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Abstract: The so-called "affine" formulation, already proposed at small strain, has been 
proved to improve significantly on former treatments such as Hill's incremental one. This paper 
reports on an extension of this treatment at finite strain. A linearization procedure, consistent 
with the one used for small strains, is proposed. This extension has to solve general problems 
related to the application of classical homogenization schemes to finite strain situations, as well 
as new ones which are specific to the affine formulation. Preliminary results concerning the 
tensile stress-strain response of FCC polycrystals are favorably compared with those derived 
from Hill's approach. 
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1. Introduction 

Until a very recent past, Hill's incremental method was unanimously consid­
ered the most appropriate micromechanical treatment to predict the elastoplastic 
behavior of polycrystals. Recently, Gilormini [2] proved that this approach, ap­
plied to viscoplastic two-phase materials, can lead to an upper bound violation. 
This shows that the incremental treatment must be somewhat "softened" in order 
to yield more realistic predictions. This conclusion has motivated the concep­
tion of a new approach, the so-called "affine formulation", proposed by Masson 
et al. [9]. Initially defined, in the context of infinitesimal strain, for nonlinear 
elasticity or viscosity, it has been extended to history-dependent constitutive 
behavior such as rate-independent or rate-dependent elastoplasticity. 
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This paper aims at extending the affine elastoplastic approach to finite strain. 
In the first section, we briefly recall the small strain affine formulation for non­
linear elasticity and elastoplasticity. The second section is devoted to the finite 
strain extension: we first focus on the choice of the appropriate (lagrangian, 
eulerian ... ) description framework; we then address the question of the single 
crystal constitutive equations and the specific problems of the affine approach 
when finite deformations are considered and when the self-consistent scheme is 
adopted. Preliminary predictions of the overall response of polycrystals, com­
pared with those derived from Hill's approach, are reported in the last section. 
Here, a polycrystal is considered as an aggregate of perfectly bound and ran­
domly distributed crystals which only differ by their lattice orientation: all the 
grains which have the same crystallographic orientation define a "phase" of this 
multiphase material. Plastic deformation is only due to glide on slip systems, 
the system a being defined by the unit normal to its slip planen a and its unit 
slip direction ma. 

2. Affine formulation for small strains 

2.1. NONLINEAR ELASTICITY OR VISCOPLASTICITY 

In this section, the crystal constitutive behavior is derived from a convex stress 
energy function u( a) (a similar approach could be developed from a strain 
energy function). The strain response at any pointx in the considered repre­
sentative volume element V is independent of the loading path: 

OU 
e (x) = 

OO" (x, a(x) ). (1) 

According to the affine approach and using the local tangent complianceM ( x) ,
the nonlinear constitutive equations ( 1) are linearized with respect to the current 
stress value at each point x. The linearization takes place once and for all 
without any incremental process: 

s (x) = M (x) : a(x) + 17(x) ,
82u 

M(x) = oa2(a(x), x),

82u 
17(x) = oa2 (a(x) , x) - M (x) : a(x).

(2) 

These linearized equations may be considered as associated to a linear thermo­
elastic composite constituted of an infinite number of phases (the notationC : 
D means: CijklDkz, where summation is done over repeated indices). To deal 
with such a composite, one has, as usual, to adopt the simplification of piecewise 
constant compliances and prestrains per phase. Accordingly, for each phase, 
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we assign their value at some reference stress us to the tangent compliances 
and prestrains. In this paper, the reference stresses are the mean value of the 
stresses over the concerned phase. By this way we obtain a thermo-elastic 
linear composite with a finite number of phases. This composite represents the 
linear comparison medium (LCM) as developed by Ponte Casta"ieda [12]. The 
homogenization problem related to this composite can be solved by classical 
linear homogenization techniques for thermoelastic media, such as the self­
consistent scheme when one deals with polycrystals. 
Various discussions and results (Masson et al. [9]) have proved the viscoplas­
tic affine formulation to offer an improved alternative to previous treatments 
such as the Hill-Hutchinson secant treatment (Hutchinson [5]) or the "tangent" 
model (Molinari et al. [10], Lebensohn and Torre [7]). It differs from the 
second-order procedure (SOP) (Ponte Castaneda [13]) by making use of the 
direct stress-strain relations ( 1) instead of deriving the stresses from the overall 
potential: consequently, on the one hand, the SOP takes better into account the 
local intraphase heterogeneity and then gives better predictions for nonlinear 
elasticity or viscosity; on the other hand, the affine method, unlike the SOP, 
does not lead to any duality gap and can be extended to any constitutive behav­
ior which, such as rate-dependent or rate-independent elastoplasticity, does not 
derive from a single potential. 

2.2. RATE-INDEPENDENT ELASTOPLASTICITY 

In this section, rate-independent elastoplastic polycrystals are considered in the 
framework of small strains. The local strain rate is decomposed into its elastic 
and plastic parts: 

e = ee + eP = K-1 : u + L .:ya Ra' (3) 
a 

with K the elastic moduli and .:ya the non-negative plastic slip rate on system
o: with the orientation tensor Ra= (na ® ma)8 (A8 denotes the symmetric
part of the second-order tensor A). Associate plasticity theory is used with the 
Schmid law, with the critical resolved shear stressT� on a slip system o:. Such 
a system is a potentially active system (P.A.S.) if Ra : u = T�. It is active 
(A.S.) if, in addition, Ra : u = f�. We adopt the following hardening law:

(4) 

where the hardening matrixHa,a is assumed to be constant (we could also deal 
with a non constant matrix through an appropriate linearization procedure, but 
the associated technical developments are not essential here). Thus, the local 
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elastoplastic constitutive equations read: 

iF= L:e, 

L = K : (I - I:: D°'f3 Ra ® Rf3 : K) ,
a,(3 

(5) 

whereD°'f3 = (Ha(3+Ra: K: R(3)-1and the summation on(a, ,8)is limited
to active systems. 
The overall stress response at timet now depends on the whole previous loading 
path. Thus, a step by step procedure is needed (Masson et al. [9]). The steps 
can be defined as separating two consecutive "events": an event occurs at 
time tn when some new system becomes active or inactive in any phase of the 
polycrystal. The step by step procedure (which does not lead to an incremental 
approach!) can be described as follows: from the stress values obtained at 
the end of the former step, we determine, at the beginning of the current step 
(t = tn), which systems are potentially active. Among all these P.A.S., we 
select one branch, i.e., a given combination of A.S .. According to (5), this 
choice helps to compute the tangent moduli in each phase, up to the next event. 
Meanwhile, according to (5), these moduli, say Ls, are constant. The local 
constitutive equations are then linearized in the usual affine manner: 

(6) 

where es and us are the strain and stress averages in phases obtained at the end 
of the previous step. From the known moduli and prestresses of the linear cm�­
parison composite, we derive t�e macroscopic elastoplastic tangent modulusL 
and the macroscopic pres tress (}, which characterize the macroscopic behavior 
during the current step. We can also calculate the concentration tensors and 
then the local variables during the current step and especially at the end of the 
step which is defined by the occurrence of the next nearest event. From these 
values, the consistency of the chosen branch can be checked, i.e., the selected 
A.S. must be still active and the initially non active P.A.S. still inactive at the 
end of the step. If this consistency is verified, we go on to the next step. If 
not, we go back to the beginning of the step and we select another branch until 
consistency conditions are satisfied. Resuming the same procedure at each new 
increment up tot provides the expected macroscopic response of the polycrystal 
at time t. 

3. The affine formulation at finite strain 

3.1. CHOICE OF THE GENERAL DESCRIPTION FRAMEWORK 

In view of applications to metal forming, which involve very large deformations, 
an extension of the affine formulation at finite strain is needed. We have first to 
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specify the general description framework. For several reasons listed below, we 
have adopted a mixed description instead of the classical eulerian or lagrangian 
ones (Iwakuma and Nemat-Nasser [6], Lipinski et al. [8], Harren [3]). This 
description makes special use of the deformation gradient tensor defined both 
on the initial and the current configurations. The small strains coi:istitutive 
equation a = L : e of the single crystal now reads n = N : F where
n is Hill's nominal stress tensor, F = 8x/8X is the deformation gradient 
tensor and x and X are the position vectors on the current and the reference 
configuration respectively. The main advantage of this formulation relies on 
the fact that the macroscopic values of the nominal stress tensor and of the 
deformation gradient are the average over the initial configuration, which is 
known unambiguously, of their microscopic counterparts. Moreover, unlike 
for the Cauchy or the Kirchhoff stress tensors, this property also holds for their 
time derivatives (Hill [ 4]): 

n = (n)oo' F = (F)oo' n = (n)oo' F = (F)oo. (7) 

In the affine approach, we have rather to keep the reference configuration con­
stant all along the loading path because we do not know the current configuration 
at the beginning of a new step. The main implication of this choice concerns 
the implicit description of the microstructure evolution. Though the derivations 
are performed on a fixed geometry (e.g., the constraint tensor, considered in the 
following, is calculated on a fixed ellipsoid), the evolution of the phase dis­
tribution is taken into account through that of the local tangent moduli which 
depend on the per phase average of the total and the elastic deformation (see 
below). 

3.2. SINGLE CRYSTAL ELASTOPLASTIC CONSTITUTIVE EQUATIONS 

From the elastic-plastic decomposition F = Fe .FP, the plastic kinematic 
· p · e · e relation F .(FP)-1 = "fama Q9 na and Hooke's law S = K: E , where Se

is the second Piola-Kirchhoff stress tensor based on the configuration obtained 
after plastic deformation and Ee the elastic Green-Lagrange strain tensor, the 
following equation can be derived (see Harren [3]): 

(8) 

with 

NA pP-lpe K pP-lpe s: s: ijkl = ia jb abed kc ld + UikUjl '
Aa =(Fer.Fe.ma Q9 na)3, Ba =(ma Q9 na.Se)S, (9)

Ya= F-P.(K: Aa + 2Ba).FeT, Se= Fe-1.F.n.Fe-T.

Note that Nin (8) exhibits diagonal symmetry (i.e., Nijlk = Nklji). 
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The Schmid law reads at finite strain: 

(10) 

where r = det(F)u is the Kirchhoff stress. The resolved shear stress used 
in the Schmid law is the projection of the surface traction r. n � not on the 
initial (ma) but on the current slip direction m� . This choice is physically 
questionable and has significant consequences on the symmetry of the tangent 
modulus for the single crystal. We still use the hardening law ( 4) for the critical 
resolved shear stress. The slip rate)'°', which is a linear function of F, can
be derived from the consistency condition and reintroduced into (8), so as to 
derive the expected constitutive equation for the single crystal: 

n=N: F , 

N = N + L(Ha,6 + 2Ba: A,a + A,a: K: Aa)-1 Ya Q9 Y ,6. (11)
a,,6 

Note that, even if Ha,a is symmetric, the moduli N do not exhibit diagonal
symmetry anymore. Since this fact can induce some difficulties for finite strain 
homogenization schemes which rely on the use of Green techniques, we decide 
arbitrarily to replace Ha,a by Ha,a such that

(12) 

in order to save the diagonal symmetry of N. 

3.3. SPECIFIC FEATURES OF THE AFFINE APPROACH AT FINITE STRAIN

Linearization of the constitutive stress-strain relations. The tangent mod­
uli N are no more constant between two consecutive events because they depend 
on F(t, x), Fe(t, x), n(t, x). In view of an explicit prediction, we choose to 
linearize the constitutive equations at the beginning of the current step at time 
t = fn: 

n(t, x) = N(tn, x): F(t, x) + p(tn, x) , 
N ( tn, x) = N ( F ( tn, x), pe ( tn, x), n ( tn, x)) , ( 13) 

p(tn, x) = n(tn, x) - N(tn, x): F(tn, X) . 

These are the constitutive equations of a continuously heterogeneous linear 
thermoelastic composite under finite strain. 

Approximation of piecewise uniformity. Once again, the problem is simpli­
fied through the approximation of piecewise uniformity of the moduliN ( t n, x) 
and the prestresses p(tn, x ), which depend on x through F(tn, x ), Fe(tn, x) 
and n(tn, x): in phases, they are ascribed to take their value atF8(tn) = 
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(F(tn, X ) )os, F:(tn) = (Fe(tn, X ) )os and ns(tn) = (n(tn, X ) )oJwith (A)os
the average of A in phases). This approximation results at stepn in the follow­
ing constitutive equations of the linear thermoelastic multiphase comparison 
material: 

n(t, X ) = N 8(tn) : F(t, X ) + p(tn) ,
N8(tn) = N(Fs(tn), F�(tn), n3(tn)) , 
Ps(tn) = ns(tn) - Ns(tn) : Fs(tn). 

(14) 

Homogenization. At finite strain, no minimum potential energy principle 
is available. Ball [l] showed the existence of a solution to the problem of 
energy potential minimization for a polyconvex potential. However, uniqueness 
is not ensured. Thus, only variational principles (see Ogden [11]) exist and 
estimates only can be derived. Here, we restrict ourselves to Hashin-Shtrikman­
type estimates, including the self-consistent scheme for specific application to 
polycrystals. They are based on the use of Green techniques which can be 
discussed in the context of finite strains through the 9-dimensional Eshelby 
inclusion problem. In terms of variables n and F, this problem is defined as 
follows: 

n(X)ij,i = O VX, 
n = N° : F + x1(X)n1,
lim X-= F(X, t) = F,

F _ ax(X,t) 
- ax ' (15) 

where x1(X) is the characteristic function of the ellipsoidal inclusion! and
n1 is constant. The solution for F(X) is known to be uniform in I (Iwakuma 
and Nemat-Nasser [6]) and given by 

FT(Xo) = P0: n1 + P VXo EI,

Pgkz(Xo) = j uzj,ik(X - Xo) dVx = 1 r?jkl(X - Xo) dVx, 
(16) 

where u(X - X0) is the Green function for an infinite elastic medium with 
the moduli N° and r0 is the associated strain-Green operator.
Opposite to the case of small strains, the skew-symmetric parts ofuzj,ik with 
respect to (j, k) and (l, i) are taken into account in r0 which does not exhibit
anymore minor symmetries. As mentioned above, some difficulties, related 
to the use of Green techniques at finite strain, arise whenN° does not exhibit
anymore the diagonal symmetry. Although the uniqueness of the Green function 
is ensured, its existence is no more established, so that the derivation of P0
becomes problematic. That is why such a situation has been excluded in (3.2). 
Therefore, the solution ( 16) of the inclusion problem may be used to establish 
estimates for elastic or thermoelastic linear composites in terms ofn and Fin a 
way strictly similar to the one used for small strains. For the elasto-plastic affine 
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treatment, associated to the linear self-consistent scheme, the concentration 
equations at the current step n can be, according to (14 ), approximated by 

Fs(t) = As(tn): F + as(tn) Vt E]tn, tn+1], 

As(tn) = (1 + Psc: (N s(tn) - N sc))-1 ,

as(tn) = (Psc-1 + Ns(tn) - N sc)-1 : (jJ - Ps(tn))'
Psc = f1 rsc(X - Xo) dVx, jJ = (p(tn) : A(tn)) ,

where r sc is attached to the infinite medium with moduli N sc. 

(17) 

Variables updating. Specializing equation ( 17) to the linear composite of the 
former step at time t = tn and proceeding similarly for the linear comparison 
composite of the current step at timet = tn+l lead to 

6..Fs = As(tn)6..F+ (A8(tn)-A8(tn_i) )F(tn) +as(tn)-as(tn-1), (18)

where 6..Fs = F8(tn+i) - Fs(tn) and 6..F = F(tn+1) - F(tn). The expres­
sion ( 18) of the deformation gradient increment clearly distinguishes the affine 
treatment from Hill's incremental one: according to Hill's method, this expres­
sion would reduce to 6..F s = As ( tn) 6..F. The macroscopic stress increment 
6..n and then the local stress increment6..n8 can be derived from (18), (11) as 
a function of the macroscopic deformation. The lattice rotation is obtained as 
usual by subtracting the plastic deformation gradient increment from the total 
one. 

"' 
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Figure 1. Tensile stress-strain curves of an untextured fee polycrystal according to the incre­
mental and affine models at small and finite strains. 
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4. Preliminary results and conclusion 

Both the affine and the incremental approaches have been applied to derive 
the tensile stress-strain response of an untextured elastoplastic face-centred 
cubic polycrystal. Hill's method has been implemented by using a true mixed 
formulation as explained in section (3.1). The elastic behavior is assumed to be 
isotropic (K = 44400 MPA andµ= 30750 MPA). The twelve octahedral slip 
systems are considered with the same critical resolved shear stressT; = 100 
MPA Va. Self and latent hardening are taken into account (Ha(3 = (1 - q)
Ma(3 + qh) with h = 200 and q = 0.3. An initial quasi-isotropic texture (with 
ten orientations in the standard triangle) is considered. 
Figure 1 provides the stress-strain tensile curves for both these approaches, for 
small as well as for large strains. We can see that the affine approach still yields 
softer predictions than Hill's one at finite strain. Moreover, both finite strain 
formulations yield softer predictions than their small strain counterparts. This 
result stems from the softening effect of the lattice rotations which are taken 
into account at finite strain. 
According to these preliminary results, the affine approach can be thought to be 
able to improve significantly on Hill's incremental treatment for both small and 
large deformations. Nevertheless, future work is necessary to validate the affine 
finite strain formulation and especially to extend it to more general anisotropic 
initial textures. 
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