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QUANTIZATION OF FORMAL CLASSICAL DYNAMICAL
r-MATRICES: THE REDUCTIVE CASEDAMIEN CALAQUEAbstra
t. In this paper we prove the existen
e of a formal dynami
al twistquantization for any triangular and non-modi�ed formal 
lassi
al dynami
al

r-matrix in the redu
tive 
ase. The dynami
al twist is 
onstru
ted as theimage of the dynami
al r-matrix by a L∞-quasi-isomorphism. This quasi-isomorphism also allows us to 
lassify formal dynami
al twist quantizationsup to gauge equivalen
e. Introdu
tionIn [Fe℄, Felder introdu
ed dynami
al versions of both 
lassi
al and quantumYang-Baxter equations whi
h has been generalized to the 
ase of a nonabelian basein [EV℄ for the 
lassi
al part and in [X3℄ for the quantum part. Naturally this leadsto quantization problems whi
h have been formulated in terms of twist quantizationà la Drinfeld ([Dr1℄) in [X2, X3, EE1, EE2℄.Let us formulate this problem in the general 
ontext. Consider an in
lusion
h ⊂ g of Lie algebras equipped with an element Z ∈ (∧3g)g. A (modi�ed) 
lassi
aldynami
al r-matrix for (g, h, Z) is a regular (meaning C∞, meromorphi
, formal,
. . . depending on the 
ontext) h-equivariant map ρ : h∗ → ∧2g whi
h satis�es the(modi�ed) 
lassi
al dynami
al Yang-Baxter equation (CDYBE)(1) CYB(ρ)−Alt(dρ) = Zwhere CYB(ρ) := [ρ1,2, ρ1,3] + [ρ1,2, ρ2,3] + [ρ1,3, ρ2,3] = 1

2 [ρ, ρ] and
Alt(dρ) :=

∑

i

(
h1

i

∂ρ2,3

∂λi
− h2

i

∂ρ1,3

∂λi
+ h3

i

∂ρ1,2

∂λi

)Here (hi) and (λi) are dual basis of h and h∗.Let Φ = 1 + O(~2) ∈ (Ug⊗3)g[[~]] be an asso
iator quantizing Z (of whi
h theexisten
e was proved in [Dr2, proposition 3.10℄). A dynami
al twist quantization ofa (modi�ed) 
lassi
al dynami
al r-matrix ρ asso
iated to Φ is a regular h-equivariantmap J = 1 + O(~) ∈ Reg(h∗, Ug⊗2)[[~]] su
h that AltJ−1
~

= ρ mod ~ and whi
hsatis�es the (modi�ed) dynami
al twist equation (DTE)(2) J12,3(λ) ∗ J1,2(λ + ~h3) = Φ−1J1,23(λ) ∗ J2,3(λ)where ∗ denotes the PBW star-produ
t of fun
tions on h∗ and
J1,2(λ+ ~h3) :=

∑

k≥0

~k

k!

∑

i1,...,ik

(∂λi1 · · ·∂λi
k J)(λ)⊗ (hi1 · · ·hik

)1



2 DAMIEN CALAQUENow observe that many (modi�ed) 
lassi
al dynami
al r-matri
es 
an be viewedas formal ones by taking their Taylor expansion at 0. In this paper we are interestedin the following 
onje
ture:Conje
ture 0.1 ([EE1℄). Any (modi�ed) formal 
lassi
al dynami
al r-matrix ad-mits a dynami
al twist quantization.Let us reformulate DTE in the formal framework. A formal (modi�ed) dynami
altwist is an element J(λ) = 1 + O(~) ∈ (Ug⊗2⊗̂Ŝh)h[[~]] whi
h satis�es DTE,and J1,2(λ + ~h3) ∈ (Ug⊗3⊗̂Ŝh)[[~]] is equal to (id⊗2 ⊗ ∆̃)(J) where ∆̃ : Ŝh →

(Ug⊗̂Ŝh)[[~]] is indu
ed by h ∋ x 7→ ~x ⊗ 1 + 1 ⊗ x. Then de�ne K := J(~λ) ∈
(Ug⊗2 ⊗ Sh)h[[~]] whi
h we view as an element of (Ug⊗2 ⊗ Uh)h[[~]] using thesymmetrization map Sh → Uh. Sin
e J is a solution of DTE K satis�es the(modi�ed) algebrai
 dynami
al twist equation (ADTE)(3) K12,3,4K1,2,34 = (Φ−1)1,2,3K1,23,4K2,3,4Moreover and by 
onstru
tion, K = 1 +

∑
n≥1 ~nKn has the ~-adi
 valuationproperty. Namely, Uh is �ltered by (Uh)≤n = ker (id− η ◦ ε)⊗n+1 ◦∆(n) where

ε : Uh → k and η : k → Uh are the 
ounit and unit maps, and Kn ∈ (Uh)≤n−1.Conversely, any algebrai
 dynami
al twist having the ~-adi
 valuation property 
anbe obtained from a unique formal dynami
al twist by this pro
edure.This paper, in whi
h we always assume Z = 0 and Φ = 1 (non-modi�ed 
ase),is organized as follow.In se
tion 1 we de�ne two di�erential graded Lie algebras (dgla's) respe
tivelyasso
iated to 
lassi
al dynami
al r-matri
es and algebrai
 dynami
al twists. Thenwe formulate the main theorem of this paper whi
h states that if h admits an
adh-invariant 
omplement (the redu
tive 
ase) then these two dgla's are L∞-quasi-isomorphi
 and we prove that it implies Conje
ture 0.1 in this 
ase, whi
h general-izes Theorem 5.3 of [X2℄:Theorem 0.2. In the redu
tive 
ase, any formal 
lassi
al dynami
al r-matrix for
(g, h, 0) admits a dynami
al twist quantization (asso
iated to the trivial asso
iator).The se
ond se
tion is devoted to the proof of the main theorem of se
tion 1: usingan equivariant formality theorem for homogeneous spa
es whi
h is obtain from [Do℄,we 
onstru
t a L∞-quasi-isomorphism whi
h we then modify in order to obtain thedesired one. We use this L∞-quasi-isomorphism to 
lassify formal dynami
al twistquantizations up to gauge equivalen
e for the redu
tive 
ase in se
tion 3. In se
tion4 we prove that if g = h⊕m for h abelian and m a Lie subalgebra then the resultsof se
tions 1 and 2 are still true in this situation. We 
on
lude the paper with someopen questions, and re
all basi
 results for L∞-algebras in an appendix.A
knowledgements. I thank Benjamin Enriquez for many usefull dis
ussions onthis subje
t. 1. Definitions and resultsLet h ⊂ g be an in
lusion of Lie algebras.



QUANTIZATION OF FORMAL CLASSICAL DYNAMICAL r-MATRICES 31.1. Algebrai
 stru
tures asso
iated to CDYBE. Let us 
onsider the follow-ing graded ve
tor spa
e
CDYB := ∧∗g⊗ Sh =

⊕

k≥0

∧kg⊗ Shequipped with the di�erential d de�ned by(4) d(x1 ∧ · · · ∧ xk ⊗ h1 · · ·hl) := −
l∑

i=1

hi ∧ x1 ∧ · · · ∧ xk ⊗ h1 · · ·hlĥiWith the exterior produ
t ∧ it be
omes a di�erential graded 
ommutative asso
ia-tive algebra. Moreover, one 
an de�ne a graded Lie bra
ket of degree −1 on CDYBwhi
h is the Lie bra
ket of g extended to CDYB in the following way:(5) [a, b ∧ c] = [a, b] ∧ c+ (−1)(|a|−1)|b|b ∧ [a, c]Thus one 
an observe that polynomial solutions to CDYBE are exa
tly elements
ρ ∈ CDYB of degree 2 su
h that dρ+ 1

2 [ρ, ρ] = 0. We would like to say that su
h a
ρ is a Maurer-Cartan element but (CDYB[1], d, [, ]) is not a di�erential graded Liealgebra (dgla).Instead, remember that we are interested in h-equivariant solutions of CDYBE(i.e., dynami
al r-matri
es) and thus 
onsider the subspa
e g1 = (CDYB)h of h-invariants with the same di�erential and bra
ket.Proposition 1.1. (g1[1], d, [, ]) is a dgla. Moreover (g1, d,∧, [, ]) is a Gerstenhaberalgebra.Proof. Let a = x1∧· · ·∧xk⊗h1 · · ·hs and b = y1∧· · ·∧yl⊗m1 · · ·mt be h-invariantelements in g1. We want to show that(6) d[a, b] = [da, b] + (−1)k−1[a, db]The l.h.s. of (6) is equal to

−
( s∑

i=1

hi ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtĥi

+
t∑

j=1

mj ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtm̂j

)The �rst term in the r.h.s. of (6) gives
s∑

i=1

(
(−1)k−1x1∧· · ·∧xk∧[hi, y1∧· · ·∧yl]−hi∧[x1∧· · ·∧xk, y1∧· · ·∧yl]

)
⊗h1 · · ·hsm1 · · ·mtĥiand for the se
ond term we obtain

t∑

j=1

(
(−1)k−1[mj , x1∧· · ·∧xk]∧y1∧· · ·∧yl−mj∧[x1∧· · ·∧xk, y1∧· · ·∧yl]

)
⊗h1 · · ·hsm1 · · ·mtm̂j



4 DAMIEN CALAQUEThus the di�eren
e between the l.h.s. and the r.h.s. of (6) is equal to
(−1)k

( k∑

i=1

x1 ∧ · · · ∧ xk ∧ [hi, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtĥi

+

l∑

j=1

[mj , x1 ∧ · · · ∧ xk] ∧ y1 ∧ · · · ∧ yl ⊗ h1 · · ·hsm1 · · ·mtm̂j

)Then using h-invarian
e of a and b one obtains
(−1)k−1

∑

i,j

x1∧· · ·∧xk∧y1∧· · ·∧yl⊗
(
h1 · · ·hsm1 · · ·mt([hi,mj ]−[mj , hi])ĥim̂j

)
= 0The se
ond statement of the proposition is obvious from the de�nition (5) of thebra
ket. �Let ρ(λ) ∈ (∧2g⊗̂Ŝh)h be a formal 
lassi
al dynami
al r-matrix. Sin
e ρ satis�esCDYBE, α := ~ρ(~λ) ∈ ~g1[[~]] is a Maurer-Cartan element (i.e. dα+ 1

2 [α, α] = 0).1.2. Algebrai
 stru
tures asso
iated to ADTE. Let us now 
onsider the gradedve
tor spa
e
ADT := T ∗Ug⊗ Uh =

⊕

k≥0

⊗kUg⊗ Uhequipped with the di�erential b given by(7) b(P ) := P 2,...,k+2 +

k+1∑

i=1

(−1)iP 1,...,ii+1,...,k+2 for P ∈ ⊗kUg⊗ UhRemark 1.2. This is just the 
oboundary operator of Ho
hs
hild's 
ohomologywith value in a 
omodule; and b2 = 0 follows dire
tly from an easy 
al
ulation.One 
an de�ne on ADT an asso
iative produ
t ∪ (the 
up produ
t) whi
h isgiven on homogeneous elements P ∈ ⊗kUg⊗ Uh and Q ∈ ⊗lUg⊗ Uh by
P ∪Q := P 1,...,k,k+1...k+l+1Qk+1,...,k+l+1Proposition 1.3. (ADT, b,∪) is a di�erential graded asso
iative algebra.Proof. The 
up produ
t is obviously asso
iative. Thus the only thing we have to
he
k is that(8) b(P ∪Q) = bP ∪Q+ (−1)|P |P ∪ bQLet k = |P | and l = |Q|. The l.h.s. of (8) is equal to

P 2,...,k+1,k+2...k+l+2Qk+2,...,k+l+2 +

k∑

i=1

(−1)iP 1,...,ii+1,...,k+1,k+2...k+l+2Qk+2,...,k+l+2

+

k+l+1∑

i=k+1

(−1)iP 1,...,k,k+1...k+l+2Qk+1,...,ii+1,...,k+l+2The �rst line of this expression is equal to
bP ∪Q− (−1)k+1P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2and the last term of the same expression gives
(−1)k

(
P ∪ bQ− P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2

)



QUANTIZATION OF FORMAL CLASSICAL DYNAMICAL r-MATRICES 5The proposition is proved. �Re
all that in the 
ase h = {0} one 
an de�ne a bra
e algebra stru
ture on
(T ∗Ug)[1] (see [Ge℄). Unfortunately we are not able to extend this stru
ture to ADTin general. Sin
e we deal with h-equivariant solutions of ADTE we 
an 
onsiderthe subspa
e g2 = (ADT)h of h-invariants. Let us now de�ne a 
olle
tion of linearhomogeneous maps of degree zero {−|−, . . . ,−} : g2[1] ⊗ g2[1]⊗m → g2[1] indexedby m ≥ 0, and {P |Q1, . . . , Qm} is given by

∑

0≤i1,im+km≤n
il+kl≤il+1

(−1)ǫP 1,...,i1+1...i1+k1,...,im+1...im+km,...,n+1
m∏

s=i

Qis+1,...,is+ks,is+ks+1...n+1
swhere ks = |Qs|, n = |P |+

∑
s ks −m and ǫ =

∑
s(ks − 1)is.Proposition 1.4. (g2[1], {−|−, . . . ,−}) is a bra
e algebra.Proof. Sin
e we work with h-invariant elements one 
an remark that if is + ks ≤ itthen Qis+1,...,is+ks,is+ks+1...n+1

s and Qit+1,...,it+kt,it+kt+1...n+1
t 
ommute. Using thisthe proof be
omes identi
al to the 
ase when h = 0 (see [Ge℄ for example). �Now observe that sin
e m = 1⊗3 ∈ (⊗2Ug ⊗ Uh)h is su
h that {m|m} = 0 oneobtains a B∞-algebra stru
ture ([Ba℄) on g2 (see [Kh℄). More pre
isely, we have adi�erential graded bialgebra stru
ture on the 
ofree tensorial 
oalgebra T (g2[1]) ofwhi
h stru
ture maps an, ap,q are given by

• a1(P ) = bP = (−1)|P |−1[m,P ]G, where
[P,Q]G := {P |Q} − (−1)(|P |−1)(|Q|−1){Q|P}

• a2(P,Q) = {m|P,Q} = P ∪Q
• a0,1 = a1,0 = id
• a1,n(P ;Q1, . . . , Qn) = {P |Q1, . . . , Qn} for n ≥ 1
• all other maps are zeroIn parti
ular, we haveProposition 1.5. (g2[1], b, [, ]G) is a dgla.Remark 1.6. Sin
e that for any graded ve
tor spa
e V , dg bialgebra stru
tureson the 
ofree 
oasso
iative 
oalgebra T cV are in one-to-one 
orresponden
e withdg Lie bialgebra stru
tures on the 
ofree Lie 
oalgebra LcV (see [Ta℄, se
tion 5),then Lc(g2[1]) be
omes a dg Lie bialgebra with di�erential and Lie bra
ket given bymaps ln, lp,q su
h that l1 = b and l1,1 = [, ]G. Therefore d2 :=

∑
i≥0 l

i+
∑

p,q≥0 l
p,q :

Cc(Lc(g2[1])) → Cc(Lc(g2[1])) de�nes a G∞-algebra stru
ture on g2 (d2 ◦ d2 = 0sin
e d2 is just the Chevalley-Eilenberg di�erential on the dg Lie algebra Lc(g2[1])).1.3. Main result and proof of theorem 0.2. First of all, observe that CDYB,
g1 and G1 := Cc(g1[2]) have a natural grading indu
ed by the one of Sh. In thesame way ADT, g2 and G2 := Cc(g2[2]) have a natural �ltration indu
ed by theone of Uh. Our main goal is to prove the following theorem, whi
h is su�
ient toobtain algebrai
 dynami
al twists from formal dynami
al r-matri
es.Theorem 1.7. In the redu
tive 
ase, there exists a L∞-quasi-isomorphism

Ψ : (G1, d + [, ])→ (G2, b+ [, ]G)with the following two �ltration properties:



6 DAMIEN CALAQUE(F1) ∀X ∈ (g1)k, Ψ1(X) = (alt⊗ sym)(X) mod (g2)≤k−1(F2) ∀X ∈ (Λng1)k, Ψn(X) ∈ (g2)≤n+k−1Proof of Theorem 0.2. Now 
onsider a formal solution ρ(λ) ∈ (∧2g⊗̂Ŝh)h to CDYBE.Let us de�ne α := ~ρ(~λ) ∈ ~g1[[~]] whi
h is a Maurer-Cartan element in ~g1[[~]].The L∞-morphism property implies that α̃ :=
∑∞

n=1
1
n!Ψ

n(Λnα) is a Maurer-Cartan element in ~g2[[~]]; this exa
tly means that K := 1+ α̃ ∈ (⊗2Ug⊗Uh)h[[~]]satis�es ADTE. Moreover, due to (F2) the 
oe�
ientKn of ~n inK lies in (g2)≤n−1.It means that there exists J ∈ (Ug⊗2⊗̂Ŝh)h[[~]] satisfying DTE and su
h that
K = (id⊗2 ⊗ sym)(J(~λ)). Finally, property (F1) obviously implies that the semi-
lassi
al limit 
ondition J−Jop

~
= ρ mod ~ is satis�ed. �2. Proof of theorem 1.7In this se
tion we assume that g = h ⊕ m with [h,m] ⊂ m. Let us denote by

p : g→ m the proje
tion on m along h; it is h-equivariant.2.1. Resolutions. Let us �rst observe that the bilinear map [, ]m := (∧·p) ◦ [, ]de�nes a graded Lie bra
ket of degree −1 on (∧∗m)h. Then we proveProposition 2.1. The natural map p1 : (g1[1], d, [, ]) → ((∧∗m)h[1], 0, [, ]m) is amorphism of dgla's. Moreover, there exists an operator δ : g∗1 → g∗−1
1 su
h that

δd + dδ = id − p1, δ ◦ δ = 0 and δ((g1)k

)
⊂ (g1)k+1. In parti
ular, p1 indu
es anisomorphism in 
ohomology.Proof. The proje
tion p1 := (∧·p) ⊗ ε : (CDYB, d) → (∧∗m, 0) is a h-equivariantmorphism of 
omplexes, and it obviously restri
ts to a morphism of (di�erential)graded Lie algebras at the level of h-invariants.Moreover, ∧ng ⊗ Sh ∼=

⊕
p+q=n ∧

pm ⊗ ∧qh ⊗ Sh as a h-module; and underthis identi�
ation d be
omes −id ⊗ dK , where dK : ∧∗h ⊗ Sh → ∧∗+1h ⊗ Sh isKoszul's 
oboundary operator, and p1 
orresponds to the proje
tion on the part ofzero antisymmetri
 and symmetri
 degrees in h. Let us de�ne δ = id ⊗ δK with
δK : ∧∗h⊗ S∗h→ ∧∗−1h⊗ S∗+1h de�ned by
δK(x1∧· · ·∧xn⊗h1 · · ·hm) =

{
1

m+n

∑
i
(−1)i

x1 ∧ · · · x̂i · · · ∧ xn ⊗ h1 · · · hmxi if m + n 6= 0

0 otherwiseFinally remark δ is a h-equivariant homotopy operator: δd + dδ = id − p1 and
δ ◦ δ = 0. The proposition is proved. �Now we prove a similar result for g2. Let us �rst de�ne Um := sym(Sm) ⊂
Ug; this is a sub-
oalgebra of Ug and thus T ∗Um equipped with its Ho
hs
hild's
oboundary operator bm be
omes a 
o
hain sub
omplex of the Ho
hs
hild 
omplex
(T ∗Ug, bg) of Ug. We also have the followingLemma 2.2. Ug = Ug·h⊕Um as a �ltered h-module. Moreover [, ]G,m := (⊗·p)◦[, ]de�nes a graded Lie bra
ket of degree −1 on (T ∗Um)hProof. See [He, Ch.II �4.2℄ for the �rst statement. The se
ond statement followsfrom a dire
t 
omputation. �Then we prove the



QUANTIZATION OF FORMAL CLASSICAL DYNAMICAL r-MATRICES 7Proposition 2.3. The natural map p2 : (g2[1], b, [, ]G) → ((T ∗Um)h[1], bm, [, ]G,m)is a morphism of dgla's. Moreover, there exists an operator κ : g∗2 → g∗−1
2 su
hthat κb + bκ = id − p2, κ ◦ κ = 0 and κ

(
(g2)≤k

)
⊂ (g2)≤k+1. In parti
ular, p2indu
es an isomorphism in 
ohomology.Proof. The proje
tion p2 := (⊗·p) ⊗ ε : (ADT, b)→ (T ∗Um, bm) is a h-equivariantmorphism of 
omplexes, and it obviously restri
ts to a morphism of dgla's at thelevel of h-invariants (by lemma 2.2).Remember that g2 has a natural �ltration indu
ed by the one of Uh. Then oneobtains a spe
tral sequen
e of whi
h we 
ompute the �rst terms:

E∗,∗
0 = (T ∗Ug⊗ S∗h)h d0 = bg ⊗ id

E∗,∗
1 = (∧∗g⊗ S∗h)h d1 = d

E∗,∗
2 = E∗,0

2 = (∧∗m)h d2 = 0Then the proposition follows from proposition 2.1. �2.2. Inverting p2. In this subse
tion, taking our inspiration from [Mo, appendix℄,we prove the followingProposition 2.4. There exists a L∞-quasi-isomorphism
Q2 : (Cc((T ∗Um)h[2]), bm + [, ]G,m)→ (Cc(g2[2]), b+ [, ]G)su
h that Q1
2 is the natural in
lusion and Qn

2 takes values in (g2)≤n−1.Proof. Let (N, bN ) ⊂ (g2, b) be the kernel of the surje
tive morphism of 
omplexes
p2 : (g2, b)→ ((T ∗Um)h, bm). It follows from the proofs of propositions 2.1 and 2.3that there exists an operatorH : N∗ → N∗−1 su
h thatH◦H = 0, bNH+HbN = idand H(N≤n) ⊂ N≤n+1.Now let us 
onstru
t a L∞-isomorphism

F :
(
Cc(g2[2]), b+ [, ]G

)
−̃→

(
Cc((T ∗Um)h[2]⊕N [2]), bm + bN + [, ]G,m

)with stru
ture maps Fn : Λng2 → ((T ∗Um)h ⊕N)[1− n] su
h that
• F1 is the sum of p2 with the proje
tion on N along (T ∗Um)h (in some sense
F1 is the identity),
• for any n > 1 and X ∈ (Λng2)≤k, Fn(X) ∈ N≤n+k−1.Let us prove it by indu
tion on n. First F1 is a morphism of 
omplexes by de�nition.Then let us de�ne K2 : Λ2g2 → ((T ∗Um)h ⊕N)[1] by

K2(xΛy) = [F1(x),F1(y)]G,m −F
1([x, y]G)It takes values in N [1] and is su
h that bNK2(x, y) + K2(bx, y) + K2(x, by) = 0.Consequently F2 := H ◦ K2 : Λ2g2 → N is su
h that

bNF
2(x, y)−F2(bx, y)−F2(x, by) = K2(x, y) (L∞-
ondition for F2)and for any X ∈ (Λ2g2)≤k, F2(X) ∈ N≤k+1. After this, suppose we have 
on-stru
ted F1, . . . ,Fn and let us de�ne
Kn+1 := [, ]G,m ◦ F

≤n −F≤n ◦ [, ]G : Λ2g2 → ((T ∗Um)h ⊕N)[1]It obviously takes values in N [1] and is su
h that bNKn+1 + Kn+1b = 0. Conse-quently Fn+1 := H ◦Kn+1 satis�es the L∞-
ondition
bNF

n+1 −Fn+1b = bNHKn+1 −HKn+1b = (bNH +HbN)Kn+1 = Kn+1and for any X ∈ (Λng2)≤n+1, Fn+1(X) ∈ N≤n+k (sin
e Kn+1(X) ∈ N≤n+k−1).



8 DAMIEN CALAQUENow let H be the inverse of the isomorphism F , it is su
h that for any n ≥ 1and X ∈ (Λng2)≤k, Hn(X) ∈ N≤n+k−1. Finally we obtain Q2 by 
omposing Hwith the in
lusion of dgla's (T ∗Um)h[1] →֒ ((T ∗Um)h ⊕N)[1]. �2.3. End of the proof. Re
all from [He, Ch.II �4.2℄ that (T ∗Um)h = Diff∗(G/H)Gand (∧∗m)h = Γ(G/H,∧∗T (G/H))G as dgla's. Remember also from [No, Ch.II�8℄ that G-invariant 
onne
tions on G/H are in one-to-one 
orresponden
e with
h-equivariant linear maps α : m ⊗ m → m, and that the torsion tensor is givenby α − α21 − p ◦ [, ]. Thus G/H is equipped with a G-invariant torsion free 
on-ne
tion ∇, 
orresponding to the map α := 1

2p ◦ [, ]. Then using a theorem ofDolgushev, see [Do, theorem 5℄, we obtain a G-equivariant L∞-quasi-isomorphism
φ : Γ(G/H,∧∗T (G/H)) → Diff∗(G/H) with �rst stru
ture map φ1 = alt, whi
hrestri
ts to a L∞-quasi-isomorphism at the level of G-invariants. Let us de�ne
ψ := Q2 ◦ φ ◦ p1 : (Cc(g1[2]), d + [, ]) → (Cc(g2[2]), b + [, ]G); it is a L∞-quasi-isomorphism with �rst stru
ture map ψ1 = (alt⊗ 1) ◦ (∧·p⊗ ε).Finally de�ne V := (alt⊗ sym)◦ δ : g1 → g2[−1] and use lemma A.3 to 
onstru
ta L∞-quasi-morphism Ψ : (Cc(g1[2]), d + [, ]) → (Cc(g2[2]), b + [, ]G) with �rststru
ture map Ψ1 = ψ1 + b ◦ V + V ◦ d. Sin
e for any X ∈ (G1)k, then

b ◦ (alt⊗ sym)(X) = (alt⊗ sym) ◦ d(X) mod (g2)≤k−1and thus Ψ1(X) = ψ1(X) + bV (X) + V (dX)
= (alt⊗ sym) ◦ (p1 + dδ + δd)(X) mod (g2)≤k−1

= (alt⊗ sym)(X) mod (g2)≤k−1Consequently Ψ satis�es (F1). Moreover, it follows from remark A.4 that Ψ alsosatis�es (F2). 2 3. Classifi
ationTheorem 1.7 implies a stronger result than just the existen
e of the twist quan-tization. Namely, sin
e Ψ is a L∞-quasi-isomorphism there is a bije
tion betweenthe moduli spa
es of Maurer-Cartan elements of dgla's (g1[1])[[~]] and (g2[1])[[~]].3.1. Classi�
ation of algebrai
 and formal dynami
al twists. Following [EE1℄,two dynami
al twists J(λ) and J ′(λ) are said to be gauge equivalent if there ex-ists a regular h-equivariant map T (λ) = exp(q) + O(~) ∈ Reg(h∗, Ug)h[[~]], with
q ∈ Reg(h∗, g)h su
h that q(0) = 0, and satisfying(9) J ′(λ) = T 12(λ) ∗ J(λ) ∗ T 2(λ)−1 ∗ T 1(λ+ ~h2)−1Dealing with formal fun
tions one 
an easily derive an equivalen
e relation for the
orresponding algebrai
 dynami
al twists K = J(~λ) and K ′ = J ′(~λ):(10) K ′ = Q12,3K(Q2,3)−1(Q1,23)−1in (Ug⊗2 ⊗ Uh)h[[~]], with Q = 1 +O(~) ∈ (Ug⊗ Uh)h[[~]] given by T (~λ).Assume now we are in the redu
tive 
ase.Sin
e the 
omposition Q2 ◦φ : (Cc((∧m)h[2]), [, ]m)→ (Cc(g2[2]), b+ [, ]G) in theprevious se
tion is a L∞-quasi-isomorphism then we have a bije
tive 
orrespondan
e(11) {π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0
←→

{algebrai
 dynami
al twists}gauge equivalen
e (10)
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orresponding to the Lie algebra ~ mh[[~]].Moreover, sin
e the stru
ture maps Qn
2 take values in (g2)≤n−1 then it appearsthat any algebrai
 dynami
al twist is gauge equivalent to a one with the ~-adi
valuation property and thus we have a bije
tion(12) {algebrai
 dynami
al twists}gauge equivalen
e (10)
←→

{formal dynami
al twists}gauge equivalen
e (9)3.2. Classi
al 
ounterpart. Assume that we are in the redu
tive 
ase. Sin
e p1is a L∞-quasi-isomorphism by propostion 2.1 then we have a bije
tion
{α ∈ ~(∧2g⊗ Sh)h[[~]] s.t. dα+ 1

2 [α, α] = 0}

G1
←→

{π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0where G1 is a prounipotent group and its a
tion (by a�ne transformations) is givenby the exponentiation of the in�nitesimal a
tion of its Lie algebra ~(g⊗ Sh)h[[~]]:(13) q · α = dq + [q, α]
(
q ∈ ~(g⊗ Sh)h[[~]]

)Then going along the lines of subse
tion 2.2 one 
an prove the followingProposition 3.1. There exists a L∞-quasi-isomorphism
Q1 : (Cc((∧∗m)h[2]), [, ]m)→ (Cc(g1[2]), d + [, ])su
h that Q1

1 is the natural in
lusion and Qn
1 takes values in (g1)≤n−1.Consequently any Maurer-Cartan element in (g1[1])[[~]] is equivalent to a one ofthe form ~ρ~(~λ), where ρ~ ∈ (∧2g⊗̂Ŝh)h[[~]] satis�es CDYBE. In other words ρ~is ~-dependant formal dynami
al r-matrix. On su
h a ρ~ the in�nitesimal a
tion(13) be
omes(14) q · ρ~ = −

∑

i

hi ∧
∂q

∂λi
+ [q, ρ~] (q ∈ g⊗̂Ŝh)h[[~]]This a
tion integrates in an a�ne a
tion of some group G̃1 of h-equivariant formalmaps with values in the Lie group G of g. And then we have a bije
tion(15) {π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0
←→

{form. dynam. r-matri
es/R[[~]]}

G̃1Remark 3.2. This bije
tion has to be 
ompared with Proposition 2.13 in [X2℄and se
tion 3 of [ES℄Finally, 
ombining (15), (11) and (12) we obtain the following generalization ofTheorem 6.11 in [X2℄ to the 
ase of a nonabelian base:Theorem 3.3. Let π ∈ (∧2m)h su
h that [π, π]m = 0. Then there are bije
tive
orrespondan
es between(1) the set of ~-dependant and G-invariant Poisson stru
tures π~ = ~π mod ~2on G/H, modulo the a
tion of G0,(2) the set of ~-dependant formal dynami
al r-matri
es ρ~(λ) su
h that ρ~(0) =

π mod ~ in ∧2(g/h)[[~]], modulo the a
tion (14) of G̃1,(3) the set of formal dynami
al twists J(λ) satisfying AltJ(0)−1
~

= π mod ~ in
∧2(g/h)[[~]], modulo gauge equivalen
e (9).
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ase when the twist quantization existsIn this se
tion we assume that h is abelian and admits a Lie subalgebra m as
omplement.Note that sin
e h is abelian and m a Lie subalgebra, the proje
tion p : g→ g on
m along h extends to a morphsim of graded Lie algebras ∧·p : (∧g)h → (∧g)h at thelevel of h-invariants. And thus ∧·p ⊗ ε : (g1[1], d, [, ]) → ((∧g)h[1], 0, [, ]) is a mor-phism of dgla's. Then the natural in
lusion id⊗1 : (T ∗Ug)h → g2 obviously allowsone to 
onsider (T ∗Ug)h[1] as a sub-dgla of g2[1]. Finally re
all from [Ca, se
tion3.3℄ that there exists a L∞-quasi-isomorphism F : Cc((∧∗g)h[2])→ Cc((T ∗Ug)h[2])with F1 = alt. By 
omposing these maps one obtains a L∞-morphism

F̃ : (G1, d + [, ])→ (G2, b+ [, ]G)with values in (G2)≤0 and �rst stru
ture map F̃1 = (alt⊗ 1) ◦ (∧·p⊗ ε).Theorem 4.1. There exists a L∞-quasi-iomorphism
Ψ : (G1, d + [, ])→ (G2, b+ [, ]G)with properties (F1) and (F2) of Theorem 1.7.Proof. First observe that sin
e h is abelian then g1

∼= ((∧g)h ∩∧m)⊗∧h⊗ Sh as ave
tor spa
e. Thus if δK is as in the proof of proposition 2.1 then δ := id⊗ δK is ahomotopy operator: δd + dδ = id− ∧·p⊗ ε and δ ◦ δ = 0.Now we pro
eed like in subse
tion 2.3: use lemma A.3 to 
onstru
t a L∞-morphism Ψ with �rst stru
ture map Ψ1 = F̃1 + b ◦ V + V ◦ d, where V :=
(alt⊗ sym) ◦ δ : g1 → g2[−1].It remains to prove that Ψ is a quasi-isomorphism. It follows from the �rstobservation in this proof that H∗(g1, d) = (∧g)h ∩ ∧m, whi
h also equals H∗(g2, b)due to the spe
tral sequen
e argument. Consequently F̃1 is a quasi-isomorphismof 
omplexes, and so is Ψ1. �Finally using the same argumentation as in the proof of theorem 0.2 (subse
tion1.3) one obtains theTheorem 4.2. If h is an abelian subalgebra of g with a Lie subalgebra as a 
omple-ment, then any formal 
lassi
al dynami
al r-matrix for (g, h, 0) admits a dynami
altwist quantization (asso
iated to the trivial asso
iator).Example 4.3. In parti
ular, this allows us to quantize dynami
al r-matri
esarizing from semi-dire
t produ
ts g = m ⋉ Cn like in [EN, example 3.7℄.Con
luding remarksLet us �rst observe that if h is abelian then (∧∗g)h ∩ ∧∗m[1] (resp. (T ∗Ug)h ∩
T ∗sym(Sm)[1]) inherits a dgla stru
ture from the one of g1[1] (resp. g2[1]) and
H∗(g1, d) = (∧∗g)h ∩ ∧∗m = H∗(g2, b), for any 
omplement m of h. Thus I 
on-je
ture that there exists a L∞-quasi-isomorphism between (∧∗g)h ∩ ∧∗m[1] and
(T ∗Ug)h ∩ T ∗sym(Sm)[1] whi
h generalizes together φ of subse
tion 2.3 and F ofse
tion 4. In parti
ular this would imply 
onje
ture 0.1 in the abelian (and non-modi�ed) 
ase.Let us then mention that one 
an 
onsider a non-triangular (i.e., non-antisymmetri
)version of non-modi�ed 
lassi
al dynami
al r-matri
es. Namely, h-equivariant maps
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r ∈ Reg(h∗, g ⊗ g) su
h that CYB(r) − Alt(dr) = 0. A

ording to [X3℄, a quanti-zation of su
h a r is a h-equivariant map R = 1 + ~r +O(~2) ∈ Reg(h∗, Ug⊗2)[[~]]that satis�es the quantum dynami
al Yang-Baxter equation (QDYBE)(16) R1,2(λ) ∗R1,3(λ+ ~h2) ∗R2,3(λ) = R2,3(λ+ ~h1) ∗R1,3(λ) ∗R1,2(λ+ ~h3)Question 4.4. Does su
h a quantization always exist?The most famous example of non-triangular dynami
al r-matri
es was found in[AM℄ by Alekseev and Meinrenken, then extended su

essively to a more general
ontext in [EV, ES, EE1℄, and quantized in [EE1℄.Following [EE1℄, remark that for any non-triangular dynami
al r-matrix r su
hthat r + rop = t ∈ (S2g)g (quasi-triangular 
ase) one 
an de�ne ρ := r − t/2and Z := 1

4 [t1,2, t2,3]. Then ρ is a modi�ed dynami
al r-matrix for (g, h, Z);morever the assignment r 7−→ ρ is a bije
tive 
orresponden
e between quasi-triangular dynami
al r-matri
es for (g, h, t) and modi�ed dynami
al r-matri
esfor (g, h, Z). Now observe that if J(λ) is a dynami
al twist quantizing ρ, then
R(λ) = Jop(λ)−1 ∗ e~t/2 ∗ J(λ) is a quantum dynami
al R-matrix quantizing r.In this paper we have 
onstru
ted su
h a dynami
al twist in the triangular 
ase
t = 0. One 
an askQuestion 4.5. Does su
h a dynami
al twist exist for any quasi-triangular dynam-i
al r-matrix? At least in the redu
tive and abelian 
ases?This question seems to be more reasonable than the previous one.More generally one 
an ask if 
onje
ture 0.1 (and its smooth and meromorphi
versions) is true in general. A positive answer was given in [EE1℄ when h = g; butunfortunately it is not known in general, even for the non-dynami
al 
ase h = {0}(whi
h is the last problem of Drinfeld [Dr1℄: quantization of 
oboundary Lie bial-gebras).Finally let me mention that if r(λ) is a triangular dynami
al r-matrix for (g, h),then the bive
tor �eld

π :=
−−→
r(λ) +

∑

i

∂

∂λi
∧
−→
hi + πh∗is a G×H-biinvariant Poisson stru
ture on G×h∗ and the proje
tion p : G×h∗ → h∗is a momentum map. Moreover, a

ording to [X3℄ any dynami
al twist quantization

J(λ) of r(λ) allows us to de�ne a G×H-biinvariant star-produ
t ∗ quantizing π on
G× h∗ as follows:

f ∗ g = f ∗PBW g if f, g ∈ C∞(h∗)
f ∗ g = fg if f ∈ C∞(G), g ∈ C∞(h∗)

f ∗ g = exp
(
~

∑
i

∂
∂λi ⊗

−→
hi

)
· (f ⊗ g) if f ∈ C∞(h∗), g ∈ C∞(G)

f ∗ g =
−−→
J(λ)(f ⊗ g) if f, g ∈ C∞(G)This way the map p∗ : (Fct(h∗)[[~]], ∗PBW )→ (Fct(G×h∗)[[~]], ∗) be
omes a quan-tum momentum map in the sens of [X1℄.So there may be a way to see momentum maps and their quantum analogues asMaurer-Cartan elements in dgla's.



12 DAMIEN CALAQUEAppendix A. Homotopy Lie algebrasSee [HS℄ for a detailed dis
ussion of the theory.Re
all that a L∞-algebra stru
ture on a graded ve
tor spa
e g is a degree 1
oderivation Q on the 
ofree 
o
ommutative 
oalgebra Cc(g[1]) su
h that Q◦Q = 0.By 
ofreeness, su
h a 
oderivation Q is uniquely determined by stru
ture maps
Qn : Λng→ g[2− n] whi
h satisfy an in�nite 
olle
tion of equations. In parti
ular
(g, Q1) is a 
o
hain 
omplex.Example A.1. Any dgla (g, d, [, ]) is 
anoni
ally a L∞-algebra. Namely, Q isgiven by stru
ture maps Q1 = d, Q2 = [, ] and Qn = 0 for n > 2.A L∞-morphism between two L∞-algebras (g1, Q1) and (g2, Q2) is a degree 0morphism of 
oalgebras F : Cc(g1[1]) → Cc(g2[1]) su
h that F ◦ Q1 = Q2 ◦ F .Again by 
ofreeness, su
h a morphism is uniquely determined by stru
ture maps
Fn : Λng1 → g2[1−n] whi
h satisfy an in�nite 
olle
tion of equations. In parti
ular
F 1 : g1 → g2 is a morphism of 
omplexes; when it indu
es an isomorphism in
ohomology we say that F is a L∞-quasi-isomorphism.Example A.2. Any morphism of dgla's is a L∞-morphism with all stru
turemaps equal to zero ex
ept the �rst one.In this paper we use many times the followingLemma A.3 ([Do℄). Let F : Cc(g1[1]) → Cc(g2[1]) be a L∞-morphism. For anylinear map V : g1 → g2[−1] there exists a L∞-morphism Ψ : Cc(g1[1])→ Cc(g2[1])with �rst stru
ture map Ψ1 = F 1 +Q1

2 ◦V +V ◦Q1
1. Moreover, if F is a L∞-quasi-isomorphism then Ψ is also.Proof. First remark that V extends uniquely to a linear map Cc(g1[1])→ Cc(g2[1])of degree −1 su
h that

∆2 ◦V =
(
F ⊗V +V ⊗F +

1

2
V ⊗ (Q2 ◦V +V ◦Q1)+

1

2
(Q2 ◦V +V ◦Q1)⊗V

)
◦∆1where ∆1 and ∆2 denote 
omultipli
ations in Cc(g1[1]) and Cc(g2[1]), respe
tively.Then de�ne Ψ := F +Q2 ◦ V + V ◦Q1. �Remark A.4. Assume that in the previous lemma g1 and g2 are �ltrated, F issu
h that Fn takes values in (g2)≤n−1, and V (

(g1)≤k

)
⊂ (g2)≤k+1. Then one 
anobviously 
he
k that for any X ∈ (Λng1)≤k, Fn(X) ∈ (g2)≤n+k−1.Referen
es[AM℄ A. Alekseev, E. Meinrenken, The non-
ommutative Weil algebra, Invent. Math. 139 (2000),135-172.[Ba℄ J. H. Baues, The double bar and 
obar 
onstru
tion, Compos. Math. 43 (1981), 331-341.[Ca℄ D. Calaque, Formality for Lie algebroids, to appear in Comm. Math. Phys.[Do℄ V. Dolgushev, Covariant and equivariant formality theorem, Adv. Math. 191 (2005), 147-177.[Dr1℄ V. Drinfeld, On some unsolved problems in quantum group theory, Le
ture Notes Math.1510 (1992), 1-8.[Dr2℄ V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457.[EE1℄ B. Enriquez, P. Etingof, Quantization of Alekseev-Meinrenken dynami
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