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Abstract

During the last decade, sequential pattern mining has
been the core of numerous researches. It is now possible
to efficiently discover users’ behavior in various domains
such as purchases in supermarkets, Web site visits, etc. Nev-
ertheless, classical algorithms do not respect individual’s
privacy, exploiting personal information (name, IP address,
etc.). We provide an original solution to privacy preserving
by using a probabilistic automaton instead of the original
data. An application in car flow modeling is presented,
showing the ability of our algorithm to discover frequent
routes without any individual information. A comparison
with SPAM is done showing that even if we sample from the
automaton, our approach is more efficient.

1 Introduction

Sequential pattern mining aims at automatically finding
subsequences (or patterns) that appearfrequently(i.e. more
than a support threshold) in a database of sequences. One
of the algorithmic difficulties is that each pattern can be
made up of non-consecutive elements in the original se-
quence. Many algorithms have been proposed during the
last decade, such as [14, 20, 8, 16]. There have also been
a lot of applications based on such techniques [9]. One of
the first concerned the discovery of customer’s behavior in
supermarkets [1] in the form of subsequences of purchases.
That knowledge may be very valuable for marketing depart-
ment of the companies. In the domain of manufacturing
supervision, sequence mining can be used to discover fre-
quent patterns of alarms, what may help supervisors while
searching for defaults in the plant [12]. More recently, in the
domain of Web Mining [13], various systems have been de-
signed for making use of Web site logs in order to model the
behavior of Web users [17]. Another application, for which

we implemented a prototype in this paper, is the discovery
of routes frequently used by car drivers in towns.

These numerous applications prove that sequence min-
ing algorithms are useful tools for discovering knowledge
in various situations. Nevertheless, in the case we try to dis-
cover knowledge from the observation of human behavior,
we claim that these algorithms do not preserve individual’s
privacy. For example, regarding the problem of discovering
frequent sequences of Web pages visited throughout time,
the input data are, at least, the IP address of the visitors and
the Web pages they have browsed. This is a great breach
to their privacy and users might want their private informa-
tion not to be logged on the servers. In the case of frequent
routes in towns, to get interesting knowledge, one could in-
stall many Web cams in the town and trace the route for
each driver. This is obviously a non acceptable breach to
the privacy of car drivers.

Privacy preserving data mining is a new subject of re-
search that appeared to be essential for some years. There
is a great demand from users, and more generally from the
society, that data miners preserve their privacy. As statedby
[19], the main objective in privacy preserving data mining
is to develop algorithms for modifying the original data in
some way, so that the private data and private knowledge
remain private even after the mining process. A huge num-
ber of papers have been published during the last five years,
for example [2, 18, 7, 4]. Considering the discovery of fre-
quent routes traversed by car drivers, to preserve their pri-
vacy, we may think about de-identifying images from Web
cams such as in [15], but this is a costly solution. Moreover,
installing a Web cam in every street of a town may lead to
psychological resistance from people.

In this paper, we propose a costless solution to privacy
preserving for problems that may be stated as flow control
problems, that is the case of frequent path discovery in Web
sites and frequent route discovery in towns. We propose to
model this flow of data in the form of a weighted automaton



for which we provide a probabilistic solution to discover
frequent patterns (potentially with gaps) under constraints,
without any information about the original data.

In Web usage mining, the states of this automaton are
the pages of the site and transitions the hyperlinks between
pages. The weight assigned to each transition corresponds
to the number of users who clicked on the corresponding
hyperlink and the weight of each state is the number of
times users left the web site from the corresponding page.
Therefore, for the users, we do not need anymore their IP
address and the Web pages they visited, but only counters
on each transition and state. [5] exploited this idea defining
the concept ofcomposite association ruleprocessed from
a structured directed graph built from the log files of the
Web site. More recently, [6] show how to use higher-level
Markov models in order to process a weighted automaton
to discover frequent paths of Web site users from log files.
Nevertheless, these works are more restricted than our ap-
proach in the sense that first, they need the Web log files and
second, they aim at discovering sequential patterns made up
of consecutive Web pages while we are able to discover non
consecutive ones.

The problem of discovering frequent routes in a town
can also be represented in the form of an automaton. Con-
sidering a map of a part of a town, the non-initial and non-
final states model the crossroads. The initial and final states
respectively represent the entry and exit gates in the map.
The transitions model the streets. The weights are obtained
by using counters on transitions and on the final states (the
other states having a null counter). For each car, we do not
need anymore its license and the streets it traverses. We will
show that it is possible to discover frequent routes just using
the automaton. It is essential to be able to discover frequent
non consecutive patterns for example to set up some com-
bined advertisements campaign, for improving traffic, etc.

The rest of this paper is organized as follows. Section 2
defines the way we replace the database of sequences by a
probabilistic automaton. This idea was originally proposed
in [10] and exploited in [11]. We extend it, in Section 3, by
using such an automaton-based structure to propose acon-
strainedsequence mining algorithm in the context ofpri-
vacy preserving. Section 4 describes a traffic simulator able
to discover frequent routes in towns. Beside the description
of the system, we experimentally show that our algorithm is
more efficient than sampling sequences from the automaton
and then using a classical sequence mining algorithm.

2 Using aPDFA instead of Sequences

2.1 Definitions and Notations

Achieving a sequence mining task without the original
sequences requires the use of a suited structure able to ex-

press the same knowledge as the one underlying in the se-
quences themselves. We propose here to use a probabilistic
deterministic finite state automaton (PDFA).

Definition 1 a PDFA A =< Q, Σ, q, q0, π, πF > is a tuple
whereQ is a finite set of states;Σ is the alphabet;q : Q ×
Σ → Q is a transition function;q0 is the initial state;π :
Q × Σ → [0, 1] is a transition function;πF : Q → [0, 1] is
a probability function giving to each state a probability to
be final.
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Figure 1. An example of PDFA.

Fig.1 shows aPDFA whereQ = {0, 1, 2}, Σ = {a, b},
q0 = 0, and for instanceq(0, a) = 2, π(0, a) = 0.314
and πF (0) = 0.338. In this paper, we assume that we
have a weighted automaton of the problem we tackle. We
showed in introduction that the “real life” can provide such
automata, that is the case of a road traffic. To be aPDFA,
we must normalize the counters of the automaton to obtain
a probability distribution as follows:

π(S, z) =
n(S, z)

P

z′∈Σ∪{#} n(S, z′)
, ∀z ∈ Σ ∪ {#}, ∀S ∈ Q (1)

wheren(S, z) is the counter of the transitionq(S, z), #
is a termination symbol, andn(S, #) is the counter of state
S (note thatπ(S, #) = πF (S)).

2.2 Estimation of Pattern Probabilities

If we aim at using aPDFA for sequence mining, it must
first allow us to correctly estimate the true probability (i.e.
in the hidden original sequences) of any pattern. Let us
show now that using formulas proposed by Hingston in
[10], we can correctly assess the true probability of any pat-
tern. Then, we will generalize them to build an efficient
sequence mining algorithm that will allow us not only to do
without the original data but also to impose constraints on
the extracted patterns.

Let A =< Q, Σ, q, q0, π, πF > be aPDFA. To estimate
(with p̂(x)) the unknown (or hidden) proportionp(x) of se-
quences that contain a letterx, Hingston defines the proba-
bility P (S, x) that a path inA starting from stateS contains
anx. This is ensured either if a path begins with anx (of



probabilityπ(S, x)), or with some other symbolz ∈ Σ and
is followed by a path starting at the next state (given by
q(S, z)) and containing anx. This can be written with the
recursive formula:

P (S, x) = π(S, x) +
X

z 6=x∈Σ

(π(S, z) × P (q(S, z), x)) (2)

that one can rewrite as follows:

P (S, x) = π(S, x) +
X

T∈Q

0

@

X

z 6=x,q(S,z)=T

π(S, z)

1

A × P (T, x).

(3)

If S = q0, P (S, x) representŝp(x). ComputingP (S, x)
requires to handle a system of linear equations that can be
efficiently solved with matrix products. Letρ(x) be the ma-
trix of componentsρS,T (x) =

∑

z 6=x,q(S,z)=T π(S, z) de-
scribing the probability to use a transition different fromx
between statesS andT . LetP (x) (resp.π(x)) be the vector
of values ofP (S, x) (resp.π(S, x)), Eq.3 becomes:

P (x) = π(x) + ρ(x)P (x) = (I − ρ(x))−1
π(x), (4)

whereI is the identity matrix. Let us take an example with
PDFA of Fig.1 and estimate witĥp(a) the unknown prob-
ability p(a) of sequences that contain the lettera. Vector
π(a) has the componentsπ(0, a) = 0.314, π(1, a) = 0.532,
π(2, a) = 0.54. For matricesρ(a) and(I−ρ(a))−1, we get

ρ(a) =

0

@

0 0.348 0
0 0 0.468

0.46 0 0

1

A

and (I − ρ(a))−1 =

0

@

1.081 0.376 0.176
0.233 1.081 0.506
0.498 0.173 1.081

1

A .

We deduce that̂p(a) = P (0, a) = 0.635. Based
on the same principle, one can estimate the proportion of
sequences that contain a patternw =< x1...xl > composed
of l symbolspotentially non consecutive. Let F (S, T, x1)
be the probability that a random path starting at stateS and
ending at stateT contains exactly one symbolx1. Hingston
uses similar reasoning as inP (x) to show that:

F (S, T, x1) =
P

xj 6=x1
(p(S, xj) × F (q(S, xj), T, x1))

+p(S, x1), if q(S, x1) = T and 0 otherwise. (5)

One can rearrange Eq.5 using a matrixγ(x1) of values
γ(S,T, x1) = p(S, x1) if q(S, x1) = T and 0 otherwise.

Writing F (x1) for the matrix of valuesF (S, T, x1), Eq.5
becomes:F (x1) = γ(x1) + ρ(x1)F (x1) and as before, we
deduceF (x1) = (I − ρ(x1))

−1γ(x1).
Returning to our objective, we aim at computingP (S, <

x1...xl >), the probability of any pattern starting at state
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Figure 2. Average difference between p̂(<
x1x2 >) and p(< x1x2 >) according to regu-
lar expressions on Σ.

S. Let us focus on the casel = 2, i.e. P (S, < x1x2 >).
Note that a sequence containing anx1 followed later by an
x2 can be divided into one part containing the firstx1 in the
sequence, and the following part, which contains anx2. We
can deduce that:

P (S,< x1x2 >) =
X

T

F (S,T, x1)P (T, x2). (6)

Using a matrix form,P (< x1x2 >) = F (x1)P (x2). Gen-
eralizing, we get

P (S,< x1...xl >) = F (x1) × ... × F (xl−1) × P (xl). (7)

To assess the efficiency of aPDFA to estimate the true
probabilities of the hidden sequences, we implemented
these formulas and carried out a series of experiments.
We simulated several target distributions, from an alphabet
Σ = {a, b, c, d, e, f}, in the form of automata with 1, 10
or 30 states. From each automaton, we sampled sets of se-
quences of different sizes (from 10 to 6,000), and for each
of them, we computed̂p(< x1x2 >) ∀x1, x2 ∈ Σ ∪ {λ}
(whereλ is the empty symbol), and compared it with the
true probabilityp(< x1x2 >) observed in the set of se-
quences. Fig.2 shows the average difference between the es-
timated and the true probabilities. We note that in all cases
it converges rapidly toward 0. In other words, if thePDFA

models a sufficiently large number of hidden sequences, we
can claim that it correctly estimates the probability of any
pattern, and so we can build aPDFA-based sequence mining
algorithm.



3 Completeness and Correctness

In a PDFA-based sequence mining algorithm, the test de-
ciding if a patternw =< x1...xl > is frequent will not be
done using its unknown probabilityp(w) but its estimate
P (q0, < x1...xl >). How can we ensure that the decision
taken is right or wrong? We provide here a lower bound
of the number of sequences, on which thePDFA must be
built, to ensure a given level of completeness and correct-
ness. Let us design the following statistical test. Accepting
a patternw as being frequent means that the unknown prob-
ability p(w) must be at least equal to a fixed support thresh-
old σ0. Sincep(w) is unknown, one must formulate a null
hypothesisH0 on its value. Here, we fixH0 : p(w) = σ0.
Writing H0 like that rather thanH0 : p(w) > σ0 is neces-
sary because the establishment of a null hypothesis requires
to fix a specific value on the theoretical parameter. How-
ever, we are only interested here in rejectingH0 (in favor of
an alternative hypothesisHa) in one direction,i.e. the case
wherep(w) is in fact smaller thanσ0. So, the main feature
of the test is its alternative hypothesisHa : p(w) < σ0.

When a statistical test is carried out, there are two kinds
of possible errors: First, a true null hypothesis can be in-
correctly rejected and second, a false null hypothesis can
fail to be rejected. The former error is called a Type I er-
ror (usually designated byα) and the latter error is called a
Type II error (usually calledβ). α corresponds to the risk
to reject a true frequent pattern, that statistically defines the
non completeness of the algorithm. More formally,α =
P (p̂(w) < k|H0 true). When the number of sequences is
higher than 30, it is known that a proportion follows a nor-

mal law such that:p̂(w) ≈ N(p(w),
√

p(w)(1−p(w))
N

) (N

will be estimated byN̂ in the following of the paper).α
can be rewritten as

α = P (
p̂(w) − σ0
q

σ0(1−σ0)
N

<
k − σ0

q

σ0(1−σ0)
N

). (8)

We can easily deduce the boundk which corresponds to
the(1 − α)-percentilezα of the normal law.

k = σ0 − zα

r

σ0(1 − σ0)

N
. (9)

As defined above,β corresponds to the risk toaccept a
false frequent pattern, that statistically defines the non cor-
rectness of the algorithm. SinceHa : p(w) < σ0 is true
here, we have to fix a given value forp(w) satisfying the
constraintp(w) < σ0. Let σa < σ0 be this value. More
formally, β = P (p̂(w) > k|Ha true). As previously done
for α,

β = P (
p̂(w) − σa
q

σa(1−σa)
N

>
k − σa

q

σa(1−σa)
N

). (10)

We can finally deduce that

k = σa − zβ

r

σa(1 − σa)

N
. (11)

Theorem 1 To ensure a completeness of (100-α)% and
a correctness of (100-β)% according to a given support
thresholdσ0, the lower bound on the number of sequences
NLB on which thePDFA must be built is equal,∀σa ∈
[0, 1]|σa < σ0, to

NLB = [
zβ

√

σa(1 − σa) + zα

√

σ0(1 − σ0)

σ0 − σa

]2,

Proof 1 The proof is straightforward using Eq.9 and 11.
Actually, we can deduce that

σ0 − zα

r

σ0(1 − σ0)

N
= σa − zβ

r

σa(1 − σa)

N
.

Extracting N from this equation, we obtain the lower
bound.

4 Constraint-based Sequence Mining

The use of constraints is one of the current trend in se-
quence mining. Length and width restrictions, minimum
or maximum gap between elements, time window of occur-
rence, or regular expressions [20, 8, 16] are used to reduce
the number of frequent patterns. Since we do not have the
original sequences, we propose to use the information pro-
vided by thePDFA to constrain the extracted patterns.

4.1 Relevance of the Patterns

The aim is here to use the valuesP (q0, < x1...xl >)
to assess the statistical relevance of a frequent pattern.
Roughly speaking, we mean that a frequent pattern does
not always express a significant information. Since tuning
the support threshold is a tricky task, we propose to
constrain, using two statistical tests, a sequence to be not
only frequent but also statistically relevant.

Proportion Constraint. The first test verifies anabsolute
condition: a patternw =< x1...xl > must cover a signifi-
cant part of the probability density of all hidden sequences.
To ensure this constraint, we apply a proportion test (called
PROP TEST) aiming at verifying ifP (q0, < x1...xl >) (that
we will call p̂(w)) is high enough. To do this, we test the
null hypothesisH0 : p(w) = 0, against the alternative one
Ha : p(w) > 0 (wherep(w) is the unknown probability).
If the number of sequencesN is large enough1, p̂(w)

1Since we don’t use the sequences,N is unknown. We will explain
how to estimateN using thePDFA.



asymptotically follows the normal law. Let us determine
the thresholdk which defines the bound of rejection of
H0, and which corresponds to the(1 − α)-percentileUα

of the distribution ofp(w) underH0. We can show that

P (p̂(w) > k) = α iff k = Uα

√

p̂(w)(1−p̂(w))
N

. We get the
decision rule:if p̂(w) > k, the proportion constraint onw
is satisfied.

Estimation of N. To assess the unknown valueN , we are
using thePDFA and computing an estimatêN . Let µ be the
unknown average size of the hidden sequences. The esti-
mate ofN is N̂ = n

µ̂
, wheren is the number of letters used

in the sequences and̂µ is the estimate ofµ. In fact, n is
computable with the formulaen =

∑

S∈Q

∑

z∈Σ n(S, z),
usingn(S, z) as defined in Section 2.1. It remains to com-
puteµ̂, such that:

µ̂ =
∞
∑

δ=0

δ × P (q0, size = δ) (12)

whereP (q0, size = δ) is the probability of a hidden se-
quence to haveδ letters. LetτS,T =

∑

z,q(S,z)=T π(S, z)
be the probability to use one transition between statesS and
T . We can establish that:

P (S, size = δ) =
∑

T∈Q

τS,T × P (T, size = δ − 1). (13)

This is a geometric series of common ratioτ and first term
P (S, size = 0) = πF (S). Using P (q0, size = δ) and
Eq.12 we deduce that:

N̂ =

P

S∈Q

P

z∈Σ n(S, z)
P∞

δ=0 δ × P (q0, size = δ)
. (14)

We carried out experiments to show that Eq.14 provides
a correct estimate ofN . We sampled several sets of
sequences (of sizeN from 100 to 6,000) from thePDFA of
Fig.1. For each set, we comparedN andN̂ . Fig.3 shows
that N̂ provides a good estimation ofN , and then can be
efficiently used inPROP TEST.

Dependence Constraint.We also propose here to verify a
relative condition,i.e. if there exists a statistical dependence
betweenw and the patternw′ =< x1...xl−1 >. Roughly
speaking, the majority of the sequences that containw′ must
also satisfyw =< w′ > . < xl >, where “.” is the con-
catenation function. This dependence can be assessed by
analyzing the nature ofxl occurring afterw′. We generate
an output vector

−−→
Vout of dimension|Σ ∪ {#}|. Each com-

ponent
−−→
Vout(i) is the expected number of sequences that

have the symbolzi ∈ Σ ∪ {#} which follows the pattern

w′. It means that
−−→
Vout(i) = P (q0, < x1...xl−1zi >) × N̂ .

We arrange
−−→
Vout such that the considered symbolxl is the
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Figure 3. Comparison between N and N̂ . The
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fectly estimate N . The solid line is obtained
with the series of experiments.

first component of the vector. Then we test the dependence
between

−−→
Vout and an input vector

−→
Vin for which the first

component is the expected number of sequences that con-
tain the patternw′ (the other components are null). To do
this, we run a Chi-square test (calledCHI2 TEST) from

−→
Vin

and
−−→
Vout, building the following statisticχ2:

χ
2 =

|Σ∪{#}|
X

i=1

[(
−→
Vin(i) − Ψ(i))2 + (

−−→
Vout(i) − Ψ(i))2]

Ψ(i)
,

whereΨ(i) =
−−→
Vin(i)+

−−→
Vout(i)

2 . χ2 follows a Chi-square
distribution with2 × |Σ ∪ {#}| − 1 degrees of freedom. It
is then possible to test ifχ2 is smaller thanX2×|Σ∪{#}|−1

α ,
which is the(1−α)-percentile of the Chi-square law. We get

the decision rule:if χ2 < X
2×|Σ∪{#}|−1
α , the dependence

constraint is verified.Combining the two constraints, we
can define a frequent and relevant pattern.

Definition 2 A patternw =< x1...xl−1xl > is frequent
and relevant iffP (q0, w) is higher than a support thresh-
old σ, and the proportion constraint onP (q0, w) and the
dependence constraint betweenw andw′ =< x1...xl−1 >

are satisfied.

4.2 TheACSM Algorithm

Combining all the concepts we presented so far, we
propose a new constraint-based sequence mining algo-
rithm. It aims at discovering from aPDFA all the fre-



Input : A PDFA A = (Q, Σ, q, q0, π, πF ), a support thresholdσ, two risks
α1 andα2

Output : a set of relevant frequent patterns G
begin1

G1 ←∅ ;2
foreach l ∈ Σ do3

if P (q0, l) ≥ σ then4
if PROP TEST (P (q0, l), α1) is satisfiedthen5

G1 ← G1 ∪ {l} ;6
7
8

G← G1 ;9
n← 1 ;10
while Gn 6= ∅ do11

Gn+1 ← ∅ ;12
foreachw =< x1...xn >∈ Gn do13

foreachw
′

=< x
′

1...x
′

n >∈ Gn do14

if MERGE (w, w
′

) then15

v ←< w > . < x
′

n > ;16
if P (q0, v) ≥ σ then17

if PROP TEST (P (q0, v), α1) then18
if CHI2 TEST (

−−→
Vin,

−−→
Vout, α2) then19

Gn+1 ← Gn+1 ∪ {v} ;20
21
22
23
24
25
26

G← G ∪Gn+1 ;27
n← n + 1 ;28

return G ;29
end30

Algorithm 1 : Pseudo-code ofACSM

quent and relevant patterns, according to a support thresh-
old σ and two statistical risksα1 andα2. The pseudo-code
of our ACSM algorithm (Automata-based Constraint-based
Sequence Mining) is presented in Algorithm 1. From lines
2 to 9, it initializes a set of relevant frequent patterns com-
posed of only one symbol. Since no pattern has been ex-
tracted yet, only the support test (line 4) andPROP TEST

(line 5) are run. The paths of thePDFA that do not satisfy
these two tests will not be studied anymore, that allows us to
prune the search space. The second part ofACSM tests ad-
ditional symbols to search for larger frequent and relevant
patterns. Three conditions must be satisfied: the support
test (lines 17),PROP TEST (line 18) andCHI2 TEST (line
19). The boolean function MERGE(w, w′) (line 15) returns
true if the n− 1 last symbols ofw are identical to then− 1
first ones ofw′. This ensures that all subsequences of the
resulting patternv =< w > . < xn > (line 16) are yet
frequent and relevant.

5 Car Flow Modeling

5.1 Traffic Miner

In order to bring to the fore the interest of our approach,
we design a road traffic simulator, called TRAFFICM INER

(see Fig.4). We simulated a road traffic on a map captured
from mappyTM ’s web site. We implemented a graphical in-

Figure 4. TrafficMiner

terface which allows us to model the map in a graph form:
one-way and two-way roads as transitions of thePDFA, en-
try gates, exit gates and crossroads respectively as initial,
final and other states. On each street, we put a counter to
get the number of cars going through it. When the map is
modeled, we can simulate the traffic by generating a ran-
dom flow of cars. At any moment, we can stop the flow
and get aPDFA A =< Q, Σ, q, π, πI , πF > where:Q is the
set of crossroads, and enter and exit gates;Σ is the set of
street names;q : Q × Σ → Q defines a transition,i.e. a
street between two crossroads;π : Q × Σ → [0, 1] asso-
ciates a probability to each pair (S,z), i.e. the probability to
leave the crossroadS taking the streetz (as defined in Eq.1);
πF : Q → [0, 1] associates to each final state (i.e. the exit
gates) a non-null probabilityπF (S) to leave the map tak-
ing the gateS; πI : Q → [0, 1] associates to each initial
state (i.e. to entry gates) a non-null probabilityπI(S). Ac-
cording to Def.1, aPDFA must have only one initial state to
be deterministic. In our case, despite the fact that we have
several initial states (entry gates), the determinism is not
challenged because there does not exist two paths, starting
from two initial states, that use the same transition.
To simulate the road traffic, a multinomial distribution is ap-
plied on the entry gates, and others are used on each cross-
road to simulate the routes.

5.2 Interest of a Car Flow Modeling

From this PDFA, we can runACSM to extract patterns
that may be very interesting in many domains. First, it may



 0

 20

 40

 60

 80

 100

 120

 140

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
um

be
r 

of
 p

at
te

rn
s

α1 for the proportion test

σ=0.01%
σ=0.03%
σ=0.05%

σ=0.1%

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.01 0.02 0.03 0.04 0.05 0.06

N
um

be
r 

of
 p

at
te

rn
s

α2 for the chi-square test

σ=0.01%
σ=0.02%
σ=0.03%
σ=0.05%

(b)

Figure 5. (a) and (b): Effect of constraints on the number of p atterns.

be efficiently used in road traffic regulation. By finding fre-
quent paths taken by the same cars, one could locate places
in the map which would deserve some developments (traffic
circles, traffic lights, etc.) to make the traffic more fluid. For
example, in Fig.4, we can locate on the right a place where
the traffic is very heavy. Second, it could be used to simulate
a new traffic organization (modification of street directions,
creation of new one-way streets, etc.) to avoid traffic jams.
Finally, it could be useful in campaign advertising. Note
again that a frequent and relevant patternw =< x1x2 >,
extracted with our model, would express,without any in-
formation about the individual trail of the drivers, that the
majority of cars taking the streetx1 will probably also take
later the (possibly not adjacent) streetx2. This is the case of
the pattern composed of the two black streets at the bottom
in Fig.4. Our system is able to ensure that those who take
the first street will also take the second one.

This kind of information could help in many domains.
First, an advertising agency could use such techniques to
find the best strategic position for billboards: either repeat
the same hoarding to increase the effect of the advertise-
ment or put a different one. Moreover, such information
could also be useful for determining an optimal traffic reg-
ulation or simulating a new traffic organization.

5.3 Experimental Results

The main contribution of this paper is to show that
one can achieve with aPDFA a constrained sequence
mining task while preserving the privacy of the data. The
experiments we carried out in Section 2 have proven the
ability of thePDFA to succeed without constraints.

Effect of the Constraints. Let us now evaluate the indi-
vidual effect of our constraints on the number of extracted
patterns. We run then our simulator. Fixingθ = 0, the two
charts of Fig.5 show the effects of the relevance constraints.
We tested the influence ofPROP TEST without incorpo-
rating CHI2 TEST (first chart, fixing α2 = 100%) and
reciprocally (second chart, fixingα1 = 100%). Of course,
we can note that the stronger one of these constraints is,
the more the number of patterns decreases. Moreover, we
can note that the moreσ increases, the more the relevance
constraints become obviously useless.

Experimental Comparison with SPAM. Since we do not
use the original data, a comparison with other sequence
mining algorithms seems more difficult. To overcome this
drawback, we sampled sequences from thePDFA and tried
to find back the same patterns withSPAM2[3]. The exper-
imental setup was the following. We simulated a flow of
cars in our map, and we runACSM to extract the patterns
(here, without constraints to allow us the comparison with
SPAM). We measured the time complexity (calledACSM

time). From thePDFA, we sampled many sets of sequences
(from 100 to 35,000 sequences). From each sample, we
run SPAM to extract a second set of frequent patterns. Both
of the algorithms were run withσ = 10%. We computed
also the time complexity ofSPAM by taking into account the
sampling time and the mining time (SPAM time). The chart
of Fig.6 describes the behavior of the two methods.

While ACSM has a constant time complexity, the one of
SPAM increases a lot in function of the sequence set size.
We added on this chart a curve (Cover) corresponding to the
proportion of frequent patterns extracted bySPAM which

2http://himalaya-tools.sourceforge.net/Spam/
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have also been extracted byACSM. We can observe that
SPAM needs a large number of sequences to approach the
results ofACSM. We can note that once the size of the set
is sufficiently large, about 20,000 examples, more than 97%
of all the frequent patterns extracted from thePDFA are cov-
ered by the those founded bySPAM. But in this case, the
time cost ofSPAM is higher than the one ofACSM.

6 Conclusion

In this paper we have shown that, in situations that can be
modeled as flow control problems, a sequence mining task
may preserve privacy thanks to an underlying probabilistic
automaton. We have proposed a new constrained sequence
mining algorithm based on that data structure and shown
this approach is more efficient than sampling a database
from thePDFA and using a classical sequence mining algo-
rithm. Our algorithm has been implemented in a prototype
we have used to visually show the frequent routes of towns
without any private information from its drivers. In the fu-
ture, we want to useACSM on two flow control problems:
Web usage mining by using aPDFA to model the structure of
a site with the flow of visits, and social network modeling by
using aPDFA to model the flow of emails between people.
In order to be as efficient as possible, it will be interesting
to integrate other constraints such as mingap, maxgap, etc.
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