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Wreath products, nilpotent orbits and

symplectic deformations

Baohua Fu

November 15, 2006

Abstract

We recover the wreath product X := Sym2(C2/±1) as a transver-
sal slice to a nilpotent orbit in sp6. By using deformations of Springer
resolutions, we construct a symplectic deformation of symplectic res-
olutions of X. AMS Classification: 14E15, 14M17

0. Introduction

Let H ⊂ Sp(2n) be a finite sub-group and X := C2n/H the quotient
symplectic variety. Given a projective symplectic resolution

Z → X, (1)

it was shown in [GK] that there exists a symplectic deformation of (1) over
B := H2(Z,C), i.e. a morphism Π : Z → X over B such that over the origin
0 ∈ B, Π0 : Z0 → X0 is the resolution (1), and over a generic point b ∈ B,
Zb,Xb are symplectic smooth varieties isomorphic under Πb, where Πb is the
restriction of Π to the fibers over b. The proof of this theorem is based on
the infinitesimal and formal deformations of π developed in [KV] and the
globalization is obtained by using the expanding C∗-action on X. As noted
already in [GK], this deformation is very similar to the deformation of the
Springer resolution of nilpotent cones given by Grothendieck’s simultaneous
resolution ([Slo]). However, the construction of symplectic deformations in
general is rather implicit. The purpose of this note is to provide some explicit
examples of such deformations.

A class of important examples of symplectic resolutions is given by Hilbert-
Chow morphisms ([Wan]): Hilbn(C2//Γ) → Symn(C2/Γ), where Γ ⊂ SL(2)
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is a finite sub-group and C2//Γ → C2/Γ is the minimal resolution. The
simplest case is n = 1. It can be shown ([Slo]) that a transverse slice of the
sub-regular nilpotent orbit in the nilpotent cone has ADE singularities, then
Grothendieck’s simultaneous resolution provides symplectic deformations of
the minimal resolution (see also [GK] section 3).

The next simple case is n = 2 and Γ = ±1, i.e. the resolution π :
Hilb2(T ∗P1) → Sym2(C2/±1). Our aim of this note is to construct a sym-
plectic deformation of the resolution π. The key idea is to recover π as a slice
of some Springer resolution. More precisely, let us consider the following two
nilpotent orbits in sp6:

O[2,2,2] := Sp6 ·

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, O[4,2] := Sp6 ·

















0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 −1 0 0

















,

then their closures in sp6 are given by:

O[2,2,2] := {A ∈ sp6 | A2 = 0}, O[4,2] := {A ∈ sp6 | A4 = 0}.

We will prove that the wreath product Sym2(C2/±1) is in fact isomorphic
to the intersection of a transverse slice of the nilpotent orbit O[2,2,2] with the
nilpotent orbit closure O[4,2] in sp6. The singular variety O[4,2] admits ex-
actly two symplectic resolutions. By restricting them to the transverse slice,
we recover exactly the two symplectic resolutions of Sym2(C2/±1). Using
deformations of Springer resolutions (e.g. [Fu]), we construct a symplectic
deformation of π.

It is somewhat surprising that we can recover the wreath product Sym2(C2/±1)
from nilpotent orbits, although the interplay between nilpotent orbits and
Hilbert schemes has been noticed in [Man], where a transverse slice to the
nilpotent orbit O[2m−n,n](n ≤ m) in the nilpotent cone of sl2m is recovered as
an open subset (whose complement is of codimension 1 when n ≥ 2) of the
Hilbert scheme Hilbn(A2m), for some singular surface A2m. Here O[2m−n,n]

consists of nilpotent matrices A ∈ sl2m whose Jordan form has only two
blocks, with sizes 2m− n and n respectively. It would be very interesting to
recover other wreath products as a transverse slice to nilpotent orbits, which
would in turn reveal more the mysterious relationships between Hilbert-Chow
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resolutions and Springer resolutions, although the two objects are studied in
usual separately.

1. The transverse slice

Let g be a simple Lie algebra and G its adjoint group. For any nilpotent
element x ∈ g, by the theorem of Jacobson-Morozov, there exists an sl2-
triplet (x, y, h). Then S = x + gy is a transverse slice to the nilpotent orbit
G · x in g, and the morphism G× S → g is smooth ([Slo], Section 7.4). Here
gy := {z ∈ g | [z, y] = 0}.

From now on, let g = sp6, and consider the following sl2-triplet associated
to the nilpotent orbit O[2,2,2]:

x0 =

(

0 I
0 0

)

, y0 =

(

0 0
I 0

)

, h0 =

(

I 0
0 −I

)

, (2)

where I is the 3× 3 identity matrix. Note that O[2,2,2] = Sp6 ·x0.
The transverse slice to the orbit O[2,2,2] is given by

S = x0 + gy0 = {
(

Z1 I
Z2 Z1

)

| Z1 + ZT
1 = 0, Z2 = ZT

2 } ⊂ sp6.

We choose the following parameters for Z1 and Z2:

Z1 =





0 a3/2 −a2/2
−a3/2 0 a1/2
a2/2 −a1/2 0



 , Z2 =





x1 y1 y2

y1 x2 y3

y2 y3 x3



 .

Note that O[2,2,2] ⊂ O[4,2], and the codimension is is 4. Let T be the
scheme intersection S ∩O[4,2]. The variety O[4,2] is normal and the morphism
G × T → O[4,2] is smooth. It follows that T is normal. As easily seen, a
matrix A ∈ S is in T if and only if rk(A) ≤ 4 and tr(A) = tr(A2) = tr(A3) =
tr(A4) = 0.

Notice that rk(A) ≤ 4 is equivalent to rk(Z2−Z2
1 ) ≤ 1. The matrix Z2−Z2

1

is symmetric, so this is equivalent to the existence of u = (u1, u2, u3) ∈ C3

such that Z2 − Z2
1 = uTu, from which we can substitute the variables xi, yj

by uk. Remark that u and −u give the same Z2, so we should quotient by
the following action of Z2: u 7→ −u.

Now a direct calculus shows that tr(A) = tr(A3) = 0. That tr(A2) =
0 is equivalent to

∑3
i=1 u

2
i =

∑3
i=1 a

2
i , and tr(A4) = 2 tr(Z4

1) + 2 tr(Z2
2 ) +
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12 tr(Z2
1Z2) = 0 is equivalent to

∑3
i=1 aiui = 0, which gives:

T = {(a1, a2, a3, u1, u2, u3) |
∑

i

u2
i =

∑

i

a2
i ,

∑

i

aiui = 0}/Z2,

where the action of Z2 is given by

(a1, a2, a3, u1, u2, u3) 7→ (a1, a2, a3,−u1,−u2,−u3).

Consider the following two nilpotent orbits in sp6:

O[3,3] = {A ∈ sp6 | A3 = 0, rk(A) = 4},

O[4,1,1] = {A ∈ sp6 | A4 = 0, rk(A) = 3, A2 6= 0}.
Then O[2,2,2] = O[3,3] ∩ O[4,1,1] and O[3,3] ⊂ O[4,2] ⊃ O[4,1,1]. The relation-

ship of inclusions can be resumed in the following diagram:

O[4,2]

�
�

�
�� I@

@
@

IO[4,1,1] O[3,3]

I@
@

@
I �

�
�

��

O[2,2,2]

The intersection of T with the two orbit closures O[3,3],O[4,1,1] is exactly
the singular locus of T , which is defined by the following

T ∩ O[3,3] = {
∑

i

a2
i = 0, uTu = −4Z2

1},

T ∩O[4,1,1] = {
∑

i

a2
i = 0, u1 = u2 = u3 = 0}.

Both are isomorphic to the surface C2/±1 with an isolated A1-singularity.
The intersection T ∩O[2,2,2] = x0 is just a point.

2. The wreath product

Now we consider the simplest wreath product Sym2(C2/±1) = C4/H ,
where H is the subgroup of Sp(4) generated by the following elements:

σ(x1, x2, y1, y2) = (y1, y2, x1, x2), τ(x1, x2, y1, y2) = (−x1,−x2, y1, y2).
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To write down equations for this affine normal variety, we put

a1 = −i(x2
1 + y2

1 + x2
2 + y2

2)/2, a2 = (x2
1 + y2

1 − x2
2 − y2

2)/2, a3 = x1x2 + y1y2,

u1 = x1y1 + x2y2, u2 = i(x1y1 − x2y2), u3 = i(x1y2 + x2y1).

The functions a1, a2, a3 are H-invariant, and the action of H restricts to
a Z2-action on (u1, u2, u3) given by (u1, u2, u3) 7→ (−u1,−u2,−u3). Now it is
straight-ward to check that

C
4/H ≃ {(a1, a2, a3, u1, u2, u3) |

∑

a2
i =

∑

u2
i ,

∑

i

aiui = 0}/Z2,

where the Z2-action is given by (a1, a2, a3, u1, u2, u3) 7→ (a1, a2, a3,−u1,−u2,−u3).
This gives the following proposition.

Proposition 1. The transverse slice T is isomorphic to the wreath product
X := Sym2(C2/±1).

The singular locus of the wreath product X has two components: one
is the diagonal ∆ and the other will be denoted by Ξ. One sees that the
isomorphism between T and X sends T ∩O[3,3] to ∆ and T ∩ O[4,1,1] to Ξ.

A symplectic resolution of X is given by the composition:

π : Hilb2(T ∗
P

1)→ Sym2(T ∗
P

1)→ Sym2(C2/±1) = X.

The central fiber of π contains a P
2, so we can blow up this P

2 and then blow
down along the other direction, i.e. we can perform a Mukai flop, which
gives another symplectic resolution π+ : Hilb2(T ∗P1) → X. One sees that
π−1(0) ⊂ π−1(∆− {0}), but π−1(0) is not contained in π−1(Ξ− {0}), so ∆
and Ξ are not symmetric with respect to π. For π+, it changes the role of
∆ and Ξ. It is known that any projective symplectic resolutions of X is
isomorphic to π or π+ (for details, see ([FN], [Fuj])).

3. Springer resolutions

The nilpotent orbit closure O[4,2] admits exactly two symplectic resolu-
tions, given by Springer maps:

T ∗(G/P1)
φ1−→ O[4,2]

φ2←− T ∗(G/P2), (3)



6

where P1 (resp. P2) is the standard parabolic sub-group of G with flag type
[1,2,2,1] (resp. [2,1,1,2]). The matrix forms of P1 and P2 are as follows:

P1 = {

















∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ 0 0
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗

















}, P2 = {

















∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗

















}.

The restrictions of φ1, φ2 to the pre-image of the transverse slice T give
two projective symplectic resolutions of T .

Hilb2(T ∗
P

1) ≃ Z1
π1−→ T

π2←− Z2 ≃ Hilb2(T ∗
P

1).

Proposition 2. The two symplectic resolutions π1, π2 are related by a Mukai
flop, in particular, they are not isomorphic. Furthermore π1 = π and π2 =
π+.

Proof. We will calculate the central fiber over the point x0 = T ∩ O[2,2,2]

(c.f. (2)) under the maps π1 and π2. Let {ei, 1 ≤ i ≤ 6} be the natural
basis of C6 and the symplectic form is ω =

∑3
i=1 e

∗

i ∧ e∗i+3. Notice that
Im(x0) = Ker(x0) = C〈e1, e2, e3〉 =: K is Lagrangian.

It is easy to see that

π−1
1 (x0) = {flags (F1 ⊂ F2) | x0F2 ⊂ F1 ⊂ K,F2 = F⊥

2 , dimF1 = 1}.

Since x0F2 ⊂ F1 is of dimension 1, one has two possibilities:
(i). dim(K ∩ F2) = 2, then F1 = x0F2 ⊂ x0F

⊥

1 . Suppose that F1 is
generated by

∑3
i=1 aiei, then x0F

⊥

1 = {∑3
i=1 biei|

∑

i aibi = 0}. The condition
F1 ⊂ x0F

⊥

1 is equivalent to
∑3

i=1 a
2
i = 0, which is a P

1 inside P(K). The
condition for F2 is just x0F

⊥

1 ⊂ F2 ⊂ x−1
0 F1 which is a P1. So finally this

component is a P1-bundle over P1.
(ii). F2 = K, then this is isomorphic to P(K). The two components

intersect at a curve C1 ≃ P1 inside P(K).
The fiber of x0 under π2 consists of flags (F1 ⊂ F2) such that x0F2 ⊂

F1 ⊂ K,F2 = F⊥

2 and dimF1 = 2. Since F1 ⊂ K ∩ F2, so dim(K ∩ F2) ≥ 2.
There are two cases:

(i). dim(K ∩ F2) = 2, then F1 = K ∩ F2 and x0F2 ⊂ F1. This gives that
x0F2 = x0F

⊥

1 ⊂ F1. Suppose F1 is generated by
∑3

i=1 aiei,
∑3

i=1 biei. Then
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we have x0F
⊥

1 = {
∑

i ciei|
∑

i aici =
∑

i bici = 0}. The condition x0F
⊥

1 ⊂
F1 is equivalent to the existence of (y, y′) 6= (0, 0) such that y(

∑

i a
2
i ) +

y′(
∑

i aibi) = 0 and y(
∑

i aibi) + y′(
∑

i b
2
i ) = 0. So the condition for F1

is (
∑

i a
2
i )(

∑

i b
2
i ) = (

∑

i aibi)
2. Under the Plücker embedding P(∧2F1) →

P(∧2K) ≃ P(K∗), one sees that this is a conic in P2. The condition for F2

turns to be F1 ⊂ F2 ⊂ F⊥

1 . So this component is a P1-bundle over P1.
(ii). K = F2, then F1 ⊂ K, this component is just P(K∗). The two

components intersects at a C2 ≃ P
1 inside P(K∗).

Now it is clear that the two resolutions are different and are related by
the Mukai flop along the component P(K∗), and C1, C2 are dual conics.

Now we will identify π1, π2 with π, π+. By definition, we have

π−1
1 (T ∩ O[3,3]) = {(F1 ⊂ F2, z) | zF2 ⊂ F1 ⊂ Ker(z), F2 = F⊥

2 , dimF1 = 1},

where z is in T ∩ O[3,3]. Consider the elements zt ∈ T ∩ O[3,3] (t ∈ C) given
by

zt =

(

tB I
−3t2B2 tB

)

,with B =





0
√
−1 1

−
√
−1 0 0
−1 0 0



 .

One has Ker(zt) = C〈e1 +
√
−1te5 + te6, e2 −

√
−1e3〉. When t goes to

0, Ker(zt) goes to C〈e1, e2 −
√
−1e3〉, thus the limit of π−1

1 (zt) will be
P(C〈e1, e2−

√
−1e3〉) ⊂ P(K), which is not a point. This shows that π1 = π

by the description of π and π+ in section 2.

4. Symplectic deformations

A deformation of the symplectic resolutions φi, i = 1, 2 (cf. (3)) can be
constructed as follows([Fu]). Let ci be the center of the Levi sub-algebra of
pi := Lie(Pi) and ui the nil-radical of pi. The vector space Vi := ci + ui is a
flat family over ci. Let Yi be the closed sub-variety

Yi := {(z, v) ∈ ci ×G · Vi | v ∈ G · (z + ui)}.

Now consider the morphism Φi : G×Pi Vi → Yi given by

g ∗ (z + u) 7→ (z, g · (z + u)),

where g ∈ G, z ∈ ci and u ∈ ui. Notice that if z 6= 0, then z + ui = Pi · z,
so this morphism is well-defined. One can show that Φi is birational and it
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gives a family of morphisms over ci. When z ∈ ci is generic, in the sense that
the stabilizer Gz of z is exactly the Levi sub-group Li of Pi, then

Φz
i : G×Pi (z + ui) ≃ G×Pi (Pi · z)→ Yzi = G · z ≃ G/Li

is an isomorphism. Notice that Yzi is a semi-simple orbit, thus it is symplectic.
When z = 0, the map Φ0

i is just the Springer resolution φi. In other words,
Φi is a symplectic deformation of φi with base ci.

Let Ti be the intersection (ci × S) ∩ Yi and Zi its pre-image under the

morphism Φi, which gives a map Zi Πi−→ Ti over ci. Now we will show that
the family ψi : Zi → ci is smooth. Recall that the map G × S → g is
smooth, so is G× (S ∩ (G · Vi))→ G · Vi ([Slo] Section 5.1). The morphism
Φi is G-equivariant, so G× Zi → G ×Pi Vi is smooth. Notice that the map
G×Pi Vi → ci is smooth, so is the composition G×Zi → ci. The projection
G×Zi → Zi is smooth, which implies the smoothness of Zi → ci.

An immediately corollary is that Zi is smooth and for any 0 6= z ∈ ci
generic, the intersection S ∩ G · z is smooth and symplectic, which deforms

Sym2(C2/±1). So Zi Πi−→ Ti gives a symplectic deformation of the symplectic
resolution πi : Hilb2(T ∗

P
1)→ Sym2(C2/±1).

5. Universal Poisson deformations

Now we will show that our picture is similar to that of Brieskorn (see
section 3 [GK]). We will only consider φ1. To simplify the notations, we will
write P (resp. φ, L etc.) instead of P1 (resp. φ1, L1 etc.).

Fix a maximal torus U in G and a Cartan sub-algebra h in g = sp6.
Coordinates in h are denoted by (h1, h2, h3). We define the Weyl group of
L to be W (L) := NL(U)/U , where NL(U) is the normalizer of U in L.
The partial Weyl group of P is W P := NG(L)/L. Then W P is naturally
isomorphic to the quotient NW (G)(W (L))/W (L), where W (G) is the Weyl
group of G.

It is easy to see thatW (L) is isomorphic to Z2, acting on h by (h1, h2, h3) 7→
(h1, h3, h2). The center c of Lie(L) is naturally identified with the fixed point
set hW (L). The group W P is isomorphic to Z2 × Z2, which acts on hW (L) by
(h1, h2, h2) 7→ (−h1, h2, h2) and (h1, h2, h2) 7→ (h1,−h2,−h2), i.e. it is the
sum of two copies of the sign representation of Z2.

Let T ′ be the intersection S∩G·(c+u), then we have a natural projection
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p : T → T ′ and the following diagram is commutative:

Z Π−−−→ T p−−−→ T ′

ψ





y
ψ′





y

β





y

hW (L) id−−−→ hW (L) η−−−→ hW (L)/W P ,

(4)

where η is the natural quotient map and β is the restriction to T ′ of the
adjoint quotient map g→ h/W (G).

Claim: The second Poisson cohomoloy HP 2(T ) can be naturally identi-
fied with hW (L)/W P .

Let H ′ be the semi-direct product of Z2 with W P . Let Z2 acts on hW (L)

by (h1, h2, h2) 7→ (h2, h1, h1), then it is easy to see that (hW (L)⊕(hW (L))∗)/H ′

is isomorphic to T ≃ Sym2(C2/±1). By [GK] (section 4), we have HP 2(T ) is
naturally isomorphic to HP 2(T ∩O[3,3])⊕HP 2(T ∩O[4,1,1]). By Lemma 3.1
[GK],HP 2(T∩O[3,3]) is naturally identified with Cv1/Z2 andHP 2(T∩O[4,1,1])
is identified with Cv2/Z2, where v1 = (0, 1, 1), v2 = (1, 0, 0) are two points in
hW (L), and the group Z2 acts by sign representation.

Note that under this identification, hW (L) is identified withH2(Hilb2(T ∗P1)).
The first square in (4) is the symplectic deformation of π, the second square
is Cartesian. For the vertical morphisms, ψ is a universal Poisson defor-
mation of Hilb2(T ∗P1), ψ′ is similar to the Calogero-Moser deformation of
T ≃ (hW (L)⊕ (hW (L))∗)/H ′, and β is the universal Poisson deformation of T .

Remark 1. A diagram analogous to (4) can be constructed using the same
method for any Springer resolution.
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