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Optimal rates for plug-in estimators of

density level sets

Philippe Rigollet ∗ and Régis Vert †

February 11, 2008

Abstract

In the context of density level set estimation, we study the con-
vergence for general plug-in methods under two main assumptions on
the density for a given level λ. More precisely, it is assumed that the
density (i) is smooth in a neighborhood of λ and (ii) has γ-exponent at
level λ. Condition (i) ensures that the density can be estimated at a
standard nonparametric rate and condition (ii) is similar to Tsybakov’s
margin assumption that is stated for the classification framework. Un-
der these assumptions, we derive fast rates of convergence for plug-in
estimators, up to to order n−1. Explicit convergence rates are given
for plug-in estimators based on kernel density estimators when the
underlying measure is the Lebesgue measure. Lower bounds proving
optimality of the rates in a minimax sense when the density is Hölder
smooth are also provided.

Mathematics Subject Classifications: Primary 62G05, Secondary 62C20,
62G05, 62G20.
Key Words: Density level sets, plug-in estimators, fast rates of conver-
gence, kernel density estimators, minimax lower bounds.
Short title: Plug-in density level set estimation.

1 Introduction

Let Q be a positive σ-finite measure on X ⊆ IRd. Consider i.i.d random
vectors (X1, . . . ,Xn) with distribution P , having an unknown probability
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density p with respect to the measure Q. For a fixed λ > 0, we are interested
in the estimation of the λ-level set of the density p:

Γp(λ) , {x ∈ X : p(x) ≥ λ} .

Throughout the paper we fix λ > 0 and when no confusion is possible we
use the notation Γ(λ) or simply Γ instead of Γp(λ). When Q is the Lebesgue
measure on IRd, density level sets typically correspond to minimum volume
sets of given P -probability mass, as shown in Polonik (1997).

Here are two possible applications of density level set estimation.

Anomaly detection: the goal is to detect an abnormal observation from a
sample (see for example Steinwart et al., 2005, and references therein).
One way to deal with that problem is to assume that abnormal ob-
servations do not belong to a group of concentrated observations. In
this framework, observations are considered as abnormal when they
do not belong to Γ(λ) for some fixed λ ≥ 0. The special case λ = 0,
which corresponds to support estimation has been examined by De-
vroye and Wise (1980). In the general case, λ can be considered as a
tolerance level for anomalies: the smaller λ, the fewer observations are
considered as being abnormal.

Unsupervised or semi-supervised classification: these two problems
amount to identify areas where the observations are concentrated with
possible use of some available labels for the semi-supervised case. For
instance, it can be assumed that the connected components of Γ(λ),
for a fixed λ, are clusters of homogeneous observations as described
in Hartigan (1975). Note that this definition has been refined for ex-
ample in Stuetzle (2003).

Remark 1.1 In both applications, the choice of λ is critical and has to be
addressed carefully. However, we do not treat this problem in this paper.

There are essentially two approaches towards estimating density level
sets from the sample (X1, . . . ,Xn). The most straightforward is to resort to
plug-in methods where the density p in the expression for Γp(λ) is replaced
by its estimate computed from the sample. Another way to estimate density
level sets is to resort to direct methods which are based on empirical excess-
mass maximization. The excess-mass H is a functional that measures the
quality of an estimator Ĝ and is defined as follows (Hartigan, 1987; Müller
and Sawitzki, 1987):

H
(

Ĝ
)

= P
(

Ĝ
)

− λQ
(

Ĝ
)

.
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Excess-mass measures how the P -probability mass concentrates in the re-
gion Ĝ, and it is maximized by Γ = Γ(λ). Hence, it acts as a risk func-
tional in the density level set estimation (DLSE) framework and it is natu-
ral to measure the performance of an estimator Ĝ by its excess-mass deficit
H(Γ) − H(Ĝ) ≥ 0. Further justifications for the well-foundedness of the
excess mass criterion can be found in Polonik (1995). Recently, Gayraud
and Rousseau (2005) proposed a Bayesian approach to DLSE and together
with interesting comparative simulations.

While local versions of direct methods have been deeply analyzed and
proved to be optimal in a minimax sense, over a certain family of well-
behaved distributions (see Tsybakov, 1997), and although reasonable imple-
mentations have been recently proposed (see for instance Steinwart et al.,
2005), they are still not very easy to use for practical purposes, compared
to plug-in methods. Indeed, in practice, rather than specifying a value for
λ, the user can specify a value for α, the P -probability mass of the level set.
In this case, the value of λ is implied by that of α and efficient direct meth-
ods can be derived (Scott and Nowak, 2006). However, in general, using
direct methods, one has to run an optimization procedure several times, one
for different density level values, then choose a posteriori the most suited
level according to the desired rejection rate. Plug-in methods do not in-
volve such a complex process: the density estimation step is only performed
once and the construction of a density level set estimate simply amounts to
thresholding the density estimate at the desired level.

On the other hand, in the related context of binary classification where
more theoretical advances have been developed, the different analysis pro-
posed so far have mainly supported a belief in the superiority of direct
methods. Yang (1999) shows that, under general assumptions, plug-in es-
timators cannot achieve a classification error risk convergence rate faster
than O

(

1/
√

n
)

(where n is the size of the data sample), and suffer from the
curse of dimensionality. In contrast to that, under slightly different assump-
tions, direct methods achieve this rate O

(

1/
√

n
)

whatever the dimensional-
ity (see e.g. Vapnik, 1998; Devroye et al., 1996; Tsybakov, 2004b), and can
even reach faster convergence rates- up to O

(

1/n
)

- under Tsybakov’s margin
assumption (see Mammen and Tsybakov, 1999; Tsybakov, 2004b; Tsybakov
and van de Geer, 2005; Tarigan and van de Geer, 2006). This contributed
to raising some pessimism concerning plug-in methods. Nevertheless such a
comparison between plug-in methods and direct methods is far from being
legitimate, since the aforementioned analyzes of both plug-in methods and
direct ones have been carried out under the different sets of assumptions
(those sets are not disjoint, but none of them is included in the other).
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Recently, in the standard classification framework, Audibert and Tsy-
bakov (2007) have combined a new type of assumption dealing with the
smoothness of the regression function and the well known margin assump-
tion. Under these assumptions, they derive fast convergence rates- even
faster than O

(

1/n
)

in some situations- for plug-in classification rules based
on local polynomial estimators. This new result reveals that plug-in meth-
ods should not be considered as inferior to direct methods and, more im-
portantly, that this new type of assumption on the regression function is a
critical point in the general analysis of classification procedures.

In this paper we extend such positive results to the DLSE framework:
we revisit the analysis of plug-in density level set estimators, and show that
they can be also very efficient under smoothness assumptions on the un-
derlying density function p. Unlike the global smoothness assumption used
in Audibert and Tsybakov (2007), the local smoothness assumption intro-
duced here emphasizes the predominant role of the smoothness close to the
level λ as opposed to the smoothness for values of p far from the level under
consideration. Related papers are Báıllo et al. (2001) and Báıllo (2003),
who investigate plug-in estimators based on a certain type of kernel density
estimates. Báıllo et al. (2001) also study the convergence for the symmetric
difference under other assumptions and Báıllo (2003) derives almost sure
rates of convergence for a quantity different from the one studied here. It
is interesting to observe that she introduces a condition similar to the γ-
exponent used here. Note however, that this definition of γ-exponent allows
the density to have flat parts at level λ that cannot be estimated consis-
tently by standard plug-in estimators when using the symmetric difference
as a measure of error. To be able to achieve consistency in this setup, one
has to resort to plug-in estimators with a positive offset.

The particular case λ = 0, corresponds to estimation of the support of
density p and is often applied to anomaly detection. Following the pioneer
paper of Devroye and Wise (1980), this problem has received more attention
than the general case λ ≥ 0 and has been treated using plug-in methods for
example by Cuevas and Fraiman (1997). Unlike the previously cited papers,
we derive fast rates of convergence and prove that these rates are optimal
in a minimax sense. However, we do not treat the case λ = 0 for the which
the rates are typically different than for λ > 0 as pointed out by Tsybakov
(1997) for example. The techniques employed in the present analysis cannot
be extended straightforwardly to that case.

A general plug-in approach has been studied previously by Molchanov
(1998), where a result on the asymptotic distribution of the Hausdorff dis-
tance is given. In a recent paper, Cuevas et al. (2006) study general plug-in
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estimators of the level sets. Under very general assumptions they derive
consistency with respect to the Hausdorff metric and the measure of the
symmetric difference. However, this very general framework does not allow
them to derive rates of convergence.

This paper is organized as follows. Section 2 introduces the notation and
definitions. Section 3 presents the main result, that is a new bound on the
error of plug-in estimators based on general density estimators that satisfy
a certain exponential inequality. We then apply, in Section 4, this result to
the particular case of kernel density estimators, under the assumption that
the underlying density belongs to some locally Hölder class of densities.
Finally, minimax lower bounds are given in Section 5, as a way to assess the
optimality of the upper bounds involved in the main result.

2 Notation and Setup

For any vector x ∈ IRd, denote by x(j) its jth coordinate, j = 1, . . . , d.
Denote by ‖·‖ the Euclidean norm in IRd and by B(x, r) the closed Euclidean
ball in X centered at x ∈ X and of radius r > 0.

The probability and expectation with respect to the joint distribution
of (X1, . . . ,Xn) are denoted by IP and IE respectively. For any function
f : IRd → IR, we denote by ‖f‖∞ = supx∈IRd |f(x)| the sup-norm of f and
by ‖f‖ =

( ∫

IRd f2(x)dx)1/2 its L2-norm. Also, for any measurable function
f on X and any set A ⊂ f(X ), we write for simplicity {x ∈ X : f(x) ∈
A} = {f ∈ A}. Throughout the paper, we denote by C positive constants
that can change from line to line and by cj positive constants that have to
be identified. Finally, Ac denotes the complement of the set A.

2.1 Plug-in density level set estimators with offset

For a fixed λ > 0, the plug-in estimator of Γ(λ) is defined by

Γ̂(λ) = {x ∈ X : p̂n(x) ≥ λ} ,

where p̂n is a nonparametric estimator of p. For example, p̂n can be a kernel
density estimator of p,

p̂n(x) = p̂n,h(x) =
1

nhd

n
∑

i=1

K

(

Xi − x

h

)

, x ∈ X ,

where K : IRd → IR is a suitably chosen kernel and h > 0 is the bandwidth
parameter. For reasons that will be made clearer later, we consider in this
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paper the more general family of plug-in estimators with offset ℓn, denoted
by Γ̃ℓn

and defined as follows:

Γ̃ℓn
= Γ̃ℓn

(λ) = Γ̂(λ + ℓn) = {x ∈ X : p̂n(x) ≥ λ + ℓn} ,

where ℓn is a non-negative quantity that typically tends to 0 as n tends to
infinity. This family includes in particular the estimator Γ̂ when ℓn is taken
equal to 0.

2.2 Measures of performance

Recall that Q is a positive σ-finite measure on X and define the measure Q̃λ

that has density |p(·)−λ| with respect to Q. To assess the performance of a
density level set estimator, we use the two pseudo-distances between closed
sets G1 and G2 ⊆ X :

(i) The Q-measure of the symmetric difference between G1 and G2:

d△(G1, G2) = Q(G1 △ G2) .

(ii) The Q̃λ-measure of the symmetric difference between G1 and G2:

dH(G1, G2) = Q̃λ(G1 △ G2) =

∫

G1△G2

|p(x) − λ|dQ(x) .

The quantity d△(G1, G2) is a standard and natural way to measure the
distance between two sets G1 and G2. Note that for any measurable set
G ⊆ X , the excess-mass H(G) can be written

H(G) =

∫

G
(p(x) − λ) dQ(x) .

Thus, we can rewrite,

H(Γ) − H(Ĝ) =

∫

X

(

1I{p(·)≥λ}(x) − 1IĜ(x)
)

(p(x) − λ) dQ(x)

=

∫

Γ△Ĝ
|p(x) − λ|dQ(x) = dH(Ĝ,Γ) .

This explains the notation dH .
The following definition allows us to link dH to d△.
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Definition 2.1 For any λ, γ ≥ 0, a function f : X → IR is said to have
γ-exponent at level λ with respect to Q if there exist constants c0 > 0 and
ε0 > 0 such that, for all 0 < ε ≤ ε0,

Q {x ∈ X : 0 < |f(x) − λ| ≤ ε} ≤ c0ε
γ .

The assumption under which the underlying density has γ-exponent at level
λ was first introduced by Polonik (1995). Its counterpart in the context
of binary classification is commonly referred to as margin assumption (see
Mammen and Tsybakov, 1999; Tsybakov, 2004b).

The exponent γ controls the slope of the function around level λ. When
γ = 0, the condition is loose and when γ is positive, it constrains the rate
at which the function approaches the level λ. A standard case corresponds
to γ = 1, arising for instance in the case where the gradient of f has a
coordinate bounded away from 0 in a neighborhood of {f = λ}.

We now show that the pseudo-distances d△ and dH are linked when the
density p has γ-exponent at level λ. The following proposition is a direct
consequence of Proposition 6.1.

Proposition 2.1 Fix λ > 0 and γ ≥ 0. If the density p has γ-exponent at
level λ w.r.t Q, then for any LQ > 0, there exists C > 0 such that for any
G1, G2 satisfying Q(G1 △ G2) ≤ LQ we have

d△(G1, G2) ≤ Q(G1 △ G2 ∩ {p = λ}) + C (dH(G1, G2))
γ

1+γ .

When controlling the expected distance d△ of an estimator to the density
level set, the first term will be made negligible by using plug-in estimators
with a sufficiently large offset. Note that when using plug-in estimators
without offset, it is not possible to make the first term small enough and
the use of the offset is justified.

3 Fast rates for plug-in density level sets estima-

tors with offset

The first theorem states that rates of convergence for plug-in estimators with
offset can be obtained using exponential inequalities for the corresponding
nonparametric density estimator p̂n. In what follows, smoothness in the
neighborhood of the level under consideration is particularly important and
we define this neighborhood as follows:

D(η) =
{

p ∈ (λ − η, λ + η)
}

, η > 0
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In the sequel, we will always use plug-in estimators with the same offset and
we write for simplicity Γ̃ℓn

= Γ̃.

Theorem 3.1 Fix λ > 0 and ∆ > λ. Let p̂n be an estimator of the density
p such that Q(p̂n ≥ λ) ≤ M , almost surely for some positive constant M and
let P be class of densities on X . Assume that there exists positive constants
η, c1, c2, c3, c4, cδ , c

′
δ , a and b, such that

• for Q-almost all x ∈ D(η) and for any δ such that cδn
−a/2 < δ < ∆,

we have

sup
p∈P

IP (|p̂n(x) − p(x)| ≥ δ) ≤ c1e
−c2naδ2

, n ≥ 1 , (3.1)

• for Q-almost all x ∈ X \ D(η), for any δ such that c′δn
−b/2 < δ < ∆,

we have

sup
p∈P

IP (|p̂n(x) − p(x)| ≥ δ) ≤ c3e
−c4naδ2

, n ≥ 1 . (3.2)

Then if p has γ-exponent at level λ for any p ∈ P, the plug-in estimator Γ̃
with offset ℓn = n−ν for some 0 < ν < a/2 satisfies

sup
p∈P

IE
[

dH(Γp(λ), Γ̃)
]

≤c5n
− (1+γ)a

2 , (3.3)

sup
p∈P

IE
[

d△(Γp(λ), Γ̃)
]

≤c6n
− γa

2 , (3.4)

for n ≥ n0 = n0(λ, η, a, b, ε0, cδ , c
′
δ) and where c5 > 0 and c6 > 0 depend

only on c1, c2, c3, c4, M , a, b,γ and λ.

Before giving the proof of the theorem, we comment on its meaning. First
note that the main consequence of (3.1) is that |p̂n(x) − p(x)| is of order
n−a with polynomially high probability up to some logarithmic factors for
any x in the neighborhood D(η). That is p̂n is a good pointwise estimator
of p in this neighborhood. Equation (3.2) is of the same flavor as (3.1) but
in a weaker form. It entails that for x outside of D(η), p̂n(x) is a consistent
estimator of p(x) with a polynomial rate of order n−a∧b up to a logarithmic
factor that can be as slow as desired since b does not appear in the rates
(3.3) or (3.4).
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Proof. Note first that the conditions of Proposition 2.1 are satisfied.
Indeed, Q({p̂n ≥ λ + ℓn} △ {p ≥ λ}) ≤ Q(p̂n ≥ λ) + Q(p ≥ λ) ≤ M + λ−1

and we choose LQ = M + λ−1. Therefore, if we prove that

IEQ
(

Γp(λ) △ Γ̃ ∩ {p = λ}
)

≤ Cn− γa
2 (3.5)

then (3.4) is a direct consequence of (3.3) and (3.5). We begin by proving
(3.5). Remark that

Γp(λ) △ Γ̃ ∩ {p = λ} = {p̂n + ℓn < λ} ∩ {p = λ} ⊂ {|p̂n − p| > ℓn} ∩ D(η) .

Therefore by the Fubini Theorem and assumption (3.1),

IEQ
(

Γp(λ) △ Γ̃ ∩ {p = λ}
)

≤ Q{p = λ}e−c2naℓ2n ≤ Cn− γa
2 ,

which proves (3.5).
To prove (3.3), we use the same scheme as in the proof of Audibert and

Tsybakov (2007, Theorem 3.1). Recall that Γ̃ △ Γ = (Γ̃ ∩ Γc) ∪ (Γ̃c ∩ Γ). It
yields

IE
[

dH

(

Γ, Γ̃
)

]

= IE

∫

Γ̃∩Γc

|p(x) − λ|dQ(x) + IE

∫

Γ̃c∩Γ
|p(x) − λ|dQ(x) .

Define two sequences

ℓa
n = n−a/2 and ℓb

n =

(

c4n
a∧b

2(1 + γ)a log n

)−1/2

.

Let n0 be a positive integer such that ℓa
n < ℓb

n < η ∧ ε0 = r and ℓb
n >

c′δn
−b/2 for all n ≥ n0. Consider the following disjoint decomposition:

Γ̃c ∩ Γ = {p̂n < λ + ℓn, p ≥ λ} ⊂ A1 ∪ A2 ∪ A3 , (3.6)

where,

A1 = {p̂n < λ + ℓn, λ ≤ p ≤ λ + ℓa
n} ,

A2 = {p̂n < λ + ℓn, λ + ℓa
n < p ≤ λ + ℓb

n} ,

A3 = {p̂n < λ + ℓn, p > λ + ℓb
n} .

Observe that A1 ⊆ {|p − λ| ≤ ℓa
n}. It yields for n ≥ n0,

IE

∫

A1

|p(x)− λ|dQ(x) ≤ ℓa
nQ(A1 ∩ {|p− λ| > 0}) ≤ c0(ℓ

a
n)1+γ = c0n

− (1+γ)a
2 ,

(3.7)
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where in the last inequality we used the γ-exponent of p. Then when n ≥ n0,
we can decompose A2 into the disjoint union:

A2 =

Jn
⋃

j=1

Xj, Xj =
{

p̂n < λ + ℓn, λ + 2j−1ℓa
n < p ≤ λ + 2jℓa

n

}

∩ D(r) ,

where Jn = ⌊log2

( ℓb
n

ℓa
n

)

⌋ + 2 so that the Xj indeed form a partition of A2.
Hence,

IE

∫

A2

|p(x) − λ|dQ(x) =

Jn
∑

j=1

IE

∫

Xj

|p(x) − λ|dQ(x) . (3.8)

Remark that for sufficiently large n, we have ℓn ≤ ℓa
n/2. It yields

Xj ⊂ {|p̂n − p| > 2j−2ℓa
n} ∩ {|p(x) − λ| < 2jℓa

n} .

Using the Fubini Theorem and the previous inclusion, the general term of
the sum in the right-hand side of (3.8) can be bounded from above by

2jℓa
n

∫

D(r)
IP
[

|p̂n(x) − p(x)| > 2j−2ℓa
n

]

1I{0<|p(x)−λ|<2jℓa
n}

dQ(x) .

Remark that for any j ≤ Jn, we have 2j−2ℓa
n ≤ ℓb

n ≤ ∆ for sufficiently
large n. Using now (3.1) and the fact that p has γ-exponent at level λ, we
get

IE

∫

A2

|p(x) − λ|dQ(x) ≤ c0c1

∑

j≥1

exp
(

−c2n
a(2j−2ℓa

n)2
)

(2jℓa
n)1+γ

≤ C(ℓa
n)1+γ = Cn− (1+γ)a

2 .

(3.9)

We now treat the integral over A3 using the Fubini theorem and the fact
that ℓn ≤ ℓb

n/2 for sufficiently large n. We obtain

IE

∫

A3

|p(x) − λ|dQ(x) ≤ sup
G⊆X

Q(G)≤1/λ

∫

G
|p(x) − λ|IP

[

|p̂n(x) − p(x)| > ℓb
n/2
]

dQ(x)

≤ 2c3 exp
(

−c4n
a(ℓb

n/2)2
)

≤ 2c3n
− (1+γ)a

2 ,

(3.10)

where in the last inequality, we used the fact that

ℓb
n ≥

(

c4n
a

2(1 + γ)a log n

)−1/2

.
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In view of (3.6), if we combine (3.7), (3.9) and (3.10), we obtain

IE

∫

Γ̃c∩Γ
|p(x) − λ|dQ(x) ≤ Cn− (1+γ)a

2 .

In the same manner, it can be shown that for n ≥ n0,

IE

∫

Γ̃∩Γc

|p(x) − λ|dQ(x) ≤ Cn− (1+γ)a
2 .

The only difference with the part of the proof detailed above is that in
the step that corresponds to proving the equivalent of (3.10), we use the
assumption that Q(p̂n ≥ λ) ≤ M , a.s.

Remark 3.1 It is sometimes the case, for some applications that Γ̃ is re-
quired to be included in Γ with high probability. When the offset ℓn is chosen
sufficiently large, i.e. of order at least n−a/2, it can be shown that the re-
sulting performance of the density level set estimator is only altered by a
logarithmic factor whereas it can be enforced that,

IEQ
(

Γ̃ ∩ Γc
)

≤ Cn−α ,

for any α > 0 (Rigollet, 2007). In other words, Γ̃ is included in Γ with
arbitrarily large probability.

4 Fast rates for plug-in estimators with offset based

on kernel density estimators

In the rest of this paper, we fix the measure Q to be the Lebesgue measure
on IRd denote by Lebd.

In this section, we derive exponential inequalities of the type (3.1) when
the estimator p̂n is a kernel density estimator and the density p belongs
to some Hölder class of densities. We begin by giving the definition of the
Hölder classes of densities that we consider.

4.1 Hölder classes of densities

Fix β > 0 and λ > 0. For any d-tuples s = (s1, . . . , sd) ∈ INd and x =
(x1, . . . , xd) ∈ X , we define |s| = s1 + . . . + sd, s! = s1! . . . sd! and xs =
xs1

1 . . . xsd

d . Let Ds denote the differential operator

Ds =
∂s1+···+sd

∂xs1
1 . . . ∂xsd

d

.
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Denote by ⌊β⌋ the maximal integer that is strictly smaller than β and fix
x0 ∈ X . For any real valued function g on X that is ⌊β⌋-times continuously

differentiable at point x0, we denote by g
(β)
x0 its Taylor polynomial of degree

⌊β⌋ at point x0:

g(β)
x0

(x) =
∑

|s|≤⌊β⌋

(x − x0)
s

s!
Dsg(x0) .

Let L > 0 and denote by Σ(β,L, x0) the set of functions g : X → IR that
are ⌊β⌋-times continuously differentiable at point x0 and satisfy

|g(x) − g(β)
x0

(x)| ≤ L‖x − x0‖β, ∀x ∈ B(x0, r) ,

for some r > 0. The set Σ(β,L, x0) is called (β,L, x0)-locally Hölder class
of functions.

We now define the class of densities that are considered in this paper.

Definition 4.1 Fix β > 0, L > 0, λ > 0 and γ ≥ 0. Recall the D(η) is the
neighborhood defined by

D(η) =
{

p ∈ (λ − η, λ + η)
}

, η > 0

Let PΣ(β,L, λ, γ) denote the class of all probability densities p on X for
which there exists η > 0 such that

(i) p ∈ Σ(β,L, x0) for all x0 ∈ D(η), apart from a set of null Lebesgue
measure Lebd.

(ii) ∃ β′ > 0 such that p ∈ Σ(β′, L, x0), for all x0 /∈ D(η), apart from a set
of null measure Lebd.

(iii) p has γ-exponent at level λ with respect to the Lebesgue measure.

(iv) p is uniformly bounded by a constant L∗.

The class PΣ(β,L, λ, γ) is the class of uniformly bounded (condition
(iv)) densities that have γ-exponent at level λ with respect to Lebd (con-
dition (iii)) and that are smooth in the neighborhood of the level under
consideration (condition (i)). Note that the parameters β′ in condition (ii)
and L∗ in condition (iv) do not appear in the notation of the class. Indeed
β′ > 0 can be arbitrary close to 0 and this will not affect the rates of conver-
gence. Actually, the role of condition (ii) is to ensure that any density from
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the class can be consistently estimated at any point with an arbitrary slow
polynomial rate. In the same manner, the constant L∗ does not appear in
the rates of convergence and only affects the constants. Conditions (i) and
(ii) are smoothness conditions that ensure consistency of the nonparamet-
ric density estimator used in the plug-in estimator. The class of densities
PΣ = PΣ(β,L, λ, γ) is similar to the class of regression functions considered
in Audibert and Tsybakov (2007). However, besides the additional assump-
tion that functions in PΣ are probability densities, the main improvement
here is that the regularity of a density in PΣ can be arbitrary low outside
of a neighborhood of the level under consideration, yielding slower rates of
pointwise estimation. We prove below (cf. Corollary 4.1) that fast rates of
convergence for DLSE are possible for this larger class of densities, which
corroborates the idea that the density need not be precisely estimated far
from the level λ.

Intuitively, parameters γ and β are conflicting. Indeed, the parameter
β ensures that the density p has a relatively small slope around level λ and
the parameter γ requires p to have a slope that is not too small around level
λ. The constraints on these parameters depend on whether the density p
crosses level λ or simply hits it. We now recall the definition for these two
terms that was introduced by Audibert and Tsybakov (2005).

Definition 4.2 A function f : IRd → IR is said to hit the level λ > 0 at
X0 ∈ IRd if and only if f(x0) = λ and for any δ > 0, there exists x ∈ B(x0, δ)
such that f(x) 6= λ. Moreover, the function f is said to cross the level λ > 0
at X0 ∈ IRd if and only if f(x0) = λ and for any δ > 0, there exists two
points x+, x− ∈ B(x0, δ) such that f(x−) < λ and f(x+) > λ.

A straightforward consequence of Proposition 3.4 of Audibert and Tsy-
bakov (2005) is the following proposition.

Proposition 4.1 If γ(β∧1) > d, there is no density p ∈ PΣ(β,L, λ, γ) that
hits the level λ in the interior of X . Conversely, if γ(β ∧ 1) ≤ d, there exist
densities in PΣ(β,L, λ, γ) that hit the level λ in the interior of X .

If γ(β ∧ 1) > 1, there is no density p ∈ PΣ(β,L, λ, γ) that crosses the
level λ in the interior of X . Conversely, if γ(β∧1) ≤ 1, there exist densities
in PΣ(β,L, λ, γ) that cross the level λ in the interior of X .
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4.2 Exponential inequalities for kernel density estimators

To estimate a density p from the class PΣ(β,L, λ, γ), we can use a kernel
density estimator defined by:

p̂n(x) = p̂n,h(x) =
1

nhd

n
∑

i=1

K

(

Xi − x

h

)

, (4.11)

where h > 0 is the bandwidth parameter and K : X → IR is a kernel. This
choice is not the only possible one and all we need is an estimator that
satisfies exponential inequalities as in (3.1) and (3.2). The following lemma
states that it is possible to derive such exponential inequalities for a kernel
density estimator with a β⋆-valid kernel where β⋆ ≥ β. The definition of
β-valid kernel is recalled in the appendix, Definition 6.1 (see also Tsybakov,
2004b, for example).

Lemma 4.1 Let P be a distribution on IRd having a density p w.r.t. the
Lebesgue measure and such that ‖p‖∞ ≤ L∗ for some constant L∗ > 0.
Fix β > 0, β⋆ ≥ β, L > 0 and assume that p ∈ Σ(β,L, x0), where the
neighborhood around x0 is a ball of radius r > 0. Let p̂n be a kernel den-
sity estimator with bandwidth h > 0 and β⋆-valid kernel K, given an i.i.d.
sample X1, . . . ,Xn from P . Set

∆ =
6L∗‖K‖2

‖K‖∞ + L∗ + L
∫

‖t‖βK(t)dt
.

Then, for all δ, h ≤ r such that ∆ > δ > 2Lc7h
β > 0, we have,

IP{|p̂n(x0) − p(x0)| ≥ δ} ≤ 2 exp
(

−c8nhdδ2
)

,

where c7 =
∫

‖t‖βK(t)dt and c8 = 1/(16L∗‖K‖2).

Proof. For any x0 ∈ IRd,

|p̂n(x0) − p(x0)| =
1

n

∣

∣

∣

n
∑

i=1

Zi(x0)
∣

∣

∣
,

with

Zi(x) =
1

hd
K

(

Xi − x

h

)

− p(x) .
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The expectation of Zi(x0) is the pointwise bias of a kernel density estimator
with bandwidth h. Under the assumptions of the theorem, it is controlled
in the following way

|IEZi(x0)| ≤ Lc7h
β .

Indeed,

|IEZi(x0)| =

=
∣

∣

∣

∫

1

hd
K
( t

h

)

[

p(x0 + t) − p(x0)
]

dt
∣

∣

∣

=
∣

∣

∣

∫

K(t)
[

p(x0 + ht) − p(x0)
]

dt
∣

∣

∣

=
∣

∣

∣

∫

K(t)
[

p(x0 + ht) − p(β)
x0

(x0 + ht)
]

dt

+

∫

K(t)
[

p(β)
x0

(x0 + ht) − p(x0)
]

dt
∣

∣

∣
.

(4.12)

To control the first term in the right hand side of (4.12), remark that since
K has support [−1, 1]d, for any h < r/

√
d, we have x0 + ht ∈ B(x0, r) for

any t ∈ [−1, 1]d. Thus, using the fact that p is in Σ(β,L, x0) we have
∣

∣

∣

∫

K(t)
[

p(x0 + ht) − p(β)
x0

(x0 + ht)
]

dt
∣

∣

∣
≤ L

∫

|K(t)|‖ht‖βdt .

Now, since K is a ⌊β⌋-valid kernel (cf. Proposition 6.2) and p
(β)
x0 − p(x0) is

a polynomial of degree at most ⌊β⌋ with no constant term, the second term
in the right hand side of (4.12) is zero. Therefore, it holds

|IEZi(x0)| ≤ Lhβ

∫

|K(t)|‖t‖βdt , for any h ≤ r .

Now denote for simplicity Zi = Zi(x0) and let Zi be the centered version
of Zi. Then, when Lc7h

β ≤ δ/2,

IP{|p̂n(x0) − p(x0)| ≥ δ} ≤ IP

{

1

n

∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣
≥ δ − Lc7h

β

}

≤ IP

{

1

n

∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣
≥ δ

2

}

.

The right-hand side of the last inequality can be bounded applying Bern-
stein’s inequality to Zi and −Zi successively. For h ≤ 1, one has

∣

∣Zi

∣

∣ ≤ ‖K‖∞h−d + L∗ + Lc7h
β ≤ c9h

−d ,
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where c9 = ‖K‖∞ + L∗ + Lc7 and

Var{Zi} ≤ h−d

∫

K(u)2p(hu)du ≤ c10h
−d ,

where c10 = L∗‖K‖2. Applying now Bernstein’s inequality yields

IP{|p̂n(x0) − p(x0)| ≥ δ} ≤ 2 exp

(

− n(δ/2)2

2 (c10h−d + c9h−dδ/6)

)

≤ 2 exp
(

−c8nhdδ2
)

,

for any δ ≤ ∆ and where ∆ = 6c10/c9 and c8 = 1/(16c10).

We can therefore apply Theorem 3.1. When the choice of h is optimal,
i.e., h = n−1/(2β+d), it yields the following corollary.

Corollary 4.1 Let the underlying measure Q be the Lebesgue measure on
IRd. Fix β > 0, L > 0, λ > 0, γ > 0 and consider the plug-in estimator
Γ̃ with offset ℓn = n−ν for some 0 < ν < β/(2β + d). The nonparametric
estimator p̂n is the kernel density estimator defined in (4.11) with bandwidth
parameter h = n−1/(2β+d) and β⋆-valid kernel K, where β⋆ = β ∨ β′ and β′

is the parameter from Definition 4.1. Then,

sup
p∈PΣ(β,L,λ,γ)

IE
[

dH(Γp(λ), Γ̃)
]

≤c11n
− (1+γ)β

2β+d ,

sup
p∈PΣ(β,L,λ,γ)

IE
[

d△(Γp(λ), Γ̃)
]

≤c12n
− γβ

2β+d ,

where c11 > 0 and c12 > 0 depend on the constants c7 and c8 that appear in
Lemma 4.1, on c0, β, β′, γ, d and on λ.

Proof. The results are direct consequences of Theorem 3.1 when p̂n is
chosen as in (4.11). We need to check that for such an estimator we have
Lebd(p̂n ≥ λ) ≤ M , almost surely for some M > 0. Note that since K ∈
L1(IR

d), we have

∞ >

∫

IRd

|K(x)|dLebd(x) ≥
∫

{p̂n≥λ}
|p̂n(x)|dLebd(x) ≥ λLebd{p̂n ≥ λ} .

Hence, the condition is satisfied with M = λ−1
∫

|K|. All the other condi-
tions of Theorem 3.1 are satisfied and we can apply it with a = 2β/(2β + d)
and b = 2β′/(2β + d).
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5 Minimax lower bounds

The following theorem shows that the rates obtained in Corollary 4.1 are
optimal in a minimax sense.

Theorem 5.1 Let the underlying measure Q be the Lebesgue measure on
IRd. Fix λ > 0 and let L, β, γ be positive constants such that γβ ≤ d. Then,
for any n ≥ 1 and any estimator Ĝn of Γp(λ) constructed from the sample
X1, . . . ,Xn, we have

sup
p∈PΣ(β,L,λ,γ)

IE
[

dH(Γp(λ), Ĝn)
]

≥Cn
− (1+γ)β

2β+d ,

sup
p∈PΣ(β,L,λ,γ)

IE
[

d△(Γp(λ), Ĝn)
]

≥Cn− γβ
2β+d . (5.1)

Proof. In view of Proposition 2.1 and since we have Lebd[Γp(λ)] ≤ λ−1 <
∞, we only have to prove (5.1). To that end, we will use Lemma 6.2 with

d = d△, ε = εn ≥ Cn− γβ
2β+d and P = PΣ(β,L, λ, γ). Thus our goal is

to find a family N of densities that are in P such that the densities in
N are close to each other for the Kullback-Leibler divergence and yield
density level sets that are far for the symmetric distance. We now describe
the construction of the family N . It is similar to the construction used in
Audibert and Tsybakov (2007), Section 6.2 and for the rest of this section
any reference to this article will be about Section 6.2. However, the proof for
densities involves different technical details. Indeed, here, the lower bound
has to be on the Lebesgue measure of the symmetric difference -which is
actually easier to handle than the excess-risk in classification- and most
importantly, when construction less favorable distributions in the case of
classification, one has two degrees of freedom: the marginal distribution
and the regression function. Here we have only one degree of freedom: the
density. The modification are substantial enough that we produce the entire
proof, using results from Audibert and Tsybakov (2007) when possible.

We can assume without loss of generality that λ = 1. Consider the

integer q = ⌊c13n
1

2β+d ⌋ where c13 is a positive constant chosen large enough
to ensure that q ≥ 1, and the regular grid G on [0, 1]d defined as

G =

{(

2k1 + 1

2q
, . . . ,

2kd + 1

2q

)

, ki ∈ {0, . . . , q − 1}, i = 1, . . . , d}
}

.

Denote by {gj}1≤j≤qd the elements of the grid, the choice of indexing being

of no importance for what follows. Define the integer m = ⌊c14q
d−γβ⌋ for
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some positive constant c14 and note that the condition γβ ≤ d ensures that
m ≥ 2 if c14 is chosen large enough. Let J = {1, 3, . . . , 2m − 1} be the set
of odd integers between 1 and 2m− 1 and for any j = 1, . . . , 2m, define the
disjoint balls Bj = B(gj , (4q)

−1). Set B0 = [0, 1]d \⋃2m
j=1 Bj.

Let φ : IRd → IR+ and ϕj : IRd → [0, 1] be the functions defined in
Audibert and Tsybakov (2007, Section 6.2) such that φ ∈ Σ(β,L, x0) for
any x0 ∈ IRd and ϕj(x) = q−βφ(q[x − gj ])1I{x∈Bj}.

Then, for any ω = (ω1, . . . , ωm) ∈ {0, 1}m, define the function on [0, 1]d

pω(x) = 1 +
∑

j∈J

ωj[ϕj(x) − ϕj+1(x)] .

Consider a subset Ω ⊂ {0, 1}m of cardinality s and define the family N as

N = {pω, ω ∈ Ω} .

The set Ω, will be chosen in order to fulfill the conditions of Lemma 6.2.
First condition: N ⊂ PΣ(β,L, 1, γ).
First, as noted by Audibert and Tsybakov (2007), the function φ can

always be adjusted so that ‖ϕj‖∞ ≤ 1 for any j so that for any ω ∈ Ω, pω

is a density that satisfies ‖pω‖∞ ≤ 2 and pω ∈ Σ(β,L, x0) from the results
of Audibert and Tsybakov (2007).

Therefore it remains to check that pω has γ-exponent at level 1 with
respect to the Lebesgue measure. The following decomposition holds:

Lebd(x : 0 < |pω(x) − 1| ≤ ε)

= 2
∑

j∈J

Lebd(x : 0 < |pω(x) − 1| ≤ ε, x ∈ Bj)

= 2m

∫

B1

1I{0<φ(q[x−g1])≤εqβ}dx

= 2mq−d

∫

B(0,1/4)
1I{0<φ(x)≤εqβ}dx

= 2mq−d1I{1≤εqβ}dx ≤ 2c14ε
γ ,

(5.2)

where the last but one inequality uses the fact that φ(x) = Cφ ≤ 1 for any
x ∈ B(0, 1/4) (see construction of φ in Audibert and Tsybakov, 2007).

Second condition (6.3): d△(Γp,Γq) ≥ εn,∀ p, q ∈ N , p 6= q.
By construction, for any ω, ω′ ∈ {0, 1}m,

d△(Γpω ,Γpω′ ) = 2Lebd(B1)

m
∑

j=1

1I{ωj 6=ω′
j}

≥ Cq−d
m
∑

j=1

1I{ωj 6=ω′
j}

.
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We need to bound from below the Hamming distance between ω and ω′,
defined for any ω, ω′ ∈ Ω by

ρ(ω, ω′) =

m
∑

j=1

1I{ωj 6=ω′
j}

.

To do so we use the Varshamov-Gilbert bound (cf. Lemma 6.1) that guar-
antees the existence of Ω such that card(Ω) ≥ 2m/8 and ρ(ω, ω′) ≥ m/8 for
any ω, ω′ ∈ Ω. We also choose Ω such that Ω ∋ ω0 = (0, . . . , 0). For such Ω
we have

d△(Γpω ,Γpω′ ) ≥ Cmq−d ≥ Cn
− γβ

2β+d .

Third condition: max
ω∈Ω

K(pω, pω0) ≤ C log(s).

Note that for the above choice of Ω, we have s = card(N ) = card(Ω) ≥
2m/8. Therefore log(s) ≥ Cm and we only have to prove that

max
ω∈Ω

K(pω, pω0) ≤ Cm .

Denote by ξj(x) = ϕj(x) − ϕj+1(x). For any pω ∈ N , we have,

K(pω, pω0) = n
∑

j∈J

∫

Bj∪Bj+1

log (1 + ωjξj(x))
(

1 + ωjξj(x)
)

dx

≤ 2n
∑

j∈J

ωj

∫

Bj

ϕ2
j (x)dx ,

≤ 2nmq−(2β+d)

∫

B(0,1/4)
φ2(x)dx

≤ Cm .

We can therefore apply Lemma 6.2 and Theorem 5.1 is proved.

6 Appendix

Several results that can be omitted in a first reading are gathered in this
appendix.

6.1 Equivalent formulation for the γ-exponent condition

The following proposition gives an equivalent formulation for the γ-exponent
condition.
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Proposition 6.1 Fix λ > 0, γ > 0 and LQ > 0.
Define L = L(λ) = {p = λ}. The two following statements are equiva-

lent.

(i) ∃ c > 0 and ε0 > 0, such that for any 0 < ε ≤ ε0, we have

Q {x ∈ X : 0 < |p(x) − λ| ≤ ε} ≤ cεγ .

(ii) ∃ c′ > 0 and ε1 > 0, such that for any 0 < ε ≤ ε1, we have

Q {x ∈ X : 0 < |p(x) − λ| ≤ ε} ≤ LQ

and for all G ⊆ X \ L satisfying Q(G) ≤ LQ, we have

Q(G) ≤ c′
(
∫

G
|p(x) − λ|dQ(x)

)
γ

1+γ

. (6.1)

Proof. The proof of (i) ⇒ (ii) essentially follows that of Tsybakov (2004b,
Proposition 1). Define

ε1 = ε0 ∧
( LQ

c(1 + γ)

)1/γ
.

Observe that for any 0 < ε ≤ ε1, we have

Q {x ∈ X : 0 < |p(x) − λ| ≤ ε} ≤ cεγ ≤ cεγ
1 =

LQ

1 + γ
≤ LQ .

Define Aε = {x : |p(x)− λ| > ε}, for all 0 < ε ≤ ε0. For any measurable set
G ⊂ X \ L, we have

∫

G
|p(x) − λ|dQ(x) ≥ εQ(G ∩ Aε)

≥ ε [Q(G) − Q(Ac
ε ∩ Lc)]

≥ ε [Q(G) − cεγ ] , ∀ c > c ,

where the last inequality is obtained using (i). Maximizing the last term
w.r.t ε > 0, we get

(

∫

G
|p(x) − λ|dQ(x)

)
γ

1+γ ≥ Q(G)
( γ

1 + γ

)
γ

1+γ
( 1

1 + γ

)
1

1+γ
c−1/(1+γ) .
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This yields (6.1) with c′ = e−2/ec1/(1+γ). Note that the maximum is obtained

for ε =
(

Q(G)
c(1+γ)

)1/γ
≤ ε0 for sufficiently large c and (i) is valid for this

particular ε.
We now prove that (ii) ⇒ (i). Consider ε1 > 0 such that Q(Ac

ε∩Lc) ≤ LQ

for any 0 < ε ≤ ε1 and c′ > 0 such that (6.1) is satisfied for any G ⊆ X \L,
Q(G) ≤ LQ. Taking G = Ac

ε ∩ Lc in (6.1) yields

Q {x : 0 < |p(x) − λ| ≤ ε} = Q (Ac
ε ∩ Lc)

≤ c′

(

∫

Ac
ε∩L

c

|p(x) − λ|dQ(x)

)
γ

1+γ

≤ c′ (εQ (Ac
ε ∩ Lc))

γ
1+γ .

Therefore,
Q {x : 0 < |p(x) − λ| ≤ ε} ≤ (c′)1+γεγ .

This inequality yields (i) with ε0 = ε1 and c = (c′)1+γ .

6.2 On β-valid kernels

We recall here the definition of β-valid kernels and give a property that is
useful in the present study.

Definition 6.1 Let K be a real-valued function on IRd, with support [−1, 1]d.
For fixed β > 0, the function K(·) is said to be a β-valid kernel if it sat-
isfies

∫

K = 1,
∫

|K|p < ∞ for any p ≥ 1,
∫

‖t‖β |K(t)| dt < ∞, and, in
case ⌊β⌋ ≥ 1, it satisfies

∫

tsK(t)dt = 0 for any s = (s1, . . . , sd) ∈ INd such
that 1 ≤ s1 + . . . + sd ≤ ⌊β⌋.

Example 6.1 Let β > 0. For any β-valid kernel K defined on IRd, consider
the following product kernel

K̃(x) = K(x1)K(x2) . . . K(xd)1Ix∈[−1,1]d ,

for any x = (x1, . . . , xd) ∈ IRd. Then it can be easily shown that K̃ is a β-
valid kernel on IRd. Now, for any β > 0, an example of a 1-dimensional β-
valid kernel is given in (Tsybakov, 2004a, section 1.2.2), the construction of
which is based on Legendre polynomials. This eventually proves the existence
of a multivariate β-valid kernel, for any given β > 0.
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The following proposition holds.

Proposition 6.2 Fix β > 0. If K is a β-valid kernel, then K is also a
β′-valid kernel for any 0 < β′ ≤ β.

Proof. Fix β and β′ such that 0 < β′ ≤ β. Observe that ⌊β′⌋ ≤ ⌊β⌋ yields
that if ⌊β′⌋ ≥ 1, for any β-valid kernel K, we have

∫

tsK(t)dt = 0 for any
s = (s1, . . . , sd) such that 1 ≤ s1 + . . . + sd ≤ ⌊β′⌋. It remains to check that

∫

IRd

‖t‖β′ |K(t)|dt < ∞ . (6.2)

Consider the decomposition
∫

IRd

‖t‖β′ |K(t)|dt =

∫

‖t‖≤1
‖t‖β′ |K(t)|dt +

∫

‖t‖≥1
‖t‖β′ |K(t)|dt

≤
∫

IRd

|K(t)|dt +

∫

‖t‖≥1
‖t‖β |K(t)|dt .

To prove (6.2), remark that since K is a β-valid kernel, we have
∫

IRd |K(t)|dt <
∞ and

∫

‖t‖≥1
‖t‖β |K(t)|dt ≤

∫

IRd

‖t‖β|K(t)|dt < ∞ .

6.3 Technical lemmas for minimax lower bounds

We gather here technical results that are used in Section 5. For a re-
cent survey on the construction of minimax lower bounds, see Tsybakov
(2004a)[Chap. 2]. We first give a lemma related to subset extraction.

Fix an integer m ≥ 1, and for any two ω = (ω1, . . . , ωm) and ω′ =
(ω′

1, . . . , ω
′
m) in {0, 1}m define the Hamming distance between ω and ω′ by

ρ(ω, ω′) =
m
∑

i=1

1I{ωi 6=ω′
i}

.

The following lemma holds.

Lemma 6.1 (Varshamov-Gilbert bound, 1962) Fix m ≥ 8. Then there
exists a subset Ω = {ω(0), . . . , ω(M)} of {0, 1} such that M ≥ 2m/8 and

ρ(ω(j), ω(k)) ≥ m

8
, ∀ 0 ≤ j < k ≤ M .

Moreover, we can always take ω(0) = (0, . . . , 0).
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For a proof of this lemma, see Tsybakov (2004a, Lemma 2.8, p. 89).
The next lemma can be found in Tsybakov (2004a, Theorem 2.5, p. 85)

and is stated here in a form adapted to our purposes. It allows to derive
minimax lower bounds in the context of DLSE. It involves the Kullback-
Leibler divergence between two probability densities p and q on IRd

K(p, q) =







∫

IRd

log
(p(x)

q(x)

)

p(x)dx if Pp ≪ Pq ,

+∞ else.

Lemma 6.2 Let d be a pseudo-metric between subsets of X ⊂ IRd. Let P
be a set of densities and assume that there exists a finite subset N ⊂ P with
2 ≤ card(N ) = s < ∞ and a constant C > 0, such that

d
(

Γp(λ),Γq(λ)
)

≥ 2ε, ∀ p, q ∈ N , p 6= q , (6.3)

and there exists p ∈ N such that

max
q∈N

K(q, p) ≤ C log(s) . (6.4)

Then, there exists an absolute positive constant C ′ such that for any esti-
mator Ĝn of Γp(λ) constructed from the sample X1, . . . ,Xn, we have

sup
p∈P

IE
[

d(Γp(λ), Ĝn)
]

≥ C ′ε .
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75005 Paris, France

regis.vert@masagroup.net

25


