̃ρ(w)|2dw ≤ Le−
2α
δr , (19)

and, obviously,

A2 = o(1)

∫

R2

|[Wρ ∗Kδ](z) −Wρ(z)|2 dz

= o(1)
1

(2π)2

∫

R2

∣∣∣W̃ρ(w)I(‖w‖ ≤ 1/δ) − W̃ρ(w)
∣∣∣
2

dw

= o(1)
1

(2π)2

∫

‖w‖>1/δ

|W̃ρ(w)|2dw = o(1)Le−
2α
δr , (20)

17



as δ → 0, n→ ∞. Using now the asymptotic behaviour of Wρ

A3 =

∫

‖z‖>1/δ

|[Wρ(z)|2 dz ≤ (2π)2Le−
2α2r

δr = o(1)Le−
2α
δr , (21)

as δ → 0, n→ ∞ and 2r > 1 ∀r > 0. Then, by using (19), (20) and (21)

B(d2
n) ≤ Le−2α/δr

(1 + o(1)), as δ → ∞.

4.2 Proof of (8)

We recall that E[Kδ,n([z,Φ] − Y√
η
)] = [Wρ ∗Kδ](z), then

n(n− 1)(d2
n − E[d2

n])

=
∑

j 6=k

∫

‖z‖≤1/δ

{
Kδ,n([z,Φj] −

Yj√
η
)Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ]

2(z)

}
dz

=
∑

j 6=k

∫

‖z‖≤1/δ

[(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ](z)

)

+[Wρ ∗Kδ](z)

{(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)

+

(
Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ](z)

)}]
dz.

Then, d2
n − E[d2

n] = J1 + J2 where we denote by J1, J2 respectively

J1 =
1

n(n− 1)

∑

j 6=k

∫

‖z‖≤1/δ

(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ](z)

)
dz,

and

J2 =
2

n

∑

ℓ

∫

‖z‖≤1/δ

[Wρ ∗Kδ](z)

(
Kδ,n([z,Φℓ] −

Yℓ√
η
) − [Wρ ∗Kδ](z)

)
dz.
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Then

V ar(d2
n) = E[(d2

n − E[d2
n])

2] = E[J2
1 ] + E[J2

2 ] + 2E[J1J2]. (22)

See that the third part of the previous sum:

n2(n− 1)E[J1J2]

= 2
∑

k 6=j

∑

ℓ

E

[{∫

‖z‖≤1/δ

(
Kδ,n([z,Φk] −

Yk√
η
]) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)
dz

}

×
{∫

‖z‖≤1/δ

[Wρ ∗Kδ](z)

(
Kδ,n([z,Φℓ] −

Yℓ√
η
) − [Wρ ∗Kδ](z)

)
dz

}]

= 0,

by noticing E[Kδ,n([z,Φℓ]− Yℓ√
η
)− [Wρ ∗Kδ](z)] = 0 for all ℓ = 1, ..., n and because we

always have either ℓ 6= k and Kδ,n([z,Φℓ] − Yℓ√
η
), Kδ,n([z,Φk] − Yk√

η
) are independent

or ℓ 6= j and Kδ,n([z,Φj] − Yj√
η
), Kδ,n([z,Φℓ] − Yℓ√

η
) are independent. Now study

(n(n− 1))2E[J2
1 ]

= E

[(
∑

j 6=k

∫

‖z‖≤1/δ

(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ](z)

)
dz

)2
]

=
∑

j1 6=k1

∑

j2 6=k2

E

[{∫

‖z‖≤1/δ

(
Kδ,n([z,Φj1 ] −

Yj1√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk1 ] −

Yk1√
η
) − [Wρ ∗Kδ](z)

)
dz

}

×
{∫

‖z‖≤1/δ

(
Kδ,n([z,Φj2 ] −

Yj2√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk2 ] −

Yk2√
η
) − [Wρ ∗Kδ](z)

)
dz

}]
.

Note that, as soon as either j1 is different from k2 and j2, or k1 is different from k2

and j2 the expected value is 0. Thus,
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(n(n− 1))2E[J2
1 ]

=
∑

j 6=k
E

[(∫

‖z‖≤1/δ

(
Kδ,n([z,Φj] −

Yj√
η
) − [Wρ ∗Kδ](z)

)

×
(
Kδ,n([z,Φk] −

Yk√
η
) − [Wρ ∗Kδ](z)

)
dz

)2
]
.

By using the Cauchy Schwarz inequality, as (Yk,Φk) and (Yj,Φj) are i.i.d. and

by the definition (5) of Kδ,n, we get

E[J2
1 ]

≤ 2

n2

(∫

‖z‖≤1/δ

E

[∣∣∣∣Kδ,n([z,Φ] − Y√
η
) − [Wρ ∗Kδ](z)

∣∣∣∣
2
]
dz

)2

≤ 2

n2

(∫

‖z‖≤1/δ

E

[∣∣∣∣Kδ,n([z,Φ] − Y√
η
)

∣∣∣∣
2
]
dz

)2

≤ 2

n2

(∫

‖z‖≤1/δ

‖Kδ,n‖2
∞ dz

)2

≤ 2

n2

(∫

‖z‖≤1/δ

(∫ ∣∣∣K̃δ,n(t)dt
∣∣∣
)2

dz

)2

=
2

n2

(∫

‖z‖≤1/δ

(∫

|t|≤1/δ

|t|et2 1−η
4η dt

)2

dz

)2

≤ 8π2

n2δ4

(
4η

1 − η

)4

e
1−η

ηδ2 (1 + o(1)). (23)

The term E[J2
2 ] can be bounded as follows

E[J2
2 ]

= E



(

2

n

∑

ℓ

∫

‖z‖≤1/δ

[Wρ ∗Kδ](z)

(
Kδ,n([z,Φℓ] −

Yℓ√
η
) − [Wρ ∗Kδ](z)

))2



=
4

n2

∑

ℓ

E

[(∫

‖z‖≤1/δ

[Wρ ∗Kδ](z)

(
Kδ,n([z,Φℓ] −

Yℓ√
η
) − [Wρ ∗Kδ](z)

)
dz

)2
]

≤ 4

n
E

[(∫

‖z‖≤1/δ

[Wρ ∗Kδ](z)Kδ,n([z,Φ] − Y√
η
)dz

)2
]
.

20



By Cauchy Schwarz inequality

E[J2
2 ]

≤ 4

n

∫

‖z‖≤1/δ

∣∣∣∣E[Kδ,n([z,Φ] − Y√
η
)]

∣∣∣∣
2

dz

∫

‖z‖≤1/δ

E

[∣∣∣∣Kδ,n([z,Φ] − Y√
η
)

∣∣∣∣
2
]
dz

≤ 4

n

∫

‖z‖≤1/δ

|[Wρ ∗Kδ](z)|2 dz
∫

‖z‖≤1/δ

(∫

|t|≤1/δ

|t|et2
1−η
4η dt

)2

dz

≤ 8π

nδ2

(
4η

1 − η

)2

e
1−η

2ηδ2 (1 + o(1))

∫

R2

|[Wρ ∗Kδ](z)|2 dz.

Parseval’s equality and the asymptotic behaviour of W̃ρ yield

E[J2
2 ]

≤ 8π

nδ2

(
4η

1 − η

)2

e
1−η

2ηδ2 (1 + o(1))
1

(2π)2

∫

R2

I(‖w‖ ≤ 1/δ)
∣∣∣W̃ρ(w)

∣∣∣
2

dw

≤ 8π

nδ2

(
4η

1 − η

)2

e
1−η

2ηδ2 (1 + o(1))
1

(2π)2

∫

R2

∣∣∣W̃ρ(w)
∣∣∣
2

e2α‖w‖
r

dw

≤ 8πL

nδ2

(
4η

1 − η

)2

e
1−η

2ηδ2 (1 + o(1)). (24)

In view of (23), (24) we have E[J2
1 ] ∼ E2[J2

2 ]. As one chooses δ such that the variance

term tends to 0, we conclude by using (22).
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