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Abstract In this work we consider a two steps finite volume scheme, recently developed to

solve nonhomogeneous systems. The first step of the scheme depends on a diffusion control

parameter which we modulate, using the limiters theory. Results on Shallow water equations

and two phase flows are presented.

Keywords Non homogeneous systems . Finite volumes . SRNHR scheme

1. Introduction

This paper corresponds to a lecture given at the conference “Numerical Simulations of

Multiphase and Complex Flows” that was held from 18 to 22 April 2005 in Porquerolles,

France.

Complex fluid flow phenomena such as multiphase flows or flows submitted to external

forces (friction, gravity for shallow water flows), are represented by nonhomogeneous sys-

tems of PDE. Classical numerical schemes can not be used for the numerical simulation of

such problems. As a matter of fact, multiphase system of equations can be non hyperbolic. It

is therefore not easy to extend the usual Riemann solvers based on eigenvalues and eigenvec-

tors computations. To overcome the above mentioned difficulties, some valuable works have

been carried out nevertheless (see [1, 3, 5–8, 13, 14], for instance). Finite Volume schemes

obtained by this methods are often costly, due to exact or approximate calculus of jacobian

field decompositions. To propose an alternative, we consider in this work a particular class of

non conservative systems. We assume that the solution of the associated Riemann problem is

self-similar. Assuming this hypothesis, a new Non Homogeneous Riemann Solver (SRNH),

using flux values instead of eigenvectors, was developed [4]. The SRNHR scheme depends

on a local parameter allowing to control numerical diffusion. We show in this contribution,

that this parameter can be adapted using a method based on limiters theory. As an illustration
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of the scheme efficiency both in 1D and 2D, we present some results of a dam break over a

step, and the classical Ransom Faucet problem.

2. Governing equations and SRNHR scheme

Consider a system of balance laws, represented by the following set of equations:

∂W (x, t)

∂t
+

d∑

j=1

∂ Fj (W (x, t))

∂x j
= Q(x, W ) (1)

x = (x1, x2, . . . , xd ) ∈ D ⊂ R
d , t > 0,

To equation (1), one adds initial condition W (x, 0) = W0(x) and boundary conditions. In the

subsections below, u and v being the x and y velocities of the fluid, we give the structure of

W and the fluxes Fj , for each physical problem we will consider in this work.

2.1. 2D Shallow Water equations

Let us note g the gravity acceleration, h the water level, and z = z(x) the bottom topography.

The 2D Saint Venant system is obtained with:

W (x, y) = (h, hu, hv)T , F1(W ) =
(

hu, hu2 + 1

2
gh2, huv

)T

,

F2(W ) =
(

hv, huv, hv2 + 1

2
gh2

)T

, Q(x, y, W ) =
(

0, −gh
dz

dx
, −gh

dz

dy

)T

2.2. 2D two phase flows

Let ρk , μk , uk , vk , be the density, presence fraction, and velocities, respectively for liquid

(k = l), and for gas (k = v). Then the two phase flow system is given by:

W = (μlρl , μlρlul , μlρlvl , μvρv, μvρvuv, μvρvvv)T ,

F1(W ) = (
μlρlul , μlρlu

2
l , μlρlulvl , μvρvuv, μvρvu2

v, μvρvuvvv

)T
,

F2(W ) = (
μlρlvl , μlρlulvl , μlρlv

2
l , μvρvvv, μvρvuvvv, μvρvv

2
v

)T
,

Q1(x, y, W ) =
(

0, −μl
∂ P

∂x
, −μl

∂ P

∂y
, 0, −μv

∂ P

∂x
, −μv

∂ P

∂y

)T

−δ

(
0, (P − Pi )

∂μl

∂x
, (P − Pi )

∂μl

∂y
, 0, (P − Pi )

∂μv

∂x
, (P − Pi )

∂μv

∂y

)T

,

Q2(x, y, W ) = (0, μlρl g, 0, 0, μvρvg, 0)T , and Q = Q1 + Q2.

The following closure relations and parameters specifications (SI system) are used:

μv + μl = 1, P = Avρ
γ
v , ρl = Kl Pa , with Av = 105, γ = 1.4, a = 4.37 × 10−5 and Kl =
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987, 57. P − Pi = ρv(uv − ul )
2 is the interfacial pressure, δ = 0 gives a non hyperbolic non

conservative system, while δ �= 0 enlarges the domain of hyperbolicity.

2.3. The SRNHR scheme

Consider the 1D system of balance laws:

⎧
⎨

⎩

∂W

∂t
+ ∂ F(W )

∂x
= Q(x, W ) in X = R×]0, T [

W (x, 0) = W0(x),
(2)

with Q(x, W ) = H (W ) ∂G(x,W )
∂x .

Suppose that the corresponding Riemann problem: W0(x) = WL if x < 0, and W0(x) =
WR if x > 0, admits a selfsimilar solution: W (x, t) = Rs( x

t , WL , WR) (see the example of

Shallow Water equation in [2]).

In [4], using the above property, a two step Non Homogeneous Approximate Riemann

Solver was developed. Let us sketch the main steps of this scheme construction.

Recall that in the framework of finite volume methods, at each time step the approximate

solution is a piecwise constant function over the volume ] xi− 1
2
, xi+ 1

2
[. So we can see the

transition from time tn to time tn+1 as the resolution of the local Riemann problems defined

on the interfaces xi+ 1
2
.

Integrating the equation (2-1) a first time over the domain ]xi− 1
2
, xi+ 1

2
[×]tn, tn + 1[, one

can write:

W n+1
i = W n

i − �t

�x

[
F

(
W n

i+ 1
2

) − F
(
W n

i− 1
2

)] + �t Qn
i

where Qn
i is an approximation, to define in a judicious way, of 1

�x�t

∫ tn+1

tn

∫ x
i+ 1

2
x

i− 1
2

Q(x, W ) dxdt ,

and W n
i+ 1

2

is an approximation of Rs(O, W n
i , W n

i+1), the self similar solution of the local

Riemann problem at the interface xi+ 1
2
.

The question is how to devise a good approximation of this solution?

The idea proposed here is to integrate, once more, the equation (2-1) over the domain

πθ =]xi , xi+1[×]tn, t+
n [, where t+

n = tn + θn
i+ 1

2

.

Setting W n
i+ 1

2

= 1
�x

∫ t+
n

tn
Rs( x

t+
n
, W n

i , W n
i+1) dx , one obtains:

W n
i+ 1

2

= 1

2

(
W n

i + W n
i+1

) −
θn

i+ 1
2

�x

[
F

(
W n

i+1

) − F
(
W n

i

)] + θn
i+ 1

2

Qn
i+ 1

2

where Qn
i+ 1

2

= Q (xi , xi+1, W n
i , W n

i+1) is an approximation of 1
�xθn

i+ 1
2

∫
πθ

Q(x, W ) dxdt .

In [4], the intermediate time step θn
i+ 1

2

was expressed as a fraction of the current time

step �t , writing θn
i+ 1

2

=
αn

i+ 1
2

2
�t , where αn

i+ 1
2

is a real positive number. This choice has one

drawback. It is the apparition of the metric �x in the intermediate state W n
i+ 1

2

. It is not

easy to find a natural analogy of this metric in the 2D case. In the present work, we write

θ = αn
i+ 1

2

θ̄ , and θ̄ is defined by the local Rusanov velocity (see figure bellow): θ̄ = �x
2Sn

i+ 1
2

,
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where Sn
i+ 1

2

= maxp=1,...,m(max(|λn
p,i |, |λn

p,i+1|)), λn
p,i being the pth eigenvalue of the system,

corresponding to the state W n
i .

Remark 2.1. As an example, for Shallow Water systems, the term Qn
i+ 1

2

can be written:

Qn
i+ 1

2

= −g
hn

i +hn
i+1

2
zi+1−zi

�x . We then eliminate the difficulty of the metric �x in the interme-

diate state.

Hence, in the case of 1D systems, SRNHR scheme writes under the two steps form [10]:

⎧
⎪⎪⎨

⎪⎪⎩

W n
i+ 1

2

= 1

2

(
W n

i + W n
i+1

) −
αn

i+ 1
2

2Sn
i+ 1

2

[
f
(
W n

i+1

) − f
(
W n

i

)] +
αn

i+ 1
2

2

�x

Sn
i+ 1

2

Q̂n
i+ 1

2

W n+1
i = W n

i − rn
[

f
(
W n

i+ 1
2

) − f
(
W n

i− 1
2

)] + �tn Qn
i ,

(3)

where αn
i+ 1

2

a real positive parameter, and rn = �tn

�x , �tn and �x being the time step and

mesh size.

3. How to fix the parameter αn
i+ 1

2

The analysis of the scheme in the 1D homogeneous scalar case, leads to the following results:

Define:

Sn
i+ 1

2

= max
(∣∣ f ′(W n

i

)∣∣,
∣∣ f ′(W n

i+1

)∣∣) and sn
i+ 1

2

= min
(∣∣ f ′(W n

i

)∣∣,
∣∣ f ′(W n

i+1

)∣∣),

Proposition 3.1. ([10]) If one makes the choice αn
i+ 1

2

= (αn
i+ 1

2

)1 =
Sn

i+ 1
2

sn
i+ 1

2

, ∀i, ∀n, then under

some C F L condition the SRNHR scheme is a first order, stable and convergent scheme.

Proposition 3.2. Suppose now that αn
i+ 1

2

= (αn
i+ 1

2

)2 = rn Sn
i+ 1

2

. Then the scheme SRNHR

becomes the second order Richtmeyer scheme [9].

Remark 3.3. One can consider αn
i+ 1

2

as a local diffusion control parameter.

This remark and the two propositions above, lead us to define the control parameter as

follows: αn
i+ 1

2

= �n
i+ 1

2

(αn
i+ 1

2

)2 + (1 − �n
i+ 1

2

)(αn
i+ 1

2

)1 where �n
i+ 1

2

is a limiter function (for

example Superbee or Van-Leer).
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For instance, in the case of shallow water equations, �n
i+ 1

2

is a function of local Riemann

invariants. Recall that for Saint-Venant equations, Riemann invariants are given by Ik =
u + (−1)k2

√
gh, for k = 1, 2.

4. Stationary states preserving for Shallow Water problems

Consider the Saint-Venant system defined above.

Definition 1. W (x, t) is a static stationary solution of the system if ∂W
∂t = 0 and u(x, t) = 0.

In this case, one has h(x, t) + z(x) = Cste.

Definition 2. A finite volume scheme is said to verify the exact C-property [13] if it preserves

the equilibrium state: hn
i + zi = c ∀i ∈ Z, n ∈ N.

The SRNHR scheme has the following property:

Proposition 4.1. If source terms in the scheme, are discretized as follows:

Q̂n
i+ 1

2

= − 1

2�x
g
(
hn

i + hn
i+1)(zi+1 − zi

)
,

and Qn
i = − 1

8�x g(hn
i−1 + 2hn

i + hn
i+1)(zi+1 − zi−1), then SRNHR scheme satisfies the exact

C-property [13], and then stationnary states are preserved.

5. Numerical results

5.1. 1D homogeneous dam break

Consider a dam break represented by the system of Section 2.1 (in the 1D case), where z ≡ 0,

and initial conditions are:

h0(x) =
{

6 if 0 ≤ x ≤ 6

2 if 6 < x ≤ 12
, and u0(x) = 0, ∀x .

Results are given at t = 0.4 on a mesh of 100 points, and are compared to the exact solution

[2]. We see (Figure 1) that SRNHR scheme with limiters gives more accurate results than

Roe scheme [12].

5.2. 1D dam break over a step and contact discontinuity

Consider now a dam break over a step. Source term here is the bottom slope:

z(x) =
{

0 if x ≤ 6

1 if x > 6
, h0(x) =

{
5 if x ≤ 6

1 if x > 6.
, u0(x) = 0.

We compare results obtained with SRNHR scheme to those obtained with Vazquez equilibrium

scheme [13]. The mesh contains 400 points and results are given at t = 0.5. Figure 2 shows

the efficiency of SRNHR scheme which approximates the jump over the step with no point

in this stationary contact discontinuity.
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Fig. 1 1D dam break, water level, SRNHR and Roe schemes

Fig. 2 1D dam break over a step, water level, SRNHR and Vazquez schemes.
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5.3. 2D dam break over a step

In the case of 2D systems, one computes the intermediate state in the SRNHR scheme first

step, using the projection of the PDE system along the normal to the interfaces [1].

Consider 2D Shallow Water equations with the following initial conditions:

u0(x, y) = v0(x, y) = 0, ∀x ∈ [0; 12], ∀y ∈ [0; 1],

and h0(x, y) =
{

6 if x ≤ 6, ∀y ∈ [0; 1]

2 if x > 6, ∀y ∈ [0; 1]

Results are obtained on an unstructured mesh with 100 points along the x-axis, and 10

points along the y-axis. Figures 3 and 4 show that the shock wave, the rarefaction, and

the stationary contact discontinuity are computed accurately, and that the 1D behavior is

perfectly recovered.

5.4. 1D two phase flow

5.4.1. 1D Ransom Faucet experiment specifications

The test case consists in a vertical water jet, contained within a cylindrical channel, and
accelerated under the gravity force. The initial gas fraction is μ0 = 0.2. The exact solution at
time t = 0.6 is calculated for a well posed problem that is deduced from the initial system,

Fig. 3 2D dam break over a step, water level
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Fig. 4 2D dam break over a step, isolines

when one supposes constant phases densities [11].

Initial conditions:

∀x ∈ [x0, xl ], μv(t = 0) = μ0, ul (t = 0) = 10,

uv(t = 0) = 0, p(t = 0) = 105, ρv(t = 0) = 1,

ρl (t = 0) = 988, 0638.

Boundary conditions:
∗inlet(x0 = 0) : μv(0, t) = μ0, ul (0, t) = 10,

uv(0, t) = 0.
∗outlet(xl = 12) : p (12, t) = 105.
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5.4.2. SRNHR algorithm

Consider the system of Section 2.2 in the 1D case. To solve the system, we use the splitting

strategy presented in ([4]). The gravity source term Q2 is treated by an explicit Euler time

integration, in a first ODE step, to get W ∗ from W n , then the system Wt + F(W )x = Q1 is

solved by SRNHR scheme to get W n+1 from W ∗.

Note that for all the two phase flow computations, the parameter αn
j+ 1

2

has been kept

constant. Moreover, we tested alternatively the classical model (δ = 0), and the model with

interfacial pressure (δ = 1). What we are interested in here, is to determine the limit of mesh

refinement the scheme can support, before the non hyperbolicity of the physical problem

leads to computations blow up. Results are displayed on the Figure 5 and show that one

increases this limit from 150 to 500 mesh points, once the interfacial pressure term is added

to the system.

5.5. 2D two phase flow simulations

We consider the 2D two phase flow model of Section 2.2. Here μ0 = 0.6, and we aim to

perform a numerical simulation of a 2D Ransom Faucet defined in the same way as in

Section 5.4.1. Let us precise that no real physical significance is attached to this test case. It

just permits to check the robustness of SRNHR scheme in the 2D case. As a matter of fact, we

could manage to get correct results on a 48 × 10 so called UK flag mesh (Figures 7 and 8).

Nevertheless, for the stiff case μ0 = 0.2 (imaginary part of the system eigenvalues are not

Fig. 5 Ransom Faucet, void fraction
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Fig. 6 Ransom Faucet with interfacial pressure, void fraction

Fig. 7 2D Ransom Faucet, t = 0.6, UK 48 × 10 mesh, void fraction
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Fig. 8 2D Ransom Faucet, t = 0.6, UK 48 × 10 mesh, isolines

negligible compared to real part in this case), as well as when non structured meshes are

used, the computations blow up before reaching the fixed time limit t = 0.6.

6. Conclusions

In this work a first approach of the difficulties introduced by non homogeneous systems has

been presented. A two step finite volume scheme using physical flux evaluations unstead

of Jacobian decompositions has been presented. The diffusion of the mentioned scheme

is controled. Two classical examples of non homogeneous systems have been considered

numerically. The first one, the shallow water system is hyperbolic, but has a stiff source term,

and the second, the two phase flow is non hyperbolic. In both cases the two step scheme gives

good results.
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