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Abstract: We propose a "numerical mesoscope" which could be used for the analysis of the 
local mechanical fields over small critical areas of microheterogeneous materials, in order to 
predict the local initiation of specific deformation or damage mechanisms. The subdomain un
der investigation is embedded in a very large homogeneous matrix obeying the overall behavior 
of the studied material, as determined experimentally. This matrix is subjected to homogeneous 
stress or strain boundary conditions and the homogeneous elements of the subdomain and their 
interfaces are given their known or assumed constitutive behavior. A finite element analysis is 
then performed on the whole body by making use of different constitutive equations within the 
subdomain and in the surrounding matrix. The general methodology of this approach is reported 
and applied to a metallic rate-dependent elastoplastic polycrystal and to microheterogeneous 
subdomains consisting of given multicrystalline patterns whose grains obey crystalline elasto
plastic constitutive equations of Schmid type at finite strain. Application to the intergranular 
creep damage of a stainless steel shows a good agreement between the largest computed normal 
stresses on the grain boundaries and the observed debonded boundaries of the actual material. 

Keywords: Numerical simulation, polycrystals, rate-dependent elastoplasticity, finite strain, 
creep-damage. 



1. Principle of the "numerical mesoscope" 

The knowledge of the local mechanical fields over small critical areas of mi
croheterogeneous materials is generally needed for a better understanding and 
prediction of the initiation of specific deformation or damage mechanisms, such 
as twinning, phase transformation, grain boundary debonding, etc. Such regions 
can be in fact much smaller than the representative volume element (RYE), so 
that, unlike the RYE, they cannot be considered as subjected to homogeneous 
strain or stress boundary conditions. For example, the intergranular failure 
of metallic polycrystals depends on the mechanical state over a few adjacent 
grains, whereas the RYE can extend over millions of grains and the average 
strain or stress state in the RYE is of no help for predicting grain boundary 
debonding. On the other hand, direct numerical simulation of aggregates of 
several thousands of grains, i.e., large enough to be a good approximation of 
a RYE, in addition to being hardly tractable, cannot yield reliable predictions 
of debonding in actual polycrystals: although they are statistically representa
tive of these polycrystals with respect to their crystallographic texture or their 
average grain shape, they cannot coincide with them at the scale of a few grains. 

In what follows, by applying the concept of "numerical mesoscope" (lliraud 
et al. [6]), we consider the microheterogeneous subdomain under investigation 
as embedded with a perfect interface in a large homogeneous matrix. This 
matrix, which obeys the experimentally defined overall behavior of the studied 
material, is subjected to homogeneous stress or strain boundary conditions, 
so that, due to its own mechanical response, different mechanical conditions, 
which are expected to be more realistic, are transferred to the boundary of 
the considered subdomain. Adequate (known or assumed) local constitutive 
equations are defined at each point of the heterogeneous subdomain: their 
nature can be different from that of the matrix (e.g., for a polycrystal, they can 
be of a phenomenological type for the matrix and of crystalline Schmid type 
for the grains of the subdomain). Nevertheless, a single finite element analysis 
has to be performed on the whole body through some "numerical mesoscope", 
so as to yield the local mechanical state within the heterogeneous subdomain. 
Since this subdomain is not a RYE, the resulting analysis does not reduce to 
the classical concentration or localization procedure of usual homogenization 
schemes; in some sense, it could be seen as aback-localization analysis, which 
focuses on some specific critical areas within the RYE. 

Since the same material is considered at the micro- and the macroscale, the 
local and the global constitutive equations used in the numerical analysis in the 
inclusion and in the matrix, respectively, have to be consistent with each other. 
In the following, this consistency condition is ensured through an auxiliary 
numerical computation: a large enough microheterogeneous RYE is generated 
and its overall response to a macroscopic loading is derived from the consti-



tutive equations of the constituents. The consistency condition requires this 
response to coincide with the macroscopic response of the actual material. Al
ternative solutions, which would not need such auxiliary computations, could 
have recourse either to a micromechanical model predicting the overall behav
ior from the local one or to direct measurements of the displacement field at the 
boundary of the considered subdomain. 

This approach is now focused on the case of rate-dependent elastoplastic poly
crystals (Sect. 2) and then illustrated by an application (Sect. 3) to creep
damaged grain boundaries of a stainless steel, which has been experimentally 
studied in parallel by use of scanning electron microscopy (SEM) for the grain 
shapes and of electron back-scattering diffraction (EBSD) for the lattice orien
tations. Additional computations are reported in Sect. 4, in order to appreciate 
the pertinence of the proposed approach, and possible extensions are briefly 
discussed in conclusion. 

2. "Numerical mesoscopy" and polycrystals 

2.1. CONSTITUTIVE EQUATIONS 

In view of the increasing diversity of potential applications to polycrystalline 
materials, rate-dependent elastoplasticity has been considered. In order to sim
plify the search for a satisfying consistency between the local and the overall 
constitutive equations, we have adopted similar forms for these equations at both 
scales. The resulting constitutive equations are derived from those proposed 
by Anand and associates (Anand [1], Brown et al. [3]) for the flow rule and 
by Kocks [7] for the description of the intragranular work-hardening. A finite 
strain formalism is needed, since, even for small macroscopic deformations, 
strains can be large at the local level. At the macroscopic scale, an isotropic 
formulation is adopted, for sake of simplicity. The strain-hardening of the ma
terial is described by a scalar internal state variable, calledS. The plastic strain 
rate and the evolution equation of S are given by 
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where EP and f; are the macroscopic von Mises equivalent strain rate and stress 
respectively, Q an apparent activation energy, T the absolute temperature, R 
the perfect gases constant; s9 is the initial value of S and Ssat = S(Z/Ar 
its limit value, where Z = EP exp( Q /RT) denotes the Zener-Holomon pa
rameter. Thus, apart from the elastic moduli, the material parameters are 
A, m, Q/ R, Ho, a, So, Sand n. 



Similar equations are adopted at the crystal level for the relation between the
plastic shear rate -y(s) and the resolved shear stress T(s) on the slip system (s ),
namely 

with 

rJs) = L a(su) h(z(u)' TJu)) li'(u)I, 
u 

z(u) = -y(u) exp (_9_)RT . 

(4) 

(6) 

For sake of consistency with the macroscopic equations, material parameters 
m, Q / R, a and n are the same at both levels. The hardening matrix a (su) may
be used in the usual simple formq + (1 - q)<5(su), with q 2: 1, in order to take
latent hardening into account. Further simplifications, which are considered in 

the sequel, consist of setting ho(z(u)) = ho and T�u) = To, where ho and To 
are constants, i.e. independent of the slip system ( u) . The additional material
parameters at the microscale then reduce toa, q, h0, To and 7. 

2. 2. NUMERICAL INTEGRATION 

The finite element numerical treatment has been carried out by using an ex
tension for the crystalline pattern elaborated by IEraud [5] of the 3D-code 
EPVIM3D developed by Haddadi [4]. At the local scale, a forward gradient 
scheme is used for the shear increments D. r,(s), while the shear stress increments

D.T(s) and D.TJs) are linearized. The basic equation reads

where f3 has a fixed value (around 2/3). A first-order Taylor development is
used for the derivation of -y(s)(t + D.t). A similar treatment is used at the
macroscopic scale. Each finite element has 8 nodes and 8 integration points, 
with use of reduced integration for the volumetric part of the deformation and 
of isoparametric shape functions. The time increments are optimized so as to 
be shorter whenever the intracrystalline shear rates are larger. Specific routines 
have been developed in order to derive the stress vectors on the grain boundaries 
from the stress tensors evaluated within the adjacent grains. 



3. Application to a creep-damaged stainless steel 

The foregoing concept of "numerical mesoscopy" has first been applied to the 
interpretation of grain-boundary debonding in a specimen of AISI316 stainless 
steel. This specimen was subjected to a creep test up to fracture, under370 MPa 
at 550 °C during 395 hours and then cut along a longitudinal cross-section. A 
small area of about 50 grains and 100 µm diameter, exhibiting several debonded 
grain boundaries, has been selected in this section. The geometry, as well as 
the lattice orientations of 35 grains of the central multicrystal, have been deter
mined through SEM observation and EBSD analysis. The problem was then to 
simulate this crystalline area as central pattern of our mesoscope, embedded in 
a large homogeneous matrix, subjected to the macroscopic loading of the actual 
creep test, and to compute the normal stresses on the grain boundaries of the 
pattern in order to look for any correlation between largest computed normal 
stresses and the most damaged boundaries. 

Overall creep behavior. The constitutive equations of the studied material 
was first to be determined. This has been done by Thraud [5], using the ex
perimental creep data obtained for this material at three different temperatures 
(550, 600 and 650 °C) and, for each temperature, under three different load lev
els (from 150 MPa to 420 MPa according to the temperature). A preliminary 
rough analysis has first been performed in order to enter initial parameters in the 
optimization code SIDOLO [8]. After a small number of iterations, we have got 
the following parameters (in addition to the Young modulus,E = 143 GPa, and
the Poisson ratio, v = 0.33): A = 1.96 x 107 s-1, m = 0.053, Q / R = 34200
K, Ho = 3470 MPa, a= 0.8, So = 36 MPa, S = 102 MPa and n = 0.16.
The global constitutive equations (1) and (2) are thus determined. 

Local constitutive equations. They have been identified from the fitting of 
the creep response of a simulated polycrystal whose grains obey equations (3) 

to (6) to the experimental data. This model polycrystal has first been defined for 
an isotropic copper polycrystal already studied by Anand et al. [2]. The result 
was a FEM model consisting of a cubic aggregate oflOOO cubic grains of the 
same size, where each grain is represented by one finite element. Application 
to our studied material and experimental data, through the same identification 
procedure as before, has led to the following local parameters: a = 0.5 x 107

s-1, ho= 920 MPa, To= 37 MPa, f = 120 MPa and q = 1.4, to be used for
the considered creep test atT = 550 °C under 370 MPa.

FEM computation. As a first approximation, a single three-dimensional 
layer of elements has been considered. The matrix area is about five times 
larger than the crystalline pattern. The grain boundaries are normal to the layer. 
The whole body has been meshed by use of the SIMAIL software from Simulog 



Figure 1. The 35-grain multicrystalline aggregate and the mesh of the whole mesoscopic domain. 

( 1145 elements for the multi crystal and 1430 for the matrix; see Figure 1 ). The 
four lateral faces, which are parallel to the creep direction, are supposed free, 
while the remaining two faces, which are perpendicular to the creep direction, 
are subjected to an imposed traction. In addition, any rigid-body displacement 
has been suppressed by adequate displacement boundary-conditions. For such 
boundary conditions, 15,786 degrees of freedom are needed (l-Eraud [5]). 

Results. The simulation of the creep test has been performed up to277 hours, 
whereas fracture occurred after 395 hours in the actual test. The considered 
multicrystal proved to be stiffer than the matrix on average: he was less de
formed and more stressed, which agrees with the fact that the selected pattern 
looked especially damaged. Among several local analyses of the stress and 
strain fields in the grains (Heraud [5]), special attention has been paid to the 
distribution of the stress vectors on the grain boundaries. Whereas no correla
tion was detected between the shear stress level and the damage amplitude on 
these boundaries, a definite one existed between the largest computed normal 
stresses and the experimentally debonded boundaries (compare e.g. the grain 
boundaries denoted by GBl, GB2 and GB3 in Figures 2 and 3). Although 
this conclusion can be appreciated as an encouraging evidence for the perti
nence of the concept of "numerical mesoscope", further investigations have 
been performed in order to corroborate this statement. 

4. Pertinence of the numerical mesoscope 

As argued in the introduction, the main reason for developing such a complex 
simulation tool lies in the fact that any local mechanical analysis on subdomains 
which are smaller than the RVE cannot be sensibly performed through direct 
application of the macroscopic boundary conditions to the boundary of these 
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Figure 2. Location of debonded grain boundaries in the actual material. 
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Figure 3. Distribution of the normal component of the stress vector on the grain boundaries of 
the simulated multicrystal. 



Figure 4. The initial 35-grain multicrystal (sample A) and the extracted samples B1 and B2. 

subdomains. When experimental data of the actual displacement or traction 
fields on this boundary are not available, it is proposed to embed the subdomain 
of interest in a quasi-infinite matrix obeying the experimentally defined overall 
behavior and subjected to the macroscopic boundary conditions, so as to load 
the investigated subdomain in a more realistic way. Conversely, the pertinence 
of the numerical mesoscope can be appreciated a posteriori by comparing the 
actual displacement or traction fields on the boundary of the simulated subdo
main, as they result from the whole FEM computation, with those which would 
be associated to the average macroscopic strain or stress tensors. 

Such an analysis has been performed on the above reported application and it 
resulted in strong differences between these fields (�raud [5]), which could 
have been considered as a sufficient justification of the rather lengthy numerical 
procedure required by the numerical mesoscope. However, this reasoning has 
been considered not enough conclusive, because the angular geometry of the 
multicrystal boundary, which results in strong local stress concentrations, may 
indeed affect the comparison with the rather smooth macroscopic boundary 
conditions. 

That is the reason why further numerical analyses have been performed on 
subdomains cut out from the initial 35-grain multicrystal, which will be called 
sample A from now on. Two circular disks, say samples B1 and B2, have
been extracted from sample A, both of them of the same size, but located at two
different places in the multicrystal and consisting of a smaller number of grains, 
namely 15 and 12 grains, respectively (see Figure 4). In order to shorten the 
computation times for the same simulated creep test, some material parameters 



c) 

Figure 5. In-plane components of the relative displacements on the boundary of each of the three 
disk-shaped samples with respect to the centre of its top surface (solid vectors) , compared with 
those derived from the respective average displacement gradients (dashed vectors) . a) Sample 
A, b) sample B1, and c) sample B2. 

where modified in a similar way for both the matrix and the constituent crystals, 
so as to lower the global and local creep compliances. After a given creep time, 
the volume average of the displacement gradient tensor, say H, was calculated 
over each multicrystalline sample, as well as the relative displacementsu of the 
boundary of each disk-shaped sample with respect to the centre of its top surface. 
Figure 5 shows the in-plane components of these relative displacements on the 
boundary of each of the three samples (solid vectors) compared with those 
derived from the average displacement gradientH (dashed vectores). 

It is clearly seen from these results that the actual boundary conditions on the 
samples differ significantly from the macroscopic ones. Indeed, since the latter 
result from a homogeneous displacement gradient, the tips of the corresponding 
displacement vectors on the circular boundaries of samples B 1 and B2 are 
smoothly distributed on ellipses, whereas the displacement fields resulted from 
the simulations on their boundaries vary more sharply from point to point. It 
is worth noting that these differences are more visible on sample B2, which 
has been subjected to a larger plastic deformation, than on sampleB1, which 



was closer to an elastic state. Notwithstanding, even sample B 1 displays a 
significant change in the direction of the calculated displacement vectors with 
respect to the homogeneous boundary conditions, especially on the bottom of 
its circular boundary. It may be concluded that the ensemble of these results do 
substantiate the pertinence of the numerical mesoscope. 

5. Conclusion 

Further developments are obviously needed from this kind of "prototype". In 
addition to computational improvements (parallel computations, improved au
tomatic meshing, etc.), two kinds of mechanical developments are currently in 
progress. On the one hand, a larger number of plane layers are to be considered, 
consisting either of crystal or of matrix material, with oblique grain boundaries. 
On the other hand, imperfect interfaces are developed within the crystalline pat
tern, in view of modeling debonding or sliding grain boundaries. It is expected 
that this will result in extended interpretation schemes, especially in the field of 
the identification of crystal constitutive equations from micromechanical mea
surements over grains, as well as in the complex field of the micromechanics 
of damage. 
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