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Abstract

The main result of this paper is that the length of the Wadge hierarchy of omega
context free languages is greater than the Cantor ordinal €,,, which is the w! fixed
point of the ordinal exponentiation of base w. And the same result holds for the
conciliating Wadge hierarchy, defined by J. Duparc (Wadge Hierarchy and Veblen
Hierarchy: part 1: Borel Sets of Finite Rank, Journal of Symbolic Logic, 66 (2001),
no. 1, 56-86), of infinitary context free languages, studied by D. Beauquier (Langages
Algébriques Infinitaires, Ph. D. Thesis, Université Paris 7, 1984).

Key words: omega context free languages; infinitary context free languages; topological
properties; Wadge hierarchy; conciliating Wadge hierarchy.

1 Introduction

In the sixties Biichi studied the w-languages accepted by finite automata to prove the
decidability of the monadic second order theory of one successor over the integers. Since
then the so called w-regular languages have been intensively studied, see [Tho90]|, [PP01]
for many results and references. The extension to w-languages accepted by pushdown
automata has also been investigated, firstly by Cohen and Gold, Linna, Nivat, see S-
taiger’s paper [Sta97| for a survey of this work, including acceptation of infinite words by
more powerful accepting devices, like Turing machines. A way to investigate the complex-
ity of w-languages is to consider their topological complexity. Mc Naugthon’s Theorem
implies that w-regular languages are boolean combinations of I13-sets. We proved that
omega context free languages (accepted by pushdown automata with a Biichi or Muller
acceptance condition) exhaust the finite ranks of the Borel hierarchy, [Fin0la], that there
exist some omega context free languages (w-CFL) which are analytic but non Borel sets,
|[Fin00], and that there exist also some w-CFL which are Borel sets of infinite rank. On
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the other side the Wadge Hierarchy of Borel sets is a great refinement of the Borel hi-
erarchy and it induces on w-regular languages the now called Wagner hierarchy which
has been determined by Wagner in an effective way [Wag79|. Its length is the ordinal w®.
The Wadge Hierarchy of deterministic context free w-languages has been recently de-
termined [DFRO1| [Dup99][Fin99b]. Its length is the ordinal w®”). We proved in [Fin99a]
that the length of the Wadge hierarchy of context free w-languages is an ordinal greater
than or equal to the first fixed point of the ordinal exponentiation of base w, the Cantor
ordinal £9. We improve here this result and show that the length of the Wadge hierarchy
of context free w-languages is an ordinal greater than or equal to the w' fixed point of
the ordinal exponentiation of base w, the ordinal €,. In order to get our results, we use
recent results of Duparc. In [Dup01] [Dup95a] he gave a normal form of Borel A%-sets,
i.e. an inductive construction of a Borel set of every given degree in the Wadge hierarchy
of A%-Borel sets. In the course of the proof he studied the conciliating hierarchy which
is a hierarchy of sets of finite and infinite sequences, closely connected to the Wadge
hierarchy of non self dual sets. On the other hand the infinitary languages, i.e. languages
containing finite and infinite words, accepted by pushdown automata have been studied
in [Bea84a|[Bea84b| where Beauquier considered these languages as process behaviours
which may or may not terminate, as for transition systems studied in [AN82|. We study
the conciliating hierarchy of infinitary context free languages and prove that the length of
the conciliating hierarchy of infinitary context free languages is greater than the ordinal
Ew-

2 w-regular and w-context free languages

We assume the reader to be familiar with the theory of formal languages and of w-regular
languages,| Tho90|, [Sta97|. We shall use usual notations of formal language theory. When
Y is a finite alphabet, a finite word over ¥ is any sequence x = x1 ...z, , where z; € X
fori=1,...,k ,and k is an integer > 1. The length of z is k, denoted by |z| . If |z| =0
, « is the empty word denoted by A. We write x(i) = x; and z[i] = z(1)...z(:) for
i < k and z[0] = A. X* is the set of finite words over Y. The first infinite ordinal is
w. An w-word over X is an w -sequence aj ...da, ..., where a; € X,Vi > 1. When o is
an w-word over ¥, we write 0 = o(1)0(2)...0(n)..., where for all i o(i) € ¥, and
oln] = o(1)o(2)...0(n) is the finite word of length n, prefix of o. The prefix relation is
denoted C: the finite word u is a prefix of the finite word v (respectively, the infinite word
v), denoted u C v, if and only if there exists a finite word w (respectively, an infinite
word w), such that v = u.w. The set of w-words over the alphabet ¥ is denoted by X“.
An w-language over an alphabet X is a subset of ¥¥. For V' C ¥* the w-power of V
is the w-language V¥ = {0 = u1...Up... € X¥/u; € V,Vi > 1}. For V C X*, the
complement of V' (in ¥*) is ¥* — V denoted V~. For a subset A C ¥“, the complement
of A is ¥¥ — A denoted A~. When we consider subsets of ¥<¥ = ¥* U X¥, if A C ¥
then A~ = X% — A. For any family L of finitary languages, the w-Kleene closure of L,
issw— KC(L) ={ur,U,.V¥/U;,V; € L,Vi € [1,n]}.
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Recall that the class REG,, of w-regular languages (or regular w-languages) is the class
of w-languages accepted by finite automata with a Biichi or Muller acceptance condition.
It is also the w-Kleene closure of the class REG of regular finitary languages.

Similarly the class CF L, of w-context free languages (w-CFL) is the class of w-languages
accepted by pushdown automata with a Biichi or Muller acceptance condition. It is also
the w-Kleene closure of the class CFL of context free finitary languages, [Sta97].

If finite and infinite words are viewed as process behaviours, it is natural to consider
the infinitary languages (containing finite and infinite words) recognized by transition
systems [AN82|. The infinitary languages accepted by pushdown machines have been
studied in [Bea84a|, [Bea84b|. A pushdown machine is given with subsets K; and K; of
its finite set of states K: K is used for acceptation of finite words by final states (in K )
and K, is used for acceptation of w-words by a Biichi condition with the set K, as set
of final states. The set of (finite or infinite) words accepted by the pushdown machine in
such a way is the union of a finitary context free language and of an w-CFL [Bea84al].
Then we let the following:

Definition 2.1 Let X be a finite alphabet. A subset L of X<¥ is said to be an infinitary
context free language iff there exists a finitary context free language Li C X* and an
w-CFL Ly C X% such that L = Ly U Ly. The class of infinitary context free languages
will be denoted CF L<,,.

3 Borel and Wadge hierarchies

We assume the reader to be familiar with basic notions of topology which may be found
in |[LT94| [Mos80] and with the elementary theory of ordinals, including the operations
of multiplication and exponentiation, which may be found in [Sie65]. Topology is an
important tool for the study of w-languages, and leads to characterization of several
classes of w-languages. For a finite alphabet X, we consider X*“ as a topological space
with the Cantor topology. The open sets of X“ are the sets in the form W.X“  where
W C X*. A set L C XY is a closed set iff its complement X“ — L is an open set. The
class of open sets of X* will be denoted by G or by 9. The class of closed sets will be
denoted by F or by II9. Define now the next classes of the Borel Hierarchy:

Definition 3.1 The classes 2 and II® of the Borel Hierarchy on the topological space
XY are defined as follows:

Y0 is the class of open sets of X“.

119 is the class of closed sets of X*.

19 or Gy is the class of countable intersections of open sets of X“.

Y9 or F, is the class of countable unions of closed sets of X“.

And for any integer n > 1:

Y94 is the class of countable unions of I12-subsets of X*.

I12. , is the class of countable intersections of X9 -subsets of X*.
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The Borel Hierarchy is also defined for transfinite levels. The classes X2 and 119, for a
countable ordinal o, are defined in the following way:

%0 is the class of countable unions of subsets of X* in U7<QH2.
I19 is the class of countable intersections of subsets of X¥ in UKQES.
Recall some basic results about these classes, [Mos80:

Proposition 3.2

(o) D2UMY C X0, NI, ,, for each countable ordinal v > 1.
(b) UycaXl = UyoIld C X3 NI, for each countable limit ordinal c.
(c) A set W C X¥ is in the class X2 iff its complement is in the class 11°.

(d) 32 —T12 £ () and TIQ — 320 £ O hold for every countable ordinal o > 1.

We shall say that a subset of X“ is a Borel set of rank «, for a countable ordinal «, iff it
is in X9 UTIY but not in U, (X9 UTIY).

Introduce now the Wadge Hierarchy which is in fact a huge refinement of the Borel
hierarchy:

Definition 3.3 For E C X¥ and F C YY, E is said Wadge reducible to F (E <y F)
iff there exists a continuous function f: X¥ — Y% such that E = f~(F).

E and F are Wadge equivalent iff E <y F and F' <y E. This will be denoted by
E =w F. And we shall say that E <w F iff E <y F but not F <y F.

A set E C X% is said to be self dual iff E =w E~, and otherwise it is said to be non self
dual.

The relation <y is reflexive and transitive, and =y is an equivalence relation.

The equivalence classes of =y are called Wadge degrees.

W H is the class of Borel subsets of a set X“, where X is a finite set, equipped with <y,
and with =y .

Remark that in the above definition, we consider that a subset £ C X* is given together
with the alphabet X.

We can now define the Wadge class of a set F":

Definition 3.4 Let F' be a subset of X¥. The wadge class of F is [F] defined by: [F| =
{E/E CY" for a finite alphabet Y and E <y F'}.

Recall that each Borel class X2 and II° is a Wadge class.
And that a set FF C X“ is a X2 (respectively I12)-complete set iff for any set £ C Y¥, F
is in X2 (respectively I19) iff E <y F.

Theorem 3.5 (Wadge) Up to the complement and =y, the class of Borel subsets of
XY, for X a finite alphabet, is a well ordered hierarchy. There is an ordinal |W H|, called
the length of the hierarchy, and a map d% from W H onto |W H| — {0}, such that for all
A, Be WH:

d% A < d%B <+ A<w B and
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d%A=dyB<< [A=w B or A=y B7].

The Wadge hierarchy of Borel sets of finite rank has length ', where lgy is the
limit of the ordinals «,, defined by «; = w; and «,y1 = wi™ for n a non negative
integer, w; being the first non countable ordinal. Then ' is the first fixed point of the
ordinal exponentiation of base w;. The length of the Wadge hierarchy of Borel sets in
A% =32 NTI0 is the wi® fixed point of the ordinal exponentiation of base w;, which is
a much larger ordinal. The length of the whole Wadge hierarchy of Borel sets is a huge
ordinal. It is described in [Dup01] by the use of the Veblen functions.

There is an effective version of the Wadge hierarchy restricted to w-regular languages:

Theorem 3.6 For A and B some w-reqular sets, one can effectively decide whether
A <y B and one can compute d%,(A).

The hierarchy obtained on w-regular languages is now called the Wagner hierarchy and
has length w®. Wagner [Wag79| gave an automata structure characterization, based on
notion of chain and superchain, for an automaton to be in a given class and then he
got an algorithm to compute the Wadge degree of an w-regular language. Wilke and
Yoo proved in [WY95| that one can compute in polynomial time the Wadge degree of
an w-regular language. The Wagner hierarchy has an extension to deterministic context
free as well as to deterministic Petri net w-languages which has length w®”) [DFRO1]
[Dup99] [Fin99b].

The Wadge hierarchy restricted to w-CFL is not effective: we have shown in [FinOla)
|Fin99a| |Fin00| that one can neither decide the Borel rank nor the Wadge degree of a
Borel w-CFL. In fact one cannot even decide whether an w-CFL is a Borel set.

4 Operations on conciliating sets

4.1 Conciliating sets

We sometimes consider here subsets of X* U X¥ = X=¢ for an alphabet X, which are
called conciliating sets in [Dup01] [Dup95al. In order to give a "normal form" of Borel sets
in the Wadge hierarchy, J. Duparc studied the Conciliating hierarchy which is a hierarchy
over conciliating sets closely related to the Wadge hierarchy. The two hierarchies are

connected via the following correspondence:
First define A% for A C X< and d a letter not in X:

Al ={z e (BU{d}) / z(/d) € A}

where z(/d) is the sequence obtained from x when removing every occurrence of the
letter d. Then for A C ¥ such that A¢ is a Borel set, (we shall say in that case that
A is a Borel conciliating set), A? is always a non self dual subset of (X U {d})* and the
correspondence A — A% induces an isomorphism between the conciliating hierarchy and
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the Wadge hierarchy of non self dual sets. Hence we shall first concentrate on non self
dual sets as in [Dup01] and we shall use the following definition of the Wadge degrees
which is a slight modification of the previous one:

Definition 4.1 e d,(0) =d,(0~) =1
e dy,(A) =sup{d,(B)+ 1/ B non self dual and B <y A}
(for either A self dual or not, A >w 0).

Recall the definition of the conciliating degree of a conciliating set:

Definition 4.2 Let A C =¥ be a conciliating set over the alphabet ¥ such that A¢ is a
Borel set. The conciliating degree of A is d.(A) = d,(A?).

We recall now some properties of the correspondance A — A¢ when context free languages
are considered:

Proposition 4.3 ([FinOla]) a) if A C ¥* is a context free (finitary) language, or if
A C ¥ is an w-CFL, then A% is an w-CFL.
b) If A is the union of a finitary context free language and of an w-CFL over the same
alphabet X2, then A% is an w-CFL over the alphabet ¥ U {d}.

And we now introduce several operations over conciliating sets:

4.2 Operation of sum

Definition 4.4 ([Dup01]) Assume that X4 C Xpg are two finite alphabets and that
Xp — X4 contains at least two elements and that {X ., X_} is a partition of Xp — X4 in
two non empty sets. Let A C X5* and B C X5*, then

B+A=AU{u.ap /ue X} (ae X, and € B)or (a€ X_and f € B")}

This operation is closely related to the ordinal sum as it is stated in the following:

Proposition 4.5 Let X4 C Xg, X — X4 containing at least two elements, and A C
X3“ and B C X5 such that A% and B® are Borel sets. Then (B 4+ A)? is a Borel set
and d.(B+ A) = d.(B) + d.(A).

Remark 4.6 As indicated in Remark 5 of [Dup01], when A C =% and X is a finite
alphabet, it is easy to build A' C (X U X)=, such that (A")% =y A?. In fact A' can be
defined as follows: for o € (U X)), let a € A' <+ o' € A, where o' is a except each
letter not in X is removed. Then in the sequel we assume that each alphabet is as enriched

as desired, and in particular we can always define B + A (or in fact another set C such
that C* =y (B + A)?).

Consider now conciliating sets which are union of a finitary CFL and of an w-CFL.
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Proposition 4.7 Let X4 C Xp such that { X, X_} is a partition of Xg—X 4 in two non
empty sets. Assume A C X5¥ and A, A~ € CFL<,, and B C X5 and B,B~ € CFL,.
Then B+ A and (B+ A)~ are in CFL,.

Definition 4.8 Let A C XE“’ be a conciliating set over the alphabet X 5. Then A.n is
inductively defined by A.1 = A and A.(n+ 1) = (A.n) + A, for each integer n > 1.

4.3 Operation of exponentiation

Definition 4.9 Let 3 be a finite alphabet and «¢ X, let X = X U{«}. Let x be a finite
or infinite word over the alphabet X = ¥ U {«}.

Then x* is inductively defined by:

AT = A,

and for a finite word u € (X U {«})*:

(uw.a) =u“.a, ifa €Y,

(u. «=) = u*“" with its last letter removed if [u*"| > 0,

(u. «) " =X if [u”[ =0,

and for u infinite:

(u) = limye,(uln))<, where, given B, and v in X*,

v C limpey, By <> INVD > 1 Byl|v|] = v.

(The finite or infinite word lim,¢,, B, is determined by the set of its (finite) prefizes).

Remark 4.10 For x € X=¥, = denotes the string x, once every “ occuring in = has
been "evaluated" to the back space operation ( the one familiar to your computer!), pro-
ceeding from left to right inside x. In other words x~ = x from which every interval of
the form ”a « 7 (a € ¥) is removed.

For example if u = (a «)", for n an integer > 1, or u = (a «)“, or u = (a ««)“, then
(w) = A If u= (ab «)“ then (u)“ = a¥ and if u = bb(« a)* then (u)“ =b.

We can now define the operation A — A™ of exponentiation of conciliating sets:

Definition 4.11 For AC Y% and « ¢ %, let X =X U {«} and
A ={z e (U {«})¥/z= € A}.

The operation ~ is monotone with regard to the Wadge ordering and produce some
sets of higher complexity, as we shall see below. We now state that the operation of
exponentiation of conciliating sets is closely related to ordinal exponentiation of base w.
We assume the reader to be familiar with the important notion of cofinality of a limit
ordinal, which may be found in [Sie65] [CK73]. In the sequel we shall not have to consider
cofinalities which are larger than w;.

Theorem 4.12 (Duparc [Dup01]) Let A C X5 be a conciliating set such that A? is
a Borel set and d.(A) = d,(A%) = o+ n with o a limit ordinal and n an integer > 0.
Then (A~)? is a Borel set and there are three cases:
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a) If a =0, then d(A™) = (wy)%AW-1
b) If o has cofinality w, then d,(A™) = (w; )%+
¢) If a has cofinality w,, then d (A™) = (w;)%)

Consider now this operation ~ over infinitary context free languages.

Theorem 4.13 ([FinOla] [Fin99a]) Whenever A C X% (respectively, A C ¥5¢) is in
CFL,, (respectively, in CFL<,), then A~ is in CFL,, (respectively, in CFL<,). And
A, A” € CF L, implies that A~, (A~)” = (A7) € CFL<,

4.4 Operation of iterated exponentiation

One can already iterate the operation of exponentiation of sets. We shall use, in order to
simplify our proofs, a variant A¥ of A~ we already introduced in [Fin0la] [F1n01b] AR
is defined as A~ with the only difference that in the definition 4.9, we write: (u. «-)* is
undefined if |u“| = 0, instead of (u. «-)" = X if [u*"| = 0. Then one can show that if
A C Y% and d.(A) > 2, then A~ and A~ are (conciliating) Wadge equivalent.
We define now, for a set A C N=¢: A¥0 = A A¥1 = A¥ and AM K+ = (A®K)X where
we apply k + 1 times the operation A — A® with different new letters «—;, «—g, «—3,
., «11. But this way, from a Borel conciliating set of finite rank, we obtain only
(conciliating) Borel sets of finite ranks, of Wadge degree <! £5. A way to get sets of
higher degrees, is to define, for two letters a, b in ¥, the supremum of the sets A~ by
sup;ey A¥ = Ujen @'.0.A%%. But this set is defined over an infinite alphabet, and any
infinitary context free language is defined over a finite alphabet. So we have first to code
this set over a finite alphabet. The conciliating set A" is defined over the alphabet
Y U{«1,...,«,} hence we have to code every eraser «—; by a finite word over a fixed
finite alphabet. We shall code the eraser «—; by the finite word «.B?.CY.D?.E?.3 over
the alphabet {«, B,C, D, E, 8}. The reason of the coding we choose will be clear further,
when we construct a pushdown automaton accepting an infinitary language close to the
coding of sup,.y A, [FinOlc]. In fact this pushdown automaton needs to read four times
the integer j characterizing the eraser «;.
Remark first that the morphism:
F,: BU{«1,...,«})* > EU{e,8,B,C,D,E})*
defined by F(c) = ¢ for each ¢ € ¥ and F(«;) = a.BI.C7.DJ.E7.3 for each integer
j € [1,n], where B,C, D, E, «, 8 are new letters not in X, can be naturally extended to a
function:
F,: CU{¢1,...,« D)% = (XU{,B,B,C,D,E})<¥
We can now state the following lemma.

Lemma 4.14 Let A C ¥ such that d.(A) > 2. Then d.(F,(A™")) = d.(A™") holds
for every integer n > 1, and d.(sup;ey Fi(A®")) = sup,cy de(A%7).

But we can not show that, whenever A € CFLc,, then sup,s; F,(A¥") is in CFLc,.
This is connected to the fact that the finitary language {B’C’D’E7 /j > 1} is not a
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context free language. But its complement is easily seen to be context free. Then we shall
sligthly modify the set sup,,»; F},(A%™), in the following way. We can add to this language
all (< w)-words in the form a”.b.u where there is in u a segment «. BZ.C*.D'.E™.3, with
J,k,l,m integers > 1, which does not code any eraser, or codes an eraser «; for j > n.

Define first the following context free finitary languages over the alphabet
XY =xu{«e,B8,B,C,D,E}):

LB ={a"bu.B’ /n>1and j >nand u € (X°)*}
LC = {a"bu.C? /n>1and j >n and u € (XZ)*}
LP ={a"bu.D’ / n>1and j >n and u € (XO)*

}
L? ={a"bu.E’ /n>1and j >nand u € (X°)*}
LBO) = {y.a.BI.CK.D'.E™ B | j,k,I,m >1and j # k and u € (X")*}
LOP) = {y.o.BI.C*. D' E™.3 | j, k,I,m>1and k #1 and u € (X")*
LPE) = {y.a.B'.C*.D".E™.3 / j k,l,m>1and | #m and u € (X")*}

It is easy to show that each of these languages is a context free finitary language thus
L=LBULCULPULFULEOyLEP) U LPFE) g also context free because the class
CFL is closed under finite union. Then L.(X")S¥ is an infinitary CFL. Remark that
all words in sup,s; F},(A®") belong to the infinitary regular language R = a*.b.(X U
(.B*.C*.D*.E*.3))<%. Consider now the language L.(X")<* N R. A word o in this
language is a word in R such that o has an initial word in the form a".b, with n > 1, and
o contains a segment o.B7.C*.d'.E™./3 with j, k,l,m > 1 which does not code any eraser
«—; or codes such an eraser but with j > n. Define now

A® = sup F,(A¥") U [L.(X")=“ N R]

n>1

Introduce now some notations for ordinals. For an ordinal « we define w;(1, ) = wf and
for an integer n > 1, wi(n+1,a) = w? ™9 If o < lgy the limit of the ordinals w; (n, )
is the ordinal lgy. And if o > !g( the limit of the sequence of ordinals wi(n, @) is the first
fixed point of the operation of exponentiation of base w; which is greater than (or equal
to) a. We shall denote it *gy(). Then one can enumerate the sequence of the w first fixed
points of the operation o — w®, which are: ley, 'e; = ‘go(tep + 1), ten = teo(te; + 1),
and for each integer n > 0: 'e,,; = 'g¢(*e, + 1). The next fixed point is the w'® fixed
point, denoted 'e,,, and it is also the limit of the sequence of fixed points ‘e, for n > 0:
ley = sup,,(‘en). The sequence of fixed points of the operation of exponentiation of
base w; continues beyond this ordinal (because, for each ordinal «, there exists such a
fixed point which is greater than «), but we shall not need larger ordinals. We can now
state the following:

Theorem 4.15 Let A C X=¥ be an infinitary context free language such that d.(A) > 2.
Then A® is an infinitary context free language such that d.(A®) is the ordinal 'ey(d.(A)).

Remark that in particular if 2 < d.(A) <! &, i.e. if A4 is Borel of finite rank and of

Wadge degree > 2, then d.(A®*) =' &g, and A° is a Borel set of rank w.
The proof of [A € CFL., — A* € CFL,,] relies on a technical construction of a
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pushdown automaton accepting A°® from a pushdown automaton accepting A. The idea
of the construction is already in [Fin01b| where we proved the existence of some w-CFL
which are Borel sets of infinite rank.

5 Wadge hierarchy of infinitary context free languages

If we consider the operation of ordinal exponentiation of base w: @ — w®, one can define
in a similar way as above the successive fixed points of this operation. These ordinals are
the well known Cantor ordinals g, €1, ... and &, is the w™ such fixed point, [Sie65.

From the preceding closure properties of the class CF L<, under the operations of sum,
of exponentiation and of iterated exponentiation, and using the correspondence between
these operations and the arithmetical operations over ordinals, one can show the following;:

Theorem 5.1 The length of the conciliating hierarchy of infinitary languages in CF L,
1s greater than e,. The length of the Wadge hierarchy of context free w-languages is
greater than &,,.

The proof will be detailed in the full version of this paper. Remark that in fact the length
of the Wadge hierarchy of w-CFL being Borel sets of rank w is still greater than ¢,.
We see again that, considering their topological complexity, non deterministic pushdown
automata have a much stronger expressive power than deterministic pushdown automata,
when reading w-words with a Biichi or Muller acceptance condition. Next it remains to
determine the exact length of the Wadge hierarchy of Borel w-CFL and all the degrees
of w-CFL.

Acknowledgements. Thanks to Jean-Pierre Ressayre and Jacques Duparc for many
useful discussions about Wadge and Wagner Hierarchies.
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