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Abstract   
 
 [2-(phosphinomethyl)ferrocenyl]diphenylphosphine 2, is an air stable primary phosphine bearing 
a 1,2-disubstituted ferrocene framework, which has been prepared by reduction of the corresponding 
phosphonate. Confirmation of its structure has been obtained by X-ray single-crystals diffraction 
analysis. Despite its high stability toward oxidation, phosphine 2 still displays a normal coordinative 
behaviour toward [(p-cymene)RuCl2]2. The expected (p-cymene)RuCl2(phosphine) complex is 
formed by coordination of the primary phosphine function, while the conceivably competitive 
complexation of the PPh2 group was not observed.   
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1. Introduction 

 

Primary phosphines are highly useful intermediates in organophosphorus chemistry, owing to the 

reactive character of the P-H bond. They are however also typically air-sensitive, often pyrophoric 

and, thus, difficult compounds to handle. Recent work from W. Henderson [1,2,3]  pointed out the 

availability of especially ‘user-friendly’ primary phosphines which incorporates ferrocenyl groups, 

i.e. ferrocenylmethyl- and ferrocenylethylphosphines 1. These primary phosphines are remarkably 

air stable, both in solution and in the solid state. Albeit the origin of the exceptionally high air-

stability can’t be explained to date, the synthetic utility of 1 was easily anticipated. 

 

Fe

CH2-PH2

PPh2
Fe

1  (n = 1,2) refs.1-3

(CH2)n-PH2

2  
Scheme 1 

Based on the pioneering work above, we envisioned the synthesis of the analogous primary 

phosphine 2 which bears an additional diphenylphosphino function on the cyclopentadienyl moiety. 
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If the ‘user-friendly’ physical properties of 1 would be retained in diphosphine 2, this compound 

could represent a highly convenient synthon to produce new ferrocenyl-based diphosphines with 

planar chirality.   

Ferrocenyl-based diphosphines with planar chirality constitute a well known, efficient class of chiral 

auxiliaries for transition metal catalysed reactions [4]. Togni’s Josiphos [5] is the lead-compound in 

this series, however a variety of other diphosphines bearing chiral, 1,2-disubstituted ferrocene 

moieties and, possibly, an additional chiral carbon centre, have been prepared [6] since the initial 

work of Hayashi and Kumada [7]. Several synthetic approaches have been applied to their synthesis, 

however, as far as we are aware, the use of primary phosphines, such as 2, as synthetic intermediates 

has never been considered before. 

We report hereafter on a synthetic approach to racemic and enantio-enriched 2, as well as on its 

structural characterization by X-ray diffraction.  

 

 

2. Results and discussion 

 

For the synthesis of the target diphosphine 2, the known oxide 48 and sulphide 5 [7] of [2-(N,N-

dimethylaminomethyl)ferrocenyl]diphenylphosphine 3 [7,9], have been considered as suitable 

starting materials. Conversion of their nitrogen functions into trimethylammonium iodide functions 

should create leaving groups to be displaced then by a suitable phosphorus reagent. An analogous 

procedure had been applied to the synthesis of 1, by using tris(hydroxymethyl)phosphine as the 

nucleophile [1].  
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Scheme 2 

While nitrogen methylation of the trivalent phosphine 3, is hampered by the potentially concurrent 

alkylation of phosphorus, it can be suitably performed on both the phosphine oxide and sulphide to 



 3

afford 6 and 7 respectively. Starting from 6, the reaction with tris(hydroxymethyl)phosphine in 

refluxing methanol, according to the Henderson procedure [10,11], did not afford the expected 

bis(hydroxymethyl)phosphino derivative, mainly due to the low reactivity of the starting material. 

Different approaches were then considered, where the ammonium iodide function would serve as a 

leaving group in Michaelis-Becker or Arbuzov-like reactions with sodium diethylphosphite and 

trimethylphosphite respectively. The last reaction led successfully to the desired phosphonates 8 and 

9 in 57% and 20% yields, respectively. 
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HSiCl3, Et3N

toluene, 120°C

 
Scheme 3 

The use of ammonium iodides in Arbuzov-like reactions [12] has been applied previously to the 

synthesis of diethyl ferrocenylmethylphosphonate [13], a ferrocene derivative closely related to 8 or 

9. 

Reduction of both the phosphonate and phosphine oxide functions of 8 has been performed in a 

single step by using a trichlorosilane-triethylamine mixture, in benzene or toluene, by heating at 

120°C in a sealed tube. The final diphosphine 2 [31P NMR δ -23 and -127 ppm, 1JP-H = 196 Hz] is a 

stable compound which has been purified by column chromatography and stored in air without 

noticeable oxidation. 

Crystals of 2 have been grown from pentane, which were suitable for X-ray crystal structure 

determination. ORTEP drawing of 2 is reported in Figure 1. Selected bond angles and distances are 

given in Table 1. 
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Fig. 1. ORTEP drawing of diphosphine 2. 

Table 1. Selected bond lengths (Å) and angles (degrees) for diphosphine 2. 

C(1)-P(1) 1.851(3)  Fe-C(6) 2.043(2) 

C(2)-C(1) 1.492(4)  Fe-C(3) 2.035(2) 

C(6)-P(2) 1.820(2)  P(1)-C(1)-C(2) 115.5(2) 

C(2)-C(6) 1.447(3)  C(1)-C(2)-C(6) 126.7(2) 

P(2)-C(13) 1.830(3)  C(2)-C(6)-P(2) 123.6(2) 

Fe-C(2) 2.051(3)  C(6)-P(2)-C(13) 101.6(1) 

 

The geometry of diphosphine 2 is similar to that of the ferrocenylmethylphosphine 1 [1b], with the 

phosphino group pointing away from the ferrocene fragment. Bond angles and distances for the 

PH2CH2Cp moiety are fully comparable with those of 1, despite the additional PPh2 group in ortho-

position. The X-ray data and ORTEP drawing above show, once more, that stabilisation of primary 

ferrocenylmethylphosphines can’t be assigned to interactions of the PH2 function with the iron 

centre, neither to a particularly high steric hindrance. 

 

The coordinative behaviour of 2 has been checked by reaction with the ruthenium dimer, [(p-

cymene)RuCl2]2 [14]. Of the two phosphorus atoms, the PH2 group displayed the higher 

coordinating ability toward ruthenium, as complex 10 is formed exclusively, as shown in Scheme 4. 

CH2-PH2

PPh2Fe RuCl
Cl PH2-CH2

Ph2P Fe

2 

CH2Cl2, r.t.
+   0.5  [(p-cymene)RuCl2]2

10  
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Scheme 4 

Compound 10 is an orange-red, air stable solid. 31P NMR data are diagnostic of the exclusive 

complexation of the PH2 fragment, with an almost unchanged chemical shift for the PPh2 unit [δ -25 

ppm] and a considerably large ∆δ value [106 ppm] for the PH2 group [δ -21 ppm], with respect to 

the uncomplexed diphosphine 2. Complexation of phosphorus makes the two P-H bonds 

enantiotopic thus inducing two different 1JH-P couplings of 385 and 348 Hz, respectively, as well as 

separate 1H NMR signals for the corresponding protons at δ 4.26 and 4.48 ppm, respectively. 

 

Thus, the efficient synthetic approach to the primary phosphine 2 reported herein, affords a new 

‘user-friendly’ ligand as well as a valuable precursor for ferrocene-based diphosphines.  

 

 

Finally, we wished to check if the synthetic approach defined above would be suitable for the 

synthesis of enantiomerically pure 2 through stereospecific transformations of a chiral starting 

material. Thus, the known phosphine sulphides (R)- and (S)-5 have been prepared separately through 

the reported resolution method, which implies fractional crystallisation with dibenzoyltartaric acid 

[7]. (R)-5 was then converted into the corresponding oxide (R)-4 by reaction with oxone [15].  

CH2-NMe2

P(S)Ph2Fe

CH2-P(O)(OMe)2

P(O)Ph2Fe

(R)-5, e.e. = 94%

MeI  P(OMe)3

(R)-8, e.e. = 46% 

oxone
(R)-4 (R)-6

 
Scheme 5 

The next step, the Arbuzov-like reaction of the ammonium salt 6 with trimethylphosphite, causes 

partial racemisation and, consequently, phosphonate 8 was obtained in only 46% enantiomeric 

excess (measured by HPLC on Daicel OD-H column). Racemisation has been barely noticed for 

ferrocenes bearing planar chirality, including ferrocenylphosphines [16]. Racemisation, e.g. 

coordination of iron by the other face of the Cp, may take place by either an intermolecular exchange 

process via triple-decker sandwich intermediates, or via a dissociative process [a], or again via η1 

coordination of the Cp ring followed by 1,5-proton shift [b]. The last two mechanisms are shown in 

Scheme 6 hereafter. 



 6

R1

R2Fe Fe
L L L

Fe

L
L

R2

R1

Fe

L
L

R1

R2 Fe

L
L

R2

R1

R2

R1Fe

(+)

(R)-ferrocene

(S)-ferrocene

C5H3(R2)(R1)(-)[a]

[b]

 
Scheme 6. Intramolecular racemisation processes for chiral ferrocenes. 

 

Both a dissociative process and slippage of the Cp ring from η5- to η1-coordination are plausibly 

promoted, in the experimental conditions of the Arbuzov reaction (Scheme 3), by temporary 

complexation of trimethylphosphite (L = P(OMe)3). An haptotropic shift of the Cp ligand of a 

ferrocene derivative, in the presence of trimethylphosphite, has been documented  recently [17]. 

The observed partial racemisation process prevents application of the synthetic method above 

(Schemes 2 and 3) to the synthesis of an enantiomerically pure diphosphine 2.  

Other approaches to enantiomerically pure 2 are being considered. These include resolution of 

racemic 2 or even resolution of phosphonate 8, given that reduction of 8 in the reported conditions, 

proved to be stereospecific. Also, the use of more suitable precursors, allowing the synthesis of 8 in 

milder conditions, is under investigation. 

 

 

3. Experimental 

 

The [2-(N,N-dimethylaminomethyl)ferrocenyl]diphenylphosphine 3, [2-(N,N-dimethylamino-

methyl)ferrocenyl]diphenylphosphine sulfide 5 have been prepared according to Hayashi et al. [7]  

All experiments were performed under an inert atmosphere. NMR spectra were recorded on either a 

Bruker AM 200 or an AM 400 spectrometer.  

 

[2-(N,N-dimethylaminomethyl)ferrocenyl]diphenylphosphine oxide (4).  

From 3. To a suspension of phosphine 3 (7.7g, 16 mmol) in methanol (130 mL) at 0°C, was added 

dropwise 2.1 mL of 30% hydrogen peroxide. After 30 min at room temperature, aqueous sodium 

sulfite was added to decompose the excess hydrogen peroxide. After evaporation of methanol, the 
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reaction mixture was extracted with dichloromethane. The extract was washed with water, dried over 

anhydrous magnesium sulphate and then evaporated. Purification of the residue by column 

chromatography on basic alumina (ether/methanol, 99:1) gave the corresponding oxide 4 in 91% 

yield (7.1g).  

From (R)-5. (R)-[2-(N,N-dimethylaminomethyl)ferrocenyl]diphenylphosphine sulfide 5 [7] (2.4g, 

5.2 mmol, [α]D = -47  (c = 0.5, CHCl3), e.e. = 94%, based on the [α]D value) was dissolved in a 

THF/MeOH 1:1 mixture (100 mL). Then 50 mL of a 0.2M buffered solution (pH 6-7) of oxone® 

were added slowly at 0°C. After 20 min stirring at room temperature, the mixture was hydrolysed 

with aqueous sodium thiosulfate and extracted with chloroform. The organic extracts were dried 

over MgSO4 and solvents were removed to afford the crude oxide 4 which was purified as above. 

(R)-4 was obtained in 80% yield (1.8 g); [α]D = -104  (c = 0.2, CHCl3).  A 10% amount of (2-

formylferrocenyl)diphenylphosphine oxide [31P NMR (CDCl3) δ 29.0; 1H NMR (CDCl3) δ 4.24 (br 

s, 1H), 4.41 (s, 5H, Cp), 4.78 (br s, 1H), 5.24 (br s, 1H), 7.3-7.9 (m, 10h, Ph), 10.4 (1H, CHO); 13C 

NMR (50 MHz) δ 194.3 (s, CHO) ppm] was formed as side-product when addition of oxone was 

performed at room temperature. 

4: Orange-red solid. Spectral data are in agreement with the reported data [8]. 31P NMR (CDCl3) δ 

29.7; 1H NMR (CDCl3) δ 1.94 (s, 6H, NMe2), 3.36 (AB, J=13.4 Hz, 1H, CH2), 3.64 (AB, 1H, CH2), 

3.92 (br s, 1H), 4.20 (s, 5H, Cp), 4.33 (br s, 1H), 4.62 (br s, 1H), 7.3-7.9 (m, 10h, Ph) ppm. Anal. 

Calcd. for C25H26FeNP: C, 67.74; H, 5.91; N, 3.16. Found: C, 67.62, H, 5.96; N, 3.20. 

 

Trimethyl[(2-diphenylphosphinyl)ferrocenylmethyl]ammonium iodide (6). To a solution of amine 4 

(6.5 g, 14.6 mmol)  in methanol (15 mL), an excess methyl iodide (2.7 mL, 44 mmol) was added at 

room temperature. The solution was heated for 10 min at about 60°C and then cooled to room 

temperature. 130 mL of ether were added with stirring. The ammonium salt 6 separates as an orange 

oil which crystallizes on standing (7.3g, 85% yield). 31P NMR (CDCl3) δ 30.8; 1H NMR (CDCl3) δ 

3.10 (s, 9H, NMe3), 4.16 (s, 5H, Cp), 4.35 (br s, 1H), 4.72 (br s, 1H), 5.23 (AB, J=12.7 Hz, 1H, 

CH2), 5.30 (br s, 1H), 5.45 (AB, 1H, CH2), 7.4-7.8 (m, 10h, Ph) ppm. The crude ammonium salt was 

used without further purification. 

Trimethyl[(2-diphenylthiophosphinyl)ferrocenylmethyl]ammonium iodide (7) was prepared by the 

same procedure as for 6, in 70% yield . 31P NMR (CDCl3) δ 41.4; 1H NMR (CDCl3) δ 3.06 (s, 9H, 

NMe3), 4.18 (br s, 1H), 4.36 (s, 5H, Cp), 4.68 (br s, 1H), 5.33 (br s, 1H), 5.41 (AB, J=13.2 Hz, 1H, 

CH2), 5.92 (AB, 1H, CH2), 7.4-7.9 (m, 10h, Ph) ppm. The crude ammonium salt was used without 

further purification. 
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Dimethyl [2-(diphenylphosphinyl)ferrocenyl]methylphosphonate (8). A solution containing the 

ammonium salt 6 (4.0g, 6.8 mmol) and trimethylphosphite (4 mL) in xylene (10 mL) was heated at 

145°C for 2h30. Solvent and excess P(OMe)3 were removed by distillation under vacuum. The 

residue was taken up in dichloromethane and purified by chromatography on alumina with 

ether/methanol 95:5 as the eluent.  2.0g of 8 were obtained (57% yield ). 31P NMR (CDCl3) δ 29.6 

and 30.9 ppm; 1H NMR (CD2Cl2) 400 MHz, δ 3.06 (dd, J = 20.7 Hz, J = 15.7 Hz, 1H, CH2), 3.30 (d, 
3JH-P =10.9 Hz, 3H, OMe), 3.45 (d, 3JH-P = 10.9 Hz, 3H, OMe), 3.74 (dd, J = 19.0 Hz, J = 15.7 Hz, 

1H, CH2), 4.00 (br m, 1H), 4.11 (s, 5H, Cp), 4.43 (q, J = 2.4 Hz, 1H), 4.72 (br s, 1H), 7.4-7.9 (m, 

10h, Ph); 13C NMR (50 MHz, selected data) δ 24.8 (d, 1JPC = 138.6 Hz, PCH2), 51.8 (d, 2JPC = 6.8 

Hz, OCH3), 52.3 (d, 2JPC = 6.8 Hz, OCH3), 70.6 (s, Cp), 70.7 (dd, 1JPC = 114.0 Hz, 3JPC = 6.0 Hz, 

PC), 71.9 (d, JPC = 11.0 Hz, CH), 72.6 (d, JPC = 14.4 Hz, CH), 73.4 (dd, JPC = 9.6 Hz, JPC = 2.4 Hz, 

CH), 82.9 (d, JPC = 10.0 Hz, JPC = 4.0 Hz, C), 134.9 (d, JPC = 105.5 Hz, Cipso), 133.8 (d, JPC = 106.3 

Hz, Cipso) ppm. Mass spectrum: m/z 508 (M, 95%), 443 (M-Cp, 100%). Anal. Calcd. for  

C25H26FeO4P2: C, 59.08; H, 5.16. Found: C, 58.99; H, 5.20.  

When starting from the ammonium iodide of (R)-4 above, phosphonate (R)-8 was obtained with an 

enantiomeric excess of 46%. The enantiomeric excess was determined by HPLC analysis: Chiracel 

OD-H, hexane/iPrOH 85:15, t1 = 12.6 min (major), t2 = 17.4 min. [α]D = -34  (c = 0.2, CHCl3).   

 

Dimethyl [2-(diphenylthiophosphinyl)ferrocenyl]methylphosphonate (9). The same procedure as for 

8, afforded 9 in 20% yield. 31P NMR (CDCl3) δ 29.7 and 42.5; 1H NMR (CDCl3) 400 MHz, δ 3.25 

(t, J = 18 Hz, 1H, CH2), 3.33 (d, 3JH-P =10.1 Hz, 3H, OMe), 3.51 (d, 3JH-P = 10.2 Hz, 3H, OMe), 3.76 

(br s, 1H), 4.02 (t, J = 17.3 Hz, 1H, CH2), 4.24 (s, 5H, Cp), 4.34 (br s, 1H), 4.83 (br s, 1H), 7.3-7.8 

(m, 10h, Ph); 13C NMR (100 MHz, selected data) δ 24.8 (d, 1JPC = 138 Hz, PCH2), 51.9 (d, 2JPC = 6 

Hz, OCH3), 52.5 (d, 2JPC = 6 Hz, OCH3), 69.8 (d, JPC = 9.8 Hz, CH), 71.2 (s, Cp), 73.0 (dd, 1JPC = 

89.5 Hz, 3JPC = 6 Hz, PC), 74.1 (d, JPC = 12 Hz, CH), 74.5 (d, JPC = 2 Hz, CH), 82.9 (d, JPC = 13 Hz, 

C), 133.4 (d, JPC = 86 Hz, Cipso), 134.7 (d, JPC = 87 Hz, Cipso) ppm. Mass spectrum: m/z 524 (M, 

34%), 459 (M-Cp, 100%) 

 

[2-(phosphinomethyl)ferrocenyl]diphenylphosphine (2).  

A toluene solution of phosphonate 8 (1.0g, 2.0 mmol) was added to a solution of trichlorosilane (4.0 

mL, 40 mmol) in toluene (20 mL) at 0°C. An excess triethylamine (4.5 mL, 32 mmol) was then 

added. The mixture was then heated in a sealed glass tube at 120°C for 5h. After cooling to room 
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temperature, hydrolysis was performed by slow addition of an aqueous NaOH solution (20% 

weight). After extraction with dichloromethane, the combined organic layer were washed with water 

and dried over magnesium sulphate. Purification was performed by column chromatography on 

alumina with cyclohexane-ether 94:6 as the eluent. Yield 70% (0.51g, orange-red solid). The 

enantiomeric excess was determined by HPLC analysis: Chiracel OJ, hexane/i-PrOH 98:2, t1 = 6.3 

min (major), t2 = 9.8 min. E.e. = 45%, [α]D = -54  (c = 0.2, CHCl3).  

 31P NMR (CDCl3) δ -127.5 (JH-P = 196 Hz) and -22.9 (JP-P = 1.6 Hz); 1H NMR (CDCl3) 400 MHz, δ 

2.71 (dm, J H-P = 197.2 Hz, 2H, PH2), 2.7-2.9 (m, 2H,  CH2), 3.73 (br, 1H), 4.00 (s, 5H, Cp), 4.25 (t, 

J = 2.4 Hz, 1H), 4.18 (q, J = 2.0 Hz, 1H, CH), 7.2-7.6 (m, 10h, Ph); 13C NMR (100 MHz, C6D6,) 

δ 13.8 (dd, JPC = 12.0 Hz, JPC = 10.2 Hz, PCH2), 69.3 (s, CH), 70.1 (s, Cp), 70.7 (t, JPC = 3.8 Hz, 

CH), 71.0 (d, JPC = 3.9 Hz, CH), 75.7 (dd, JPC = 7.6 Hz, JPC = 1.5 Hz, C), 95.0 (dd, JPC = 25.8 Hz, JPC 

= 3.8 Hz, PC), 138.4 (d, JPC = 9.5 Hz, Cipso), 140.6 (d, JPC = 10.6 Hz, Cipso) ppm. Mass spectrum 

(C.I.): m/z 417 (M+1). Anal. Calcd. for  C23H22FeP2: C, 66.37; H, 5.33. Found: C, 66.35; H, 5.65.  

 

[(p-cymene)RuCl2(2)] complex (10). 

A solution containing diphosphine 2 (83mg, 0.2 mmol) and [(p-cymene)RuCl2]2 (61 mg, 0.1 mmol) 

in CH2Cl2 (0.5 mL) – EtOH (1.5 mL) was stirred at room temperature for 2.5h. During this time a 

red solid precipitates which was recovered by filtration. 
31P NMR (CDCl3) δ -25.5 (JH-P = 196 Hz, PH2) and -21.1; 1H NMR (CDCl3) 400 MHz, δ 1.00 (d, J = 

6.9 Hz, 3H, CHMe), 1.04 (d, J = 6.9 Hz, 3H, CHMe), 2.07 (s, 3H, Me), 2.36 (m, 1H, CHMe2) 3.33 

(m, 2H, CH2), 3.88 (m, 1H), 3.98 (s, 5H, Cp), 4.26 (dm, J H-P = 385 Hz, 1H, PH2), 4.35 (t, J = 2.5 Hz, 

1H), 4.45 (br s, 1H, CH), 4.48 (dm, J H-P = 348 Hz, 1H, PH2), 5.09 (d, JH-P = 5.8 Hz, 1H, CH), 5.20 

(d, JH-P = 5.9 Hz, 1H, CH), 5.25 (d, JH-P = 5.3 Hz, 1H, CH),  5.28 (d, JH-P = 5.0 Hz, 1H, CH), 7.3-7.6 

(m, 10h, Ph) ppm. 

 

Crystal data for 2. 

Molecular formula   C23H22FeP2 
Molecular weight   416.2 
Crystal habit   orange plate 
Crystal size (mm)   0.22 x 0.18 x 0.12 
Crystal system   monoclinic 
Space group   P21/n 
a (Å)   23.028(10) 
b (Å)   8.4680(10) 
c (Å)   23.0340(10) 
α(°)   90.00 
β(°)   116.4100(10) 
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γ(°)   90.00 
V (Å3)   4022.9(5) 
Z   8 
D (g.cm-3)   1.374 
F(000)   1728 
µ (cm-1)   0.912 
Diffractometer KappaCCD 
X-ray source   MoKα 
λ(Å)   0.71069 
T (K)   150.0(1) 
Reflections measured   14272 
Unique data   8928 
Rint   0.0247 
Reflection used   7220 
Refinement type   Fsqd 
Hydrogen atoms   mixed 
Parameters refined   482 
Reflections/parameter       14 
wR2   0.0831 
R1   0.0358 
GoF   0.976  
Difference peak / hole (e Å-3)   0.728(0.060) / -0.422(0.060) 
 
 Supplementary material 
Crystallographic data for the structural analysis of compound 2 have been deposited with the 
Cambridge Crystallographic Data Centre, CCDC  No. 264508. Copies of this information may be 
obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ UK. Fax. 
+44(1223)336-033 or Email: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk. 
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