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Abstract. The extension of the Wagner hierarchy to blind counter au-
tomata accepting infinite words with a Muller acceptance condition is
effective. We determine precisely this hierarchy.
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1 Introduction

Regular ω-languages are accepted by (deterministic ) Muller automata. Finite
machines having a stronger expressive power when reading infinite words have
also been investigated [Sta97a]. Recently Engelfriet and Hoogeboom studied X-
automata, i.e. automata equipped with a storage type X, including the cases of
pushdown automata, Turing machines, Petri nets [EH93]. A way to investigate
the expressive power of such machines is to study the topological complexity of
the ω-languages they accept. For deterministic machines, it is shown in [EH93]
that every X-automaton accepts boolean combinations of Π0

2
-sets. Hence in or-

der to distinguish the different storage types it turned out that the study of
the Wadge hierarchy is suitable. The Wadge hierarchy is a great refinement of
the Borel hierarchy, recently studied by Duparc [Dup99a]. The Wadge hierar-
chy of ω-regular languages has been determined in an efective way by Wagner
[Wag79]. Several extensions of this hierarchy have been recently determined as
the extension to deterministic pushdown automata, to k-blind counter automata,
[DFR01] [Dup99b] [Fin00b]. We present here the extension to (one) blind counter
automata, which is the first known effective extension. We study Muller blind
counter automata (MBCA), and define chains and superchains as Wagner did
for Muller automata. The essential difference between the two hierarchies relies
on the existence of superchains of transfinite length α < ω2 for MBCA. The
hierarchy is effective and leads to effective winning strategies in Wadge games
between MBCA. The hierarchy of Muller automata equipped with several blind
counters is presented in a non effective way in [Fin00b][DFR01].



2 Regular and Blind Counter ω-languages

We assume the reader to be familiar with the theory of formal languages and
of ω-regular languages, see for example [HU69] ,[Tho90]. We first recall some
definitions and results concerning ω-regular languages and omega pushdown au-
tomata and introduce blind counter automata as a special case of pushdown
automata [Tho90] [Sta97a].
When Σ is a finite alphabet, a finite string (word) over Σ is any sequence
x = x1 . . . xk , where xi ∈ Σ for i = 1, . . . , k ,and k is an integer ≥ 1. The length
of x is k, denoted by |x| . If |x| = 0 , x is the empty word denoted by λ.
we write x(i) = xi and x[i] = x(1) . . . x(i) for i ≤ k and x[0] = λ. Σ⋆ is the set
of finite words over Σ. The first infinite ordinal is ω. An ω-word over Σ is an
ω -sequence a1 . . . an . . ., where ai ∈ Σ, ∀i ≥ 1. When σ is an ω-word over Σ,
we write σ = σ(1)σ(2) . . . σ(n) . . . and σ[n] = σ(1)σ(2) . . . σ(n) the finite word
of length n, prefix of σ. The set of ω-words over the alphabet Σ is denoted by
Σω. An ω-language over an alphabet Σ is a subset of Σω.

The usual concatenation product of two finite words u and v is denoted u.v (and
sometimes just uv). This product is extended to the product u.v of a finite word
u and an ω-word v.

For V ⊆ Σ⋆, V ω = {σ = u1 . . . un . . . ∈ Σω/ui ∈ V, ∀i ≥ 1} is the ω-power of V .

R. Mc Naughton established that the expressive power of deterministic Muller
automata (DMA) is equal to the expressive power of non deterministic Muller
automata (MA) [Tho90]. An ω-language is regular iff it is accepted by a Muller
automaton. The class REGω of ω-regular languages is the ω-Kleene closure of
the class REG of (finitary) regular languages where the ω-Kleene closure of a
family L of finitary languages is :

ω −KC(L) = {∪n
i=1Ui.V

ω
i /Ui, Vi ∈ L, ∀i ∈ [1, n]}

We now define the (blind) one counter machines which we assume here to be
realtime and deterministic, and the corresponding classes of blind counter ω-
languages.

Definition 1. A (realtime deterministic) pushdown machine (PDM) is a 6-tuple
M = (K,Σ, Γ, δ, q0, Z0), where K is a finite set of states, Σ is a finite input al-
phabet, Γ is the finite pushdown alphabet, q0 ∈ K is the initial state, Z0 ∈ Γ is
the start symbol, and δ is a mapping from K ×Σ × Γ into K × Γ ⋆ .
If γ ∈ Γ+ describes the pushdown store content, the leftmost symbol will be as-
sumed to be on ” top” of the store. A configuration of a PDM is a pair (q, γ)
where q ∈ K and γ ∈ Γ ⋆.
For a ∈ Σ, γ, β ∈ Γ ⋆ and Z ∈ Γ , if (p, β) is in δ(q, a, Z), then we write
a : (q, Zγ) 7→M (p, βγ).
7→⋆

M is the transitive and reflexive closure of 7→M . (The subscript M will be



omitted whenever the meaning remains clear).
Let σ = a1a2 . . . an . . . be an ω-word over Σ. An infinite sequence of configura-
tions r = (qi, γi)i≥1 is called a run of M on σ, starting in configuration (p, γ),
iff:

1. (q1, γ1) = (p, γ)
2. for each i ≥ 1, ai : (qi, γi) 7→M (qi+1, γi+1)

For every such run, In(r) is the set of all states entered infinitely often during
run r.
A run r of M on σ , starting in configuration (q0, Z0), will be simply called ” a
run of M on σ ”.

A one counter machine is a PDM such that Γ = {Z0, I} where Z0 is the bottom
symbol and always remains at the bottom of the store. So the pushdown store is
used like a counter whose value is the integer n if the content of the pushdown
store is InZ0.
A one blind counter machine is a one counter machine such that every transition
which is enabled at zero level is also enabled at non zero level, i.e. if δ(q, a, Z0) =
(p, InZ0), for some p, q ∈ K, a ∈ Σ and n ≥ 0, then δ(q, a, I) = (p, In+1). But
the converse may not be true, i.e. some transition may be enabled at non zero
level but not at zero level.

Definition 2. A Muller (realtime deterministic ) blind counter automaton (MBCA)
is a 7-tuple A = (K,Σ, Γ, δ, q0, Z0,F) where A′ = (K,Σ, Γ, δ, q0, Z0) is a (real-
time deterministic ) one blind counter machine and F ⊆ 2K is the collection of
designated state sets.
The ω-language accepted by M is L(A) = {σ ∈ Σω / there exists a run r of A
on σ such that In(r) ∈ F}.
The class of ω-languages accepted by MBCA will be denoted BC.

Remark 3. Machines we call here one blind counter machines are sometimes
called one partially blind counter machines as in [Gre78].

Remark 4. If M is a deterministic pushdown machine , then for every σ ∈ Σω,
there exists at most one run r of M on σ determined by the starting configura-
tion. Each ω-language accepted by a Muller deterministic pushdown automaton
(DMPDA) can be accepted by a DMPDA such that for every σ ∈ Σω, there
exists such a run of M on σ.
But this is not true for MBCA because some words x may be rejected by an
MBCA A because the machine A blocks at zero level when reading x. This is
connected with the fact that the class BC is not closed under complementation
as it is shown by the following example.

Example 5. It is easy to see that the ω-language L = {anbpcω / p ≤ n} is
accepted by a deterministic MBCA, but its complement is not accepted by any
deterministic MBCA because L′ = {anbpcω / p > n} is not accepted by any
deterministic MBCA.



3 Topology

We assume the reader to be familiar with basic notions of topology which may
be found in [Kur66][LT94] [Sta97a] [PP98].

Topology is an important tool for the study of ω-languages, and leads to char-
acterization of several classes of ω-languages.
For a finite alphabet X , we consider Xω as a topological space with the Cantor
topology (see [LT94] [Sta97a] [PP98]). The open sets of Xω are the sets in the
form W.Xω, where W ⊆ X⋆. A set L ⊆ Xω is a closed set iff its complement
Xω − L is an open set. The class of open sets of Xω will be denoted by G or
by Σ0

1
. The class of closed sets will be denoted by F or by Π0

1
. Closed sets are

characterized by the following:

Proposition 6. A set L ⊆ Xω is a closed set of Xω iff for every σ ∈ Xω,
[∀n ≥ 1, ∃u ∈ Xω such that σ(1) . . . σ(n).u ∈ L] implies that σ ∈ L.

Define now the next classes of the Hierarchy of Borel sets of finite rank:

Definition 7. The classes Σ0

n
and Π0

n
of the Borel Hierarchy on the topological

space Xω are defined as follows:
Σ0

1
is the class of open sets of Xω.

Π0

1
is the class of closed sets of Xω.

Π0

2
or Gδ is the class of countable intersections of open sets of Xω.

Σ0

2
or Fσ is the class of countable unions of closed sets of Xω.

And for any integer n ≥ 1:
Σ0

n+1
is the class of countable unions of Π0

n
-subsets of Xω.

Π0

n+1
is the class of countable intersections of Σ0

n
-subsets of Xω.

There is a nice characterization of Π0

2
-subsets of Xω. First define the notion of

W δ:

Definition 8. For W ⊆ X⋆, let:
W δ = {σ ∈ Xω/∃ωi such that σ[i] ∈ W}.
(σ ∈ W δ iff σ has infinitely many prefixes in W ).

Then we can state the following Proposition:

Proposition 9. A subset L of Xω is a Π0

2
-subset of Xω iff there exists a set

W ⊆ X⋆ such that L = W δ.

Mc Naughton’s Theorem implies that every ω-regular language is a boolean
combination of Gδ-sets, hence a ∆0

3
= (Π0

3
∩Σ0

3
)-set. This result holds in fact

for every ω-language accepted by a deterministic X-automaton in the sense of
[EH93], i.e. an automaton equipped with a storage type X, including the case of
the Turing machine. A way to distinguish the expressive power of finite machines
reading ω-words is the Wadge hierarchy which we now introduce.



Definition 10. For E ⊆ Xω and F ⊆ Y ω, E is said to be Wadge reducible to
F (E ≤W F ) iff there exists a continuous function f : Xω → Y ω, such that
E = f−1(F ).
E and F are Wadge equivalent iff E ≤W F and F ≤W E. This will be denoted
by E ≡W F . And we shall say that E <W F iff E ≤W F but not F ≤W E.
A set E ⊆ Xω is said to be self dual iff E ≡W (Xω − E), and otherwise it is
said to be non self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called wadge degrees.
WH is the class of Borel subsets of finite rank of a set Xω, where X is a finite
set, equipped with ≤W and with ≡W .
For E ⊆ Xω and F ⊆ Y ω, if E ≤W F and E = f−1(F ) where f is a continuous
function from Xω into Y ω, then f is called a continuous reduction of E to F .
Intuitively it means that E is less complicated than F because to check whether
x ∈ E it suffices to check whether f(x) ∈ F where f is a continuous function.
Hence the Wadge degree of an ω-language is a measure of its topological
complexity.

Remark 11. In the above definition, we consider that a subset E ⊆ Xω is given
together with the alphabet X. This is necessary as it is shown by the following
example.
Let E = {0, 1}ω considered as an ω-language over the alphabet X = {0, 1} and
let F = {0, 1}ω be the same ω-language considered as an ω-language over the
alphabet Y = {0, 1, 2}. Then E is an open and closed subset of {0, 1}ω but F is a
closed and non open subset of {0, 1, 2}ω. It is easy to check that E <W F hence
E and F are not Wadge equivalent.

Then we can define the Wadge class of a set F :

Definition 12. Let F be a subset of Xω. The wadge class of F is [F ] defined
by: [F ] = {E/E ⊆ Y ω for a finite alphabet Y and E ≤W F}.

Recall that each Borel class Σ0

n
and Π0

n
is a Wadge class.

There is a close relationship between Wadge reducibility and games which we
now introduce. Define first the Wadge game W (A,B) for A ⊆ Xω

A and B ⊆ Xω
B:

Definition 13. The Wadge game W (A,B) is a game with perfect information
between two players, player 1 who is in charge of A and player 2 who is in charge
of B.
Player 1 first writes a letter a1 ∈ XA, then player 2 writes a letter b1 ∈ XB,
then player 1 writes a letter a2 ∈ XA, and so on . . .
The two players alternatively write letters an of XA for player 1 and bn of XB

for player 2.
After ω steps, the player 1 has written an ω-word a ∈ Xω

A and the player 2 has
written an ω-word b ∈ Xω

B.
The player 2 is allowed to skip, even infinitely often, provided he really write an



ω-word in ω steps.
The player 2 wins the play iff [a ∈ A ↔ b ∈ B], i.e. iff
[(a ∈ A and b ∈ B) or (a /∈ A and b /∈ B and b is infinite)].

Recall that a strategy for player 1 is a function σ : (XB ∪ {s})⋆ → XA. And a
strategy for player 2 is a function f : X+

A → XB ∪ {s}.
σ is a winning stategy (w.s.) for player 1 iff he always wins a play when he uses
the strategy σ, i.e. when the nth letter he writes is given by an = σ(b1 . . . bn−1),
where bi is the letter written by player 2 at step i and bi = s if player 2 skips at
step i.
A winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart Game G(X) (see [Tho90]
[PP98] for more details), with X a borel set, is determined and this implies
the following :

Theorem 14 (Wadge). Let A ⊆ Xω
A and B ⊆ Xω

B be two Borel sets, where
XA and XB are finite alphabets. Then the Wadge game W (A,B) is determined:
one of the two players has a winning strategy. And A ≤W B iff the player 2 has
a winning strategy in the game W (A,B).

Recall that a set X is well ordered by a binary relation < iff < is a linear order on
X and there is not any strictly decreasing (for <) infinite sequence of elements
in X .

Theorem 15 (Wadge). Up to the complement and ≡W , the class of Borel
subsets of finite rank of Xω, for X a finite alphabet, is a well ordered hierarchy.
There is an ordinal |WH |, called the length of the hierarchy, and a map d0W from
WH onto |WH |, such that for all A,B ∈ WH:
d0WA < d0WB ↔ A <W B and
d0WA = d0WB ↔ [A ≡W B or A ≡W B−].

Remark 16. We do not give here the ordinal |WH |. Details may be found in
[Dup99a].

4 Wagner Hierarchy and its Extension to Blind Counter

Automata

Consider now ω-regular languages. Landweber studied first the topological prop-
erties of ω-regular languages. He characterized the ω-regular languages in each
of the Borel classes F,G,Fσ,Gδ, and showed that one can decide, for an effec-
tively given ω-regular language L, whether L is in F,G,Fσ, or Gδ.
It turned out that an ω-regular language is in the class Gδ iff it is accepted
by a deterministic Büchi automaton. These results were refined by K. Wagner
who studied the Wadge Hierarchy of ω-regular languages. In fact there is an
effective version of the Wadge Hierarchy restricted to ω-regular languages:



Theorem 17 (Corollary of Büchi-Landweber’s Theorem [BL69]). For
A and B some ω-regular sets, one can effectively decide which player has a w.s.
in the game W (A,B) and the winner has a w.s. given by a transducer.

The hierarchy obtained on ω-regular languages is now called the Wagner hier-
archy and has length ωω. Wagner [Wag79] gave an automata structure charac-
terization, based on notion of chain and superchain, for an automaton to be in
a given class and showed that the Wadge degree of an ω-regular language is
computable. Wilke and Yoo proved in [WY95] that this can be done in polyno-
mial time. Wagner’s hierarchy has been recently studied by Carton and Perrin
in connection with the theory of ω-semigroups [CP97] [CP98] [PP98] and by
Selivanov in [Sel98].

We present in this paper an extension of the Wagner hierarchy to the class of
blind counter ω-languages, using analogous notions of chains and superchains.
We shall first define positive and negative loops, next chains and superchains. A
crucial fact which allows this definition is the following lemma:

Lemma 18. Let A = (K,Σ, Γ, δ, q0, Z0,F) be a MBCA and x ∈ Σω such that
there exists an infinite run r = (qi, I

niZ0)i≥1 of A over x such that Inf(r) =
F ⊆ K. Then there exist infinitely many integers i such that for all j ≥ i,
nj ≥ ni. Among these integers there exist infinitely many integers ik, k ≥ 1, and
a state q ∈ K such that for all k ≥ 1, qik = q. Then there exist two integers s, s′

such that between steps is and is′ of the run r, A enters in every state of F and
in not any other state of K, because Inf(r) = F .

Proof. With the hypotheses of the lemma, assume that r = (qi, I
niZ0)i≥1 is an

infinite run of M over x. If there exist only finitely many integers i such that for
all j ≥ i, nj ≥ ni, then there exists a largest one l. But then if j0 is an integer
> l there exists an integer j1 > j0 such that nj1 < nj0 . By induction one could
construct a sequence of integers (jk)k≥0 such that for all k, njk+1

< njk . This
would lead to a contradiction because every integer ni is positive.
Then there exist infinitely many integers i such that ∀j ≥ i, nj ≥ ni. The set of
states is finite, hence there exists a state q ∈ K and infinitely many such integers
ik, k ≥ 1, such that for all k ≥ 1, qik = q and nik > 0 or for all k ≥ 1, qik = q
and nik = 0 . Now if Inf(r) = F , the states not in F occur only finitely many
times during run r thus there exist two integers s < s′ such that the set of states
A enters between steps is and is′ of the run r is exactly F .

Remark 19. The proof of Lemma 18 relies on a simple property of local minima
of functions mapping natural numbers to themselves. A similar argument is due
to Linna [Lin77].

Then we shall write

(a) (q, I)
F
7→

⋆

(q, I+) if nis > 0 and ni
s′
> nis

(b) (q, I)
F
7→

⋆

(q, I=) if nis > 0 and ni
s′
= nis



(c) (q, Z0)
F
7→

⋆

(q, Z0) if nis = 0 and ni
s′
= 0

The set F is said to be an essential set (of states) and we shall say that in the case
(a) there exists a loop L(q, I, F,+), in the case (b) there exists a loop L(q, I, F,=
), in the case (c) there exists a loop L(q, Z0, F,=). Such a loop is positive if
F ∈ F and it is negative if F /∈ F . We then denote the loop L(q, I, F,=) by
L+(q, I, F,=) or L−(q, I, F,=) and similarly in the other cases.

Lemma 20. The set of essential sets and the set of positive and negative loops
of a MBCA is effectively computable.

This follows from the decidability of the emptiness problem for context free
languages accepted by pushdown automata.

We assume now some familiarity with the Wagner hierarchy as presented in
[Wag79] [Sta97a]. The next step is to define, following Wagner’s study, the (al-
ternating) chains. Let E+ (respectively E−) be the set of essential sets in F
(respectively not in F). An alternating chain of length n is in the form

F1 ⊂ F2 ⊂ F3 ⊂ . . . Fn

where Fi ∈ E+ iff Fi+1 ∈ E− for 1 ≤ i < n. It is a positive chain if F1 ∈ E+

and a negative chain if F1 ∈ E−.

As in the case of Muller automata [Sta97a], one can see that if F is a maximal
essential set then all (alternating) chains of maximal length contained in F have
the same sign (positive or negative) because in every chain of maximal length
contained in F one can replace the last essential set by F itself. Let then l(F )
be the maximal length of chains contained in F and s(F ) be the sign of these
chains.
We now define the first invariant of the MBCA A as m(A ) being the maximal
length of chains of essential sets. Lemma 18 is crucial because it makes every
essential set Fi of a chain F1 ⊂ F2 ⊂ F3 ⊂ . . . Fn to be indefinitely reachable
from (q, I) ( respectively (q, Z0)) if there exists a loop L(q, I, Fn,+ or =), (
respectively L(q, Z0, Fn,=)).

The great difference between the case of Muller automata and the case of MBCA
comes with the notion of superchain. Briefly speaking in a MA A a superchain
of length n is a sequence S1, . . . , Sn of chains of length m(A ) such that for
every integer i, 1 ≤ i < n, Si+1 is reachable from Si and Si+1 is positive iff Si is
negative. In the case of MA, Si cannot be reachable from Si+1 otherwise there
would exist a chain of length >m(A ).

But in the case of MBCA, in such a superchain, Si may be reachable from Si+1

but with a reachability which is limited by the counter. This leads to the
notion of superchains of length ω, where ω is the first infinite ordinal, and next
of length α where α is an ordinal < ω2.



An example of a MBCA A with m(A )= m and a superchain of length ω is
obtained from two MA B and B′ such that the graph of B is just constituted by
a positive chain of length m with a maximal essential set Fm = {q1, . . . qm} and
the graph of B′ is just constituted by a negative chain of lengthm with a maximal
essential set F ′

m = {q′1, . . . q
′
m}. The behaviour of the MBCA A is as follows: at

the beginning of an infinite run, the counter may be increased up to a counter
value N ; then there exist transitions from state q1 to q′1 and conversely from
state q′1 to q1 but these transitions make the counter value decrease. Moreover
A has also the transitions of the two MA B and B′ but these transitions do not
change the counter value. Then one can see thet after a first transition from
state q1 to q′1 or from q′1 to q1 the number of such transitions is bounded by the
counter value N , but this initial value may be chosen > n0 where n0 is any given
integer.

Let then A be a MBCA such that m(A )= m and such that A has positive and
negative chains of length m. A superchain of length ω is formed by two maximal
loops L+(q, I, Fm,+ or =) and L−(q′, I, F ′

m,+ or =) of such chains, i.e. Fm is
the last element of a positive chain of length m and F ′

m is the last element of a
negative chain of length m; moreover, for all p0 > 1, configurations (q, IpZ0) are
reachable for integers p > p0, and there exist transitions implying that

(q, IpZ0) 7→
⋆ (q′, Ip

′

Z0) 7→
⋆ (q, Ip

′′

Z0)

for some integers p, p′, p′′. the MBCA A having not any chain of length > m,
it holds that p′′ < p, because otherwise there would exist an essential set
F ⊇ Fm ∪ F ′

m and then there would exist a chain of length > m. And the loop
L+(q, I, Fm,+ or =) is in fact L+(q, I, Fm,=) and similarly L−(q′, I, F ′

m,+ or =
) is L−(q′, I, F ′

m,=)
One can informally say that Fm is reachable from F ′

m and conversely but after
such transitions the counter value has decreased hence there is a limitation to
this reachability.

Lemma 21. The set of superchains of length ω of a MBCA is effectively com-
putable.

Now one can define superchains of length ω.p for an integer p ≥ 1. Informally
speaking a superchain of length ω.p is a sequence Ω1, . . . , Ωp of superchains of
length ω such that any state q of an essential set of Ωi+1 is reachable with
unbounded values of the counter from any state of an essential set of Ωi. It is
now easy to define superchains of length ω.p + s ≥ 1, (with p, s some integers
≥ 0), which are a sequence of a superchain of length s followed by a superchain
of length ω.p.
In the case s > 0, the superchain is said to be positive if it begins with a positive
chain and it is said to be negative if it begins with a negative chain.
In the case s = 0, we consider now that a superchain: Ω1, . . . , Ωp, of length ω.p,
is given with a loop L. Then it is said to be positive (respectively, negative) if Ω1



is formed by two maximal loops L+(q, I, Fm,=) and L−(q′, I, F ′
m,=) of chains

of length m(A )= m and configurations (q, IpZ0) are reachable for unbounded
values of p ≥ 1 from the positive loop L (respectively, from the negative loop
L).

We define now the second invariant of the MBCA A as n(A ) being the maximal
length of superchains ( n(A ) < ω2 ). The MBCA is said to be prime if all
superchains of length n(A ) have the same sign, i.e. all are positive or all are
negative. Denote s(A )= 0 if A is not prime, s(A )= 1 if all longest superchains
are positive, and s(A )= −1 if all longest superchains are negative.

Lemma 22. Let A be a MBCA. Then n(A ) and s(A ) are computable. More-
over the set of superchains of length n(A ) is computable.

We can now follow Wagner’s study and define for α an ordinal < ω2 and m an
integer ≥ 1:

Cα
m = {L(A) / s(A )= 1 and m(A )= m and n(A )=α}

Dα
m = {L(A) / s(A )= −1 and m(A )= m and n(A )=α}

Eα
m = {L(A) / s(A )= 0 and m(A )= m and n(A )=α}

Using the Wadge game, one can now show that each class Cα
m or Dα

m defines
a Wadge degree, i.e. all ω-languages in the same class Cα

m or Dα
m are Wadge

equivalent. In other words Cα
m and Dα

m are the restrictions to the class BC of
some Wadge degrees.
Moreover when α = n is an integer, this degree corresponds to the degree ob-
tained in the Wagner hierarchy for the classes Cn

m or Dn
m.

The classes Cα
m, Dα

m, and Eα
m, for m an integer ≥ 1 and α a non null ordinal

< ω2, form the coarse structure of the Wadge hierarchy of BC. It is a strict
extension of the coarse structure of the Wagner hierarchy studied in [Wag79]
and it satisfies the following Theorem.

Theorem 23. Let A and B be two MBCA accepting the ω-languages L(A) and
L(B). Then it holds that:

1. If m(A) < m(B), then L(A) <W L(B).
2. If m(A) = m(B), and n(A) < n(B), then L(A) <W L(B).

3. If m(A) = m(B), n(A) = n(B), s(A) = 1 or s(A) = −1, and s(B) = 0, then
L(A) <W L(B).

4. If m(A) = m(B), n(A) = n(B), s(A) = 1 and s(B) = −1,
then L(A) and L(B) are non self dual and L(A) ≡W L(B)−.

From this Theorem one can easily infer that the integer m(A), the ordinal n(A),
and s(A) ∈ {−1, 0, 1}, are invariants of the ω-language L(A) and not only of
the MBCA A:



Corollary 24. Let A and B be two MBCA accepting the same ω-language L(A) =
L(B). Then m(A) = m(B), n(A) = n(B), and s(A) = s(B).

One can give a canonical member in each of the classes Cα
m, Dα

m, and Eα
m, for

m an integer ≥ 1 and α a non null ordinal < ω2. And one can easily deduce
that the length of the coarse structure of the Wadge hierarchy of blind counter
ω-languages is the ordinal ω3, while the length of the coarse structure of the
Wagner hierarchy was the ordinal ω2.

The coarse structure of the class BC is effective but it is not exactly the Wadge
hierarchy of BC, because each class Eα

m is the union of countably many (restric-
tions of) Wadge degrees. We can next define a sort of derivation as Wagner did
for Muller automata.

Two MBCA A and B in the same class Eα
m have essentially the same ”most

difficult parts” because they have positive and negative superchains of length
n(A) = n(B). Hence, in the case of Muller automata (then α is an integer),
Wagner’s idea was to cut off the superchains of length n(A) = n(B) of A and B;
this way one get some new automata ∂A and ∂B which are called the derivations
of A and B and the comparison of A and B with regard to ≤W is reduced to the
comparison of their derivations ∂A and ∂B.

In the case of MBCA one do as in the case of MA but with some modification.
We first define the derivation ∂A of a MBCA in Eα

m: A = (K,Σ, Γ, δ, q0, Z0,F)
as follows.
Let ∂K be the set of states in K from which some positive and some negative
superchains of length n(A) are reachable. In fact for each such q ∈ ∂K, it may
exist an integer nq such that positive and negative superchains of length n(A)
are reachable only from configurations (q, InZ0) with n ≥ nq. And these integers
nq are effectively computable. Let us define now

∂A = (∂K,Σ, Γ = {I, Z0}, ∂δ, q0, Z0, ∂F)

where ∂δ is defined by:

for each q ∈ ∂K, a ∈ Σ, Z ∈ Γ :
∂δ(q, a, Z) = δ(q, a, Z) if δ(q, a, Z) = (p, γ) for some γ ∈ Γ ⋆ and p ∈ ∂K.
Otherwise ∂δ(q, a, Z) is undefined.

And ∂F = {F / F ⊆ ∂K and F ∈ F}

We consider now the MBCA ∂A given with the integers nq, for q ∈ ∂K. Then
we study the loops of ∂A as above but we keep only loops in the form
L(q, Z0 or I, F,+or−) such that state q is reachable with a counter value
n ≥ nq. We can next define chains and superchains for ∂′A=(∂A, (nq)q∈∂K). We
define m(∂′A), n(∂′A), and s(∂′A), and it holds that m(∂′A) < m(A). We then



attribute a class C
n(∂′A)
m(∂′A), D

n(∂′A)
m(∂′A), or E

n(∂′A)
m(∂′A), to ∂′A as we did for A. It may

happen that there does not exist any loop for ∂′A=(∂A, (nq)q∈∂K); in that case
we associate the class E to ∂′A. Now we can iterate this process and associate
to the MBCA A a name N(A) which is inductively defined by:

1. If A is prime and s(A) = 1, then N(A) = C
n(A)
m(A).

2. If A is prime and s(A) = −1, then N(A) = D
n(A)
m(A).

3. If A is not prime then N(A) = E
n(A)
m(A)N(∂′A).

This name depends only on the ω-language L(A) accepted by the MBCA A
and is effectively computable. We can write it in a similar fashion as in Wagner’s
study: we associate with each blind counter ω-language L(A ) in BC a name
in the form:

N(A ) = Eα1

m1
. . . Eαk

mk
Hαk+1

mk+1

where m1 > m2 > . . . > mk > mk+1 are integers; each αi is an ordinal < ω2;
and H ∈ {C,D}, or in the form:

N(A ) = Eα1

m1
. . . Eαk

mk
E

which we shall simply denote by

N(A ) = Eα1

m1
. . . Eαk

mk

where m1 > m2 > . . . > mk are integers and each αi is an ordinal < ω2.

One can show that each such name is really the name of an ω-language in BC.
And the Wadge relation ≤W is now computable because of the following result.

Theorem 25. Let A and B be two MBCA accepting the ω-languages L(A) and
L(B). Assume that the names associated with the MBCA A and B are:

N(A ) = Eα1

m1
. . . Eαk

mk
Hαk+1

mk+1

N(B) = E
α′

1

m′

1

. . . E
α′

l

m′

l

H
′α′

l+1

m′

l+1

where (H = E or H = C or H = D), and (H ′ = E or H ′ = C or H ′ = D).
Then L(A) ≤W L(B) if there exists an integer j ≤ min(k + 1, l + 1) such that
mi = m′

i and ni = n′
i for 1 ≤ i ≤ j and one of the two following properties

holds.

1. j = k + 1 ≤ l + 1 and H ′ = E or H = H ′.
2. j < min(k + 1, l+ 1) and

mj+1 < m′
j+1 or (mj+1 = m′

j+1 and αj+1 < α′
j+1).



Then the structure of the Wadge hierarchy of ω-languages in BC is completely
determined. One can show that a blind counter ω-language L(A), where A is
a MBCA, is in the class ∆0

2
iff m(A) < 2, i.e. iff the name of A is in the form

Cα
1 , D

α
1 , or Eα

1 , for α < ω2. Thus the Wadge hierarchy restricted to the class
BC∩∆0

2
has length ω2, while the Wadge hierarchy restricted to REGω ∩ ∆0

2

has length ω. The Wadge hierarchy of BC∩∆0

2
is then a great extension of

the Wagner hierarchy restricted to the class ∆0

2
. This phenomenon is still true

for larger Wadge degrees and non ∆0

2
-sets. Considering the length of the whole

hierarchy of BC we get the following:

Corollary 26. (a) The length of the Wadge hierarchy of blind counter ω-
languages in ∆0

2
is ω2.

(b) The length of the Wadge hierarchy of blind counter ω-languages is the or-
dinal ωω (hence it is equal to the length of the Wagner hierarchy).

Once the structures of two MBCA A and B are determined as well as their names
N(A ) and N(B) are effectively computed, one can construct winning strategies
in Wadge games W (L(A), L(B)) and W (L(B), L(A)). These strategies may be
defined by blind counter transducers, and this extends Wagner’s result to blind
counter automata.

5 Concluding Remarks

This extended abstract is still a very summarized presentation of our results,
which will need exposition of many other details we could not include in this
paper [Fin00a].

We have considered above deterministic real time blind counter automata, which
form a subclass of the class of deterministic pushdown automata and of the
class of deterministic k-blind counter automata. The Wadge hierarchies of ω-
languages in each of these classes have been determined in a non effective way,
by other methods, in [Dup99b] [Fin99b] [Fin00b], and these results had been
announced in the survey [DFR01]. The Wadge degrees in these hierarchies may
be described with similar names

N(A ) = Eα1

m1
. . . Eαk

mk
Hαk+1

mk+1

where m1 > m2 > . . . > mk > mk+1 are integers ≥ 1 and H ∈ {C,D,E}, and

1. each αi is an ordinal < ωk+1, in the case of k-blind counter automata.
2. each αi is an ordinal < ωω, in the case of deterministic pushdown au-

tomata.

We will further extend the results of the present paper in both directions to get
decidability results and effective winning strategies in Wadge games. The above
case of (one) blind counter automata already introduces some of the fundamental
ideas which we will apply in further cases.



Another problem is to study the complexity of the problem: ” determine the
Wadge degree of a blind counter ω-language ”, extending this way the results
of Wilke and Yoo to blind counter ω-languages.
Further study would be the investigation of links between the problems of sim-
ulation and bisimulation [Jan00] [JKM00] [JMS99] [Kuc00] and the problem of
finding winning strategies in Wadge games.

A Wadge game between two blind counter ω-languages, whose complements
are also blind counter ω-languages, can easily be reduced to a Gale-stewart
game, (see [Tho95] [PP98]), with a winning set accepted by a deterministic
2-blind-counter automaton. This suggests that Walukiewicz’s result, the proof
of the existence of effective winning strategies in a Gale-stewart game with a
winning set accepted by a deterministic pushdown automaton, [Wal96], could
be extended to the case of a winning set accepted by a deterministic multi blind
counter automata, giving additional results as asked by Thomas in [Tho95].

Acknowledgements. Thanks to Jean-Pierre Ressayre and Jacques Duparc
for many helpful discussions about Wadge and Wagner Hierarchies.
Thanks also to the anonymous referees for useful comments on the preliminary
version of this paper. In particular the remark 19 is due to one of them.
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