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Cavity identification using 3-D elastodynamic BEM, shape sensitivity and topological derivative
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The problem of mapping underground cavities from surface, i.e. using non-intrusive seismic measurements, is investigated via a regularized boundary integral equation method. With the ground modeled as a three-dimensional uniform, isotropic elastic half-space, the inverse analysis of seismic waves scattered by a three-dimensional void is formulated as a task of minimizing a cost function involving the misfit between experimental observations and theoretical (i.e forward} predictions. This conventional choice of setting is dictated by the very high computational cost of solving the forward elastodynamic scattering problem, which makes e.g. global search strategies infeasible. For an accurate treatment of the gradient search tech nique employed to solve the inverse problem, derivatives of the predictive boundary element mo<lel with respect to the cavity parameters are evaluated using an adjoint problem approach. Here as in most situations where conventional descent methods (here the quasi-Newton algorithm with BFGS formula) are used, results depend on the choice of initial guess and occasional lack of convergence occurs. This has prompted the authors to investigate the use of topological derivative as a tool for preliminary probing. The topological derivative field is computed via a relatively inexpensive procedure, and appears to yield useful indications as to the topology and approximate location of the cavity system. Numerical examples are included to illustrate the effectiveness of the various steps developed so far.

Introduction. Three-dimensional imaging of cavities embedded in a semi infinite solid using elastic waves is a topic of intrinsic interest in a number of applications ranging from nondestructive material testing to oil prospecting and underground object detection. In situations when detailed mapping of buried objects (defense facilities, buried waste) is required and only a few measurements can be made, the use of surface discretization-based bound ary integral equation (BIE) techniques provides the most direct link be tween the surface measurements and the buried geometrical objects. While such an approach is well established for acoustic problems 2 , limited atten tion has so far been paid to the use of BIE methods in wave-based sensing of elastic solids. This communication reports the development of an analytical and computational framework for the identification of cavities in a semi infi nite solid from surface seismic measurements via an elastodynamic BIE method, as well as preliminary results on the investigation of the usefulness of the topological derivative (e.g. for choosing the initial guess).

Formulation and solution technique. The focus of this study is the inverse scattering problem, in the framework of linear elastodynamics in the frequency domain (with the implicit time factor eiwt omitted thorogh out) for an isotropic, homogeneous elastic half-space housing an inter nal void. With reference to a Cartesian frame {0;{1,6,{3}, the half space n = {(6,6,6)16 > O} is characterized by the Lame's constants A and µ, mass density p, and is bounded on top by the free surface S = {(fa, { 2 , 6)1{3 =O}. The cavity inside the half-space occupies a simply connected finite region 00 C n bounded by a piecewise smooth closed sur face r; the normal to r directed towards the interior of 00 will be denoted by n. The cavity is 'illuminated' by a time-harmonic seismic source, with the resulting surface motion monitored over a finite set of slightly embedded control points e =x m (m= 1, 2, ... M).

The total elastic displacement field u is governed by the boundary in tegral equation �u k (x) + PV fr at(e,x;w)n;(e)ui(x) dS( = uk{:z:) (x Er) (1) (its regularized form 5 being used in the implementation) with the free-field defined by uHx) = l /i(e)uf(e,x,w) dS( The fundamental solution (displacement uk, stress & k ) satisfies the traction-free condition &k .n = 0 on S. Then, the displacement at sen sor locations is given by the representation formula: where u is the solution of the direct problem (and thus of course depends on r) and the over-bar symbol denotes the complex conjugation. In view of the significant computational effort required to evaluate u for elasto dynamic problems, the minimization of .J is here performed by means of a gradient-based quasi-Newton method with the BFGS updating formula.

The gradients are evaluated from the analytical formula
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where On denotes the normal transformation velocity of r associated with a given parameter perturbation, and u is the adjoint solution governed by the integral equation 1 Cavity mapping. Figure 1 illustrates the iterative process of finding an ellipsoidal cavity defined by p true = (-4a, -2a, 4a, l.8a,0.9a, 0.6a), starting from the initial guess p0 = (-1.5a, -0.5a, 5a, a, a, a) (the cavity is param eterized in terms of its centroid coordinates Ci and semi-axes lengths o:i, i = 1,2,3 so that p = (c1, c2, C3, a:1, a2, a3 ) . The cavity is illuminated in succession via nine point sources with respective magnitude P = 0.2µa2. The testing configuration is a grid with 64 receivers. The shear wave length ..X8 is approximately twice the diameter d of the cavity. As can be seen from Fig. 1, the iterative procedure converges after roughly 25 major iterations.

It should be noted, however, that the success of the foregoing method is strongly dependent on the choice of the starting point, a pitfall that is com mon to all gradient-based algorithms. This consideration led the authors to investigate the usefulness of the concept of topological derivative 3•9•4,s in connection with the elastodynamic inverse problem. 

which furnishes the information about the variation of .J(O) if a hole of prescribed shape Band infinitesimal characteristic size is created at x0 En.

Within the framework of shape optimization, it was shown 9•4 that the elastostatic equivalent of ( 6) can be used as a powerful tool for the grid based exploration of a solid for plausible void regions for a given functional :f. Here, this concept will be extended to elastic-wave imaging of semi infi nite solids on the basis of the elastodynarnic fundamental solution for a homogeneous isotropic half-space.

In the present context, the topological derivative T(x0) defined by ( 6) is found to be given by x0) )] [START_REF] Nintcheu Fata | A computational basis for elastodynamic cavity identification in a semi-infinite solid[END_REF] where the constant tensor A depends in a known way on the shape of the infinitesimal cavity. When this shape is spherical, one has

A - 3(1-v) [ svm 1+5v J -2 µ ( 7-5 v ) 5 1 4 -2( 1+ v ) 1 2©12
and ( 7) is consistent with that given in Ref. 4 for elastostatic problems.

Numerical example. The configuration is as depicted in Fig. 2. The 'true' spherical cavity, of diameter D = 0.4d, is centered at (d, 0, 3d) inside the half-space. In succession, the cavity is illuminated by sixteen axial point sources acting on the surface of a semi-infinite solid; for each source location, Cartesian components of the ground motion, u ob s, are monitored via twenty fi ve sensors distributed over the square testing grid; here, this data is simulated using the BEM formulation of the forward problem. BEM. Four excitation frequencies w = wd� = 1, 2, 4, 8 have been considered.

For this testing configuration, the values of T(x0) are computed over the horizontal surface Sh = {e E 01 -5d < 6 < 5d, -3d < 6 < 3d, 6 = 3d}
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passing through the centroid of the 'true' cavity and plotted in Fig. 3 for the above-defined set of frequencies. The computational grid is chosen so that the sampling points x0 are spaced by 0.25d in both fa and 6 directions. In the display, the red tones indicate negative values of T and thus possible cavity location; for comparison, the true cavity is outlined in white in each of the diagrams. The results clearly demonstrate the usefulness of the topological derivative as a computationally efficient tool for exposing the approximate cavity location, with "higher" frequencies (w = 2, 4) providing in general better resolution. From the diagram for w = 8 where A8/ D � 1, however, it is also evident that the infinitesimal cavity assumption embedded in ( 7) performs best when used in conjunction with wave lengths exceeding the cavity diameter. For completeness, the variation of T(x0) across the vertical planar re gion S11 = {e E 01 -5d < {1 < 5d, {2 = 0, 0.25d < 6 < 6d} is given in With diagrams such as those in Figs. 3 and4, an algorithm for identify ing plausible cavity locations could be devised on the basis of the non-zero distribution of an auxiliary function

T ( x o ) = { T( x 0), T < C, 0, T�C, (8) 
with a suitable threshold value C < 0. With such definition, it is also pos sible to combine the individual advantages of different probing wavelengths by employing the product of (8) at several frequencies. As an illustration of 

  uk(:z:m) = u�(:z:m) -i ut(e, xm;w)n;(e)ui(e) dS( (xm E S) (2) Inverse problem. The inverse problem of cavity identification is set here as the minimization of the least squares misfit function .J(r) = L �(-u-( x -""�)--u __, (l bc -\l (xm)) • W •(u(xm)-uobs(:z:m)), lS m SM (3)
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 5 �uk(x) + PV l o-tc e,x;w)n;(e)u1(x) dS� = L Wi j(u;(xm) -ujb8(xm))u�(e,xm,w) dS{ lS m SM (x Er) (5) Computational treatment and results. The boundary element solu tion of (1) is implemented in a standard fashion. In this investigation, eight-node quadratic boundary elements are used. The location and shape of r is taken to depend on a finite set of design parameters: e = e(p), with p = (pi,p2, ... ,pv). With such assumption, the sensitivities o.J /opd re quired for the minimization of .J can be obtained by setting On = oe/Bpd• n in (4). As long as the topological characteristics of r are independent of p, the evolving boundary element mesh representing I'(p) can be created by interpolating the parameter-dependent nodes xq(p) with fixed, i.e. pre defined, mesh connectivity.
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 1 Figure 1. Evolution of design parameters in the minimization process.

  Topological derivative. To search the semi-infinite domain n for cavities in the context of {3), let Ba(x0) = x0+ aB define the cavity of size a> 0 and volume a3 I B I , where BC lR3 is a fixed and bounded open set of volume I B I containing the origin. Without loss of generality, B is chosen so that Ba(x0) is contained inside the sphere of radius a centered at x0• With such definitions, the topological derivative of (3) can be defined as T(x0) = lim (a 3 I B l )-1 [.J(O\Ba) -.1(0)], a�O
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 3 Figure 3. Distribution of (µd)-1T(:z:0) in the {3 = 3d (hori zontal) plane.

Fig. 4 .

 4 Fig. 4. Similar to the earlier diagram, the sampling points x0 are spaced by 0.25d in the {1 and 6 directions. A diminished resolution relative to the previous result reflects the major limitation of the 'experimental' data set, that is, the fact that both source and receiver points are limited to a single planar surface. The contour plots for w = 2 and 4 exhibit greater
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 4 Figure 4. Distribution of (µd)-1T(z0) in the 6 = 0 (vertical) plane.
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 5 Figure 5. Distribution of (µd)-2 Tlw=l x Tlw='2 in the { 2 = 0 plane.