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Abstract we implemented a prototype in this paper, is the discovery
of routes frequently used by car drivers in towns.

During the last decade, sequential pattern mining has  These numerous applications prove that sequence min-
been the core of numerous researches. It is now possibleng algorithms are useful tools for discovering knowledge
to efficiently discover users’ behavior in various domains i, various situations. Nevertheless, in the case we trygo di
such as purchases in supermarkets, Web site visits, ete. Nevgoyer knowledge from the observation of human behavior,
ertheless, classical algorithms do not respect indivitual e claim that these algorithms do not preserve individual’s
privacy, exploiting personal information (name, IP addies  privacy. For example, regarding the problem of discovering
etc.). We provide an original solution to privacy presetyin  frequent sequences of Web pages visited throughout time,
by using a probabilistic automaton instead of the original the input data are, at least, the IP address of the visitats an
data. An application in car flow modeling is presented, the Web pages they have browsed. This is a great breach
showing the ability of our algorithm to discover frequent tg their privacy and users might want their private informa-
routes without any individual information. A comparison tjon not to be logged on the servers. In the case of frequent
with sPAmis done showing that even if we sample from the (qytes in towns, to get interesting knowledge, one could in-
automaton, our approach is more efficient. stall many Web cams in the town and trace the route for

each driver. This is obviously a non acceptable breach to
the privacy of car drivers.

1 Introduction Privacy preserving data mining is a new subject of re-
search that appeared to be essential for some years. There

Sequential pattern mining aims at automatically finding 1S @ great demand from users, and more generally from the
subsequences (or patterns) that apfreguently(i.e. more society, that_data miners preserve their privacy. As sﬂafye_d
than a support threshold) in a database of sequences. Ong-9l; the main objective in privacy preserving data mining
of the algorithmic difficulties is that each pattern can be S to develop algorithms for modifying the original data in
made up of non-consecutive elements in the original se-SOMe way, so that the private data and private knowledge
quence. Many algorithms have been proposed during the’@main private even after the mining proceshuge num-
last decade, such as [14, 20, 8, 16]. There have also beeR€r of papers have been pubhs.hed_durlng tr_le last five years,
a lot of applications based on such techniques [9]. One offor €xample [2, 18, 7, 4]. Considering the discovery of fre-
the first concerned the discovery of customer’s behavior in dUent routes traversed by car drivers, to preserve their pri
supermarkets [1] in the form of subsequences of purchasesYacy, we may think about de-identifying images from Web
That knowledge may be very valuable for marketing depart- €@MSs _such asin[15], put this is a costly solution. Moreover,
ment of the companies. In the domain of manufacturing INStalling a Web cam in every street of a town may lead to
supervision, sequence mining can be used to discover frePSychological resistance from people.
guent patterns of alarms, what may help supervisors while In this paper, we propose a costless solution to privacy
searching for defaults in the plant [12]. More recentlyhat  preserving for problems that may be stated as flow control
domain of Web Mining [13], various systems have been de- problems, that is the case of frequent path discovery in Web
signed for making use of Web site logs in order to model the sites and frequent route discovery in towns. We propose to
behavior of Web users [17]. Another application, for which model this flow of data in the form of a weighted automaton



for which we provide a probabilistic solution to discover press the same knowledge as the one underlying in the se-
frequent patterns (potentially with gaps) under constsain  quences themselves. We propose here to use a probabilistic
without any information about the original data. deterministic finite state automator(Fa).

In Web usage mining, the states of this automaton are
the pages of the site and transitions the hyperlinks betweerDefinition 1 a PDFA A =< Q, X, ¢, qo, 7, T > is a tuple
pages. The weight assigned to each transition correspondghere( is a finite set of states is the alphabety : Q x
to the number of users who clicked on the correspondingy; — ( is a transition functionyy is the initial state;r :
hyperlink and the weight of each state is the number of Q x ¥ — [0, 1] is a transition functionyr : Q — [0, 1] is
times users left the web site from the corresponding page.a probability function giving to each state a probability to
Therefore, for the users, we do not need anymore their IPpe final.
address and the Web pages they visited, but only counters
on each transition and state. [5] exploited this idea definin
the concept otomposite association rulerocessed from
a structured directed graph built from the log files of the
Web site. More recently, [6] show how to use higher-level
Markov models in order to process a weighted automaton
to discover frequent paths of Web site users from log files.
Nevertheless, these works are more restricted than our ap-
proach in the sense that first, they need the Web log files and
second, they aim at discovering sequential patterns made up Figure 1. An example of PDFA.
of consecutive Web pages while we are able to discover non
consecutive ones.

The problem of discovering frequent routes in a town Fig.1 shows aPDFA where@ = {0,1,2}, ¥ = {a,b},
can also be represented in the form of an automaton. Congy = 0, and for instanceg(0,a) = 2, 7(0,a) = 0.314
sidering a map of a part of a town, the non-initial and non- and 7(0) = 0.338. In this paper, we assume that we
final states model the crossroads. The initial and finalstate have a weighted automaton of the problem we tackle. We
respectively represent the entry and exit gates in the map_showed in introduction that the “real life” can provide such
The transitions model the streets. The weights are obtainecUtomata, that is the case of a road traffic. To baa,
by using counters on transitions and on the final states (theWe must _n.orm.allz.e the counters Of_ the automaton to obtain

; a probability distribution as follows:

other states having a null counter). For each car, we do not
need anymore its license and the streets it traverses. We wil
show that it is possible to discover frequent routes justgisi
the automaton. It is essential to be able to discover frelquen

non consecutive patterns for example to set up some com- wheren(S, z) is the counter of the transitiof(S, ), #

bined advertisements campaign, for improving traffic, etC. s 4 termination symbol, ana(S, ) is the counter of state
The rest of this paper is organized as follows. Section 2 g (note thatr (S, #) = mr(S)).

defines the way we replace the database of sequences by a
probabilistic automaton. This idea was originally progbse
in [10] and exploited in [11]. We extend it, in Section 3, by
using such an automaton-based structure to propose-a
strainedsequence mining algorithm in the contextpf-
vacy preservingSection 4 describes a traffic simulator able
to discover frequent routes in towns. Beside the descriptio
of the system, we experimentally show that our algorithm is
more efficient than sampling sequences from the automato
and then using a classical sequence mining algorithm.

@ b (0.468)

0(0.338) a(0.314)
b (0.46)

n(S, z)
ZZ’EEU{#} TL(S, Z,)

(S, 2) = VzeSU{#LVYSeQ (1)

2.2 Estimation of Pattern Probabilities

If we aim at using &DFA for sequence mining, it must

first allow us to correctly estimate the true probability (

in the hidden original sequences) of any pattern. Let us
show now that using formulas proposed by Hingston in
r{10], we can correctly assess the true probability of any pat
tern. Then, we will generalize them to build an efficient
sequence mining algorithm that will allow us not only to do
without the original data but also to impose constraints on

o _ LetA =< @, %,q,q, 7, 7r > be aPDFA. To estimate
2.1 Definitions and Notations (with p(z)) the unknown (or hidden) proportigriz) of se-

guences that contain a letter Hingston defines the proba-
Achieving a sequence mining task without the original bility P(.S, z) that a path inA starting from staté& contains
sequences requires the use of a suited structure able to exanx. This is ensured either if a path begins with alof



probabilityw (S, x)), or with some other symbal € ¥ and 025 e o]
is followed by a path starting at the next state (given by E T siatie ]
q(S, z)) and containing am. This can be written with the 02
recursive formula:

30 states : [a-f] -—--- ]
30 states : [a-f][a-f] ----

P(S,z) =n(S,2)+ Y (n(S,2) x P(q(S,2),7)) (2)

Z#ATED

01

that one can rewrite as follows:

P(S,z)=m(S,z)+ Y ( >ooa(s, z)> x P(T,z).

Distance between both distributions

TeQ \z#z,q(S,2)=T - e
(3) 0 1000 2000 3000 4000 5000 6000
Size of the database
If S = qo, P(5, x) representg(x). ComputingP (s, x) Figure 2. Average difference between  j(<
requires to handle a system of linear equations that can be ;. ., ~) and p(< z,2, >) according to regu-
efficiently solved with matrix products. Lefz) be the ma- lar expressions on ..

trix of componentps,r(z) = >-. ., 4(s,.)=7 7(S, ) de-
scribing the probability to use a transition different fram
between stateS andT'. Let P(z) (resp.w(z)) be the vector

of values ofP(S, x) (resp.w (S, z)), Eq.3 becomes:
S. Let us focus on the cade= 2, i.e. P(S,< zixa >).

_ _ _ -1
P) =n(@) + p(2)P(z) = (I = p(@)) (@), (4) Note that a sequence containingaanfollowed later by an

whereI is the identity matrix. Let us take an example with 2 ¢an be divided into one part containing the firgtin the
PDFA of Fig.1 and estimate with(a) the unknown prob- sequence, and the following part, which containganWwe

ability p(a) of sequences that contain the letter Vector can deduce that.
m(a) has the component0, a) = 0.314, 7(1,a) = 0.532,

7(2,a) = 0.54. For matricep(a) and(I — p(a)) !, we get P(S,<aiz2 >) = ) F(S8,T,21)P(T,z2). (6)
T
( 0  0.348 0 )
pla)=1|( 0 0 0.468
046 0 0 Using a matrix formP(< z1z2 >) = F(z1)P(z2). Gen-

eralizing, we get

1.081 0.376 0.176
0.498 0.173 1.081)

and (I —p(a))™' = (0.233 1.081  0.506
P(S,<z1..xt1 >) = F(z1) X ... X F(z1—1) X P(z1). (7)
We deduce thap(a) = P(0,a) = 0.635. Based
on the same principle, one can estimate the proportion of
sequences that contain a patters=< z;...z; > composed To assess the efficiency ofRDFA to estimate the true

of I symbolspotentially non consecutiveLet /(5 T,21)  propabilities of the hidden sequences, we implemented
be the probability that a random path starting at sta&d  {hese formulas and carried out a series of experiments.

ending at statd’ contains exactly one symbe|. Hingston  \e simulated several target distributions, from an alphabe

uses similar reasoning as ix) to show that: S = {a,b,c,d,e, f}, in the form of automata with 1, 10
or 30 states. From each automaton, we sampled sets of se-
F(S,Ty21) = 3oy 2, (P(S, 25) X Fa(S, 25), T, 21)) guences of different sizes (from 10 to 6,000), and for each

of them, we computed(< z1x2 >) Yoy, 0 € X U {\}
(where \ is the empty symbol), and compared it with the
true probabilityp(< z122 >) observed in the set of se-
One can rearrange Eq.5 using a matyix;) of values guences. Fig.2 shows the average difference between the es-
v(S,T,x1) = p(S,z1) if q(S,z1) = T and 0 otherwise. timated and the true probabilities. We note that in all cases
Writing F(z,) for the matrix of values?'(S, T, z;), Eq.5 it converges rapidly toward 0. In other words, if thBFA

becomesF (z1) = v(z1) + p(z1)F(z,) and as before, we  models a sufficiently large number of hidden sequences, we
deduceF (z1) = (I — p(x1))~ty(zy). can claim that it correctly estimates the probability of any

Returning to our objective, we aim at computiRgS, < pattern, and so we can buildP@Fa-based sequence mining
x1...2; >), the probability of any pattern starting at state algorithm.

+p(S,z1), if q(S,z1) =T and 0 otherwise. (5)



3 Completeness and Correctness We can finally deduce that

Y . a 1- a
In aPDFA-based sequence mining algorithm, the test de- k=0a—2s % (11)

ciding if a patternw =< x;...z; > is frequent will not be
done using its unknown probabilify(w) but its estimate

P(q0,§ 1.2 >). How can we ensure that the decision Theorem 1 To ensure a completeness of (10% and
taken is right or wrong? We provide here a lower bound ; rrectness of (108)% according to a given support

of the number of sequences, on which #BFA must be  ,rah0dy,, the lower bound on the number of sequences
built, to ensure a given level of completeness and correct-NLB on which thepbra must be built is equalyo,
ness. Let us design the following statistical test. Accepti [0,1]|o4 < 00, tO “

k) a 1

a patternw as being frequent means that the unknown prob-

abiIityp(y)) must bg at least equal to a fixed support thresh- N [zﬁ, /o, (1 —04) + zar/oo(1 — UO)]2
old oy. Sincep(w) is unknown, one must formulate a null LB = 0o — 04 ’

hypothesis, on its value. Here, we fi¥l, : p(w) = oy.
Writing Hy like that rather tharf, : p(w) > o is neces-  Proof 1 The proof is straightforward using Eq.9 and 11.
sary because the establishment of a null hypothesis requireActually, we can deduce that

to fix a specific value on the theoretical parameter. How- 1 1
ever, we are only interested here in rejectiig(in favor of 00 — za\/ w =0a — 281/ w
an alternative hypothesig,) in one directionj.e. the case _ ) _ _
wherep(w) is in fact smaller tham,. So, the main feature ~ EXtracting V. from this equation, we obtain the lower
of the test is its alternative hypothegis : p(w) < oo. bound.

When a statistical test is carried out, there are two kinds
of possible errors: First, a true null hypothesis can be in-4 Constraint-based Sequence Mining
correctly rejected and second, a false null hypothesis can
fail to be rejected. The former error is called a Type | er-
ror (usually designated hy) and the latter error is called a - . .- L
Type Il error (usually calleds). « corresponds to the risk quence mining. Length and width re_str|ct|_ons, mihimum
to reject a true frequent patterhat statistically defines the ~©f maximum gap between elements, time window of occur-
non completeness of the algorithm. More formally,= rence, or regular expressions [20, 8 16] are used to reduce
P(p(w) < k|Hy true). When the number of sequences is the number of frequent patterns. Since we do not have the
higher than 30, it is known that a proportion follows a nor- original sequences, we propose to use the information pro-

. w)(1—p(w vided by thePDFA to constrain the extracted patterns.
mal law such thatp(w) ~ N (p(w), /Zloplwly (v y P

will be estimated byN in the following of the paper).a 4.1 Relevance of the Patterns
can be rewritten as

The use of constraints is one of the current trend in se-

o plw) — oo k— oo ® The aim is here to use the valu®q, < z1...x; >)
- \/oou—ao) \/aou—ao) : to assess the statistical relevance of a frequent pattern.
N N Roughly speaking, we mean that a frequent pattern does

. . not always express a significant information. Since tuning
H We can easily d(_alducefthr? bou/hdvkll:ch correspondsto  the support threshold is a tricky task, we propose to
the (1 — a)-percentilez, of the normal law. constrain, using two statistical tests, a sequence to be not
only frequent but also statistically relevant.
_ 0’0(1 — 0’0)
k =00 — Ra T (9)
Proportion Constraint. The first test verifies aabsolute
condition: a pattermv =< x1...2; > must cover a signifi-

As defined abovej corresponds to the risk ®ccepta  cant part of the probability density of all hidden sequences
false frequent patterrthat statistically defines the non cor- To ensure this constraint, we apply a proportion test (dalle

rectness of the algorithm. Sindé, : p(w) < oy is true o o
4 . g PROPTEST) aiming at verifying if P(qo, < 21...z; >) (that
here, we have to fix a given value fpw) satistying the - "y’ o5 s high enough. To do this, we test the

constraintp(w) < og. Leto, < op be this value. More . ) )
formally, 3 = P(p(w) > k|H, true). As previously done  Null hypothesisii, : p(w) = 0, against the alternative one

for a, H, : p(w) > 0 (wherep(w) is the unknown probability).
s5-p plw) — o4 - k— o, ) (10) If the number of sequence¥ is large enough p(w)
\/U“(lj\?’“) \/U“(ll\?%) lsince we don't use the sequences,is unknown. We will explain

how to estimateV using thePDFA.



asymptotically follows the normal law. Let us determine

the thresholdk which defines the bound of rejection of
Hj, and which corresponds to th{é — a)-percentilelU,
of the distribution ofp(w) under Hy. We can show that

P(p(w) > k) = aiff k = U,/ 20202 e get the
decision rule:if p(w) > k, the proportion constraint o
is satisfied.

Estimation of N. To assess the unknownA valg we are
using theeDFA and computing an estimafé. Let i be the

unknown average size of the hidden sequences. The esti-

mate ofN is N = % wheren is the number of letters used
in the sequences andis the estimate of:. In fact, n is
computable with the formulae = > g 5 > cxn(S, 2),

usingn(S, z) as defined in Section 2.1. It remains to com-

putef, such that:

= 26 x P(qo, size = 0) (12)
5=0

where P(qo, size = ¢) is the probability of a hidden se-
quence to havé letters. Letrsr = 3° 5 ) 7 7(5,2)
be the probability to use one transition between stétasd
T. We can establish that:

P(S,size =0) = Z Tgr X P(T,size=0 —1). (13)
TeQ

This is a geometric series of common rati@nd first term

P(S,size = 0) = 7p(S). Using P(qo, size = ¢) and
Eq.12 we deduce that:
N— ngQ ZzEE n(S, z) (14)

225200 X Plqo, size =)’

7000

6000 -

5000 —

4000 —

3000 —

Estimation of the size

2000 - —

1000 4

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Size of the sample

Figure 3. Comparison between N and N. The
dotted line is the situation where N would per-
fectly estimate N. The solid line is obtained
with the series of experiments.

first component of the vector. Then we test the dependence
betweenm and an input vectokz for which the first
component is the expected number of sequences that con-
tain the patterns’ (the other components are null). To do
this, we run a Chi-square test (calledi2_TEST) from XZI
andm, building the following statistig:

[(Vin(8) = ©(D)> + (Ve (i) — W(3))?]
70) ’

[ZU{#}

X= >

i=1

where (i) = YinltVourl) 2 follows a Chi-square

We carried out experiments to show that Eq.14 provides yistribution with?2 x 15U {#}| — 1 degrees of freedom. It

a correct estimate ofV. We sampled several sets of

sequences (of siz& from 100 to 6,000) from theDFA of
Fig.1. For each set, we comparadtiand N. Fig.3 shows
that V provides a good estimation ¥, and then can be
efficiently used irPROP.TEST.

Dependence Constraint\We also propose here to verify a

relative conditioni.e. if there exists a statistical dependence

betweenw and the patterm’ =< z7...z;_1 >. Roughly
speaking, the majority of the sequences that contamust

also satisfyw =< w’ > . < x; >, where “" is the con-

catenation function. This dependence can be assessed

analyzing the nature af, occurring afterw’. We generate
b . :
an output vecto¥/,,,; of dimensionX U {#}|. Each com-

ponentm(i) is the expected number of sequences that

have the symbot; € ¥ U {#} which follows the pattern
5 N
w'. It means thal/,,:(¢) = P(qo, < x1...21—12; >) X N.
—
We arrangé/,,; such that the considered symhglis the

is then possible to test jf? is smaller thany2*ZUi#3=1

which is the(1—«)-percentile of the Chi-square law. We get

the decision ruleif 2 < X2 he dependence
constraint is verified.Combining the two constraints, we

can define a frequent and relevant pattern.

Definition 2 A patternw =< zy...x;_12; > is frequent
and relevant iffP(qo, w) is higher than a support thresh-
old o, and the proportion constraint o (gy, w) and the
dependence constraint betweerandw’ =< z1...7;_1 >

b@,re satisfied.

4.2 Theacsm Algorithm

Combining all the concepts we presented so far, we
propose a new constraint-based sequence mining algo-
rithm. It aims at discovering from &bDFA all the fre-



Input: A PDFAA =(Q, %, q, qo, T, ), @ support threshold, two risks
[e%) andag
Output: a set of relevant frequent patterns G

1 begin

2 G1—0;

3 foreach | € X do

4 if P(qo,!) > othen

5 if PRORTEST (P (qo, 1), 1) is satisfiedhen

6 | G1 — G1U{i};

7

8

9 G — Gy,

10 n«—1;

11 while G,, # 0 do

12 Gn+1 —0;

13 foreachw =< ...z, >€ G, do

14 foreachw’ =< zllz/n >€ G, do

15 if MERGE (w, w’) then

16 v<—<w>.<w;>;

17 if P(qo,v) > o then

18 if PRORTEST (P (qo,v), a1) then

— —

19 if CHIZZTEST (Vin, Vout, c2) then
20 | Gny1 — Gny1U{v};
21

22

23

24

25

26

27 G +— GU Gn+1 )

28 n<<—n+1;

29 return G ;
30 end

Algorithm 1: Pseudo-code ofcsm

Traffic Miner
File Edit Help

Parameters
#Streets
# Crossroads.
# Enuy gates

# Exit gates
7 # Cars exited

28 History:

258 11:20:38
w |11:23:43
7Sy

[

Qo ) # Frequent patte...
3 Yorgered by frequ... | v |
- 39% 1
128%]
" D 127%]
. D (23%]
1 3 [23%]
!. D23%)
{ 40) [ 20%]
49) [ 20%]
30 [19% ]
13 [19% ]
31)[19%]
34 [19% ]
40) [ 18% ]

B+ 117%)

Initialize distribution [
start |

# Running cars : 0
Cr v| Crossroads

Reset counters

‘ T

Find frequent patterns

[] Counters Streets

Data file

11:11:35

84
max

Figure 4. TrafficMiner

terface which allows us to model the map in a graph form:
one-way and two-way roads as transitions of pixeA, en-

try gates, exit gates and crossroads respectively asl,nitia

quent and relevant patterns, according to a support threshfinal and other states. On each street, we put a counter to

old o and two statistical riska; anda,. The pseudo-code

get the number of cars going through it. When the map is

of our Acsm algorithm (Automata-based Constraint-based modeled, we can simulate the traffic by generating a ran-
Sequence Mining) is presented in Algorithm 1. From lines dom flow of cars. At any moment, we can stop the flow
2109, itinitializes a set of relevant frequent patterns eom and get ®@bDFA A =< Q, %, ¢, 7, 77, 7 > Where:Q is the
posed of only one symbol. Since no pattern has been ex-set of crossroads, and enter and exit ga¥ss the set of

tracted yet, only the support test (line 4) aPHOPTEST
(line 5) are run. The paths of thiEDFA that do not satisfy

street names; : Q x ¥ — (@ defines a transition,e. a
street between two crossroads; @ x X — [0, 1] asso-

these two tests will not be studied anymore, that allows us tociates a probability to each paif (z), i.e. the probability to

prune the search space. The second pastsiv tests ad-

leave the crossroasitaking the street (as defined in Eq.1);

ditional symbols to search for larger frequent and relevant . . Q — [0, 1] associates to each final state(the exit
patterns. Three conditions must be satisfied: the supporigates) a non-null probability (S) to leave the map tak-

test (lines 17)PROPTEST (line 18) andcHI2_TEST (line
19). The boolean function ERGE(w, w’) (line 15) returns
trueif the n — 1 last symbols ofv are identical to thes — 1

ing the gateS; 7y : @ — [0, 1] associates to each initial
state {.e. to entry gates) a non-null probability; (.S). Ac-
cording to Def.1, @DFA must have only one initial state to

first ones ofw’. This ensures that all subsequences of the be deterministic. In our case, despite the fact that we have

resulting pattern =< w > . < z, > (line 16) are yet
frequent and relevant.

5 Car Flow Modeling

5.1 Traffic Miner

In order to bring to the fore the interest of our approach, 5.2

we design a road traffic simulator, calleckAFFICMINER

several initial states (entry gates), the determinism s no

challenged because there does not exist two paths, starting

from two initial states, that use the same transition.
To simulate the road traffic, a multinomial distribution js a

plied on the entry gates, and others are used on each cross-

road to simulate the routes.

Interest of a Car Flow Modeling

(see Fig.4). We simulated a road traffic on a map captured From thisPDFA, we can runACsMm to extract patterns
from mappy s web site. We implemented a graphical in- that may be very interesting in many domains. First, it may
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Figure 5. (a) and (b): Effect of constraints on the number of p atterns.

be efficiently used in road traffic regulation. By finding fre- Effect of the Constraints. Let us now evaluate the indi-
guent paths taken by the same cars, one could locate placegdual effect of our constraints on the number of extracted
in the map which would deserve some developments (trafficpatterns. We run then our simulator. Fixidg= 0, the two
circles, traffic lights, etc.) to make the traffic more fluidrF  charts of Fig.5 show the effects of the relevance consgaint
example, in Fig.4, we can locate on the right a place whereWe tested the influence ¢cfRORTEST without incorpo-

the traffic is very heavy. Second, it could be used to simulaterating CHI2_TEST (first chart, fixingas = 100%) and

a new traffic organization (modification of street direcipn  reciprocally (second chart, fixing; = 100%). Of course,
creation of new one-way streets, etc.) to avoid traffic jams. we can note that the stronger one of these constraints is,
Finally, it could be useful in campaign advertising. Note the more the number of patterns decreases. Moreover, we
again that a frequent and relevant patters=< ziz5 >, can note that the more increases, the more the relevance
extracted with our model, would expressithout any in- constraints become obviously useless.

formation about the individual trail of the driver¢hat the

majority of cars taking the street will probably also take  Experimental Comparison with sPAM. Since we do not
later the (possibly not adjacent) stregt This is the case of  use the original data, a comparison with other sequence
the pattern composed of the two black streets at the bottonmining algorithms seems more difficult. To overcome this
in Fig.4. Our system is able to ensure that those who takedrawback, we sampled sequences fromrbea and tried

the first street will also take the second one. to find back the same patterns wisibAM’[3]. The exper-

This kind of information could help in many domains. imental setup was the following. We simulated a flow of
First, an advertising agency could use such techniques tocars in our map, and we ruscsMm to extract the patterns
find the best strategic position for billboards: either mpe (here, without constraints to allow us the comparison with
the same hoarding to increase the effect of the advertise-sPAM). We measured the time complexity (calledsm
ment or put a different one. Moreover, such information time). From theeDFA, we sampled many sets of sequences
could also be useful for determining an optimal traffic reg- (from 100 to 35,000 sequences). From each sample, we
ulation or simulating a new traffic organization. run spAM to extract a second set of frequent patterns. Both
of the algorithms were run with = 10%. We computed
also the time complexity afPAM by taking into account the
sampling time and the mining timsgAm time). The chart
of Fig.6 describes the behavior of the two methods.

While AcsM has a constant time complexity, the one of
SPAM increases a lot in function of the sequence set size.
We added on this chart a curve (Cover) corresponding to the
proportion of frequent patterns extracted $yAam which

5.3 Experimental Results

The main contribution of this paper is to show that
one can achieve with @DFA a constrained sequence
mining task while preserving the privacy of the data. The
experiments we carried out in Section 2 have proven the
ability of the PDFA to succeed without constraints.

2http://himalaya-tools.sourceforge.net/Spam/
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Figure 6. Comparison SPAMVS ACSM.

have also been extracted bgsm. We can observe that

(3]

(4]

(5]

(6]

(7]

(8]

9]

SPAM needs a large number of sequences to approach the
results ofaAcsM. We can note that once the size of the set [10]

is sufficiently large, about 20,000 examples, more than 97%

of all the frequent patterns extracted from tirA are cov-

ered by the those founded l®pAM. But in this case, the

time cost ofspam is higher than the one afcswm.

6 Conclusion

In this paper we have shown that, in situations that can be
modeled as flow control problems, a sequence mining task

[11]

[12]

may preserve privacy thanks to an underlying probabilistic [13]
automaton. We have proposed a new constrained sequence
mining algorithm based on that data structure and shown [14]

this approach is more efficient than sampling a database

from thePDFA and using a classical sequence mining algo- [15]

rithm. Our algorithm has been implemented in a prototype
we have used to visually show the frequent routes of towns
without any private information from its drivers. In the fu-
ture, we want to usecsm on two flow control problems:
Web usage mining by usingrbFA to model the structure of

[16]

a site with the flow of visits, and social network modeling by [17]

using apDFA to model the flow of emails between people.
In order to be as efficient as possible, it will be interesting
to integrate other constraints such as mingap, maxgap, etc.
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