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Abstract

Many pattern recognition algorithms are based on the neasghbour search and use
the well known edit distance, for which the primitive editst® are usually fixed in ad-
vance. In this article, we aim at learning anbiasedstochastic edit distance in the form
of a finite-state transducer from a corpus iofp(t,outpu} pairs of strings. Contrary to the
other standard methods, which generally use the Expectitaximisation algorithm, our
algorithm learns a transducer independently on the mdrgioaability distribution of the
input strings. Such an unbiased way to proceed requires to optithes parameters of a
conditional transducer instead of jaint one. We apply our new model in the context of
handwritten digit recognition. We show, carrying out a taggries of experiments, that it
always outperforms the standard edit distance.
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1 Introduction

Many applications dealing with sequences require to comfhg similarity of a
pair (input,outpuj of strings. A widely-used similarity measure is the welblam
edit distancewhich corresponds to the minimum number of operatiaesjnser-
tions, deletionsandsubstitutionsrequired to transform thmput into the output

If this transformation is based on a random phenomenon amdah an underlying
probability distribution, edit operations become randariables. We call then the
resulting similarity measure, trstochastic edit distance

An efficient way to model this distance consists in viewingdta stochastic trans-
duction between the input and output alphabets [1]. In otloeds, it means that the
relation constituted by the set ahput,outpuj strings can be compiled in the form
of a 2-tape automaton, calledstochastic finite-state transduce&uch a model is
able to assign a probability at each new pair of strings, audbddbe then very use-
ful to tackle many problems based on edit operations, suske@sentation, DNA
alignment, classification, noisy channel decoding, or ngereerally to handle noise
in sequences. Concerning this last case, note that Sakalkibhd Siromomey have
characterised in [2] what they caldit noiseg i.e. the result of the corruption of
an input string (into an output one) by random errors of egérations. In such a
context, learning a transducer providing a probabilityaotecoupleifput,outpuj
of sequences would be very useful in domains where the preseinnoise has
dramatic effects on the quality of the inferred models. Tikithe case in gram-
matical inference, for instance, which requires eithereimave or correct noisy
data to avoid overfitting phenomena. More generally, thenrpadbblem does not
consist in finding domains where such a model of stochasticedance could be
efficiently used, but rather in estimating the parameteth®fransducer itself. Ac-
tually, stochastic finite-state transducers suffer froel#ick of a training algorithm.
To the best of our knowledge, the first published algorithrautomatically learn
the parameters of a stochastic transducer has been prapp&estad and Yianilos
[3,1]. They provide a stochastic model which allows us tarea stochastic edit
distance, in the form of a memoryless transducer \ith only one state), from a
corpus of similar examples, using the Expectation Maxitiosa(EM) algorithm.
During the last few years, the algorithm EM has also been tmddarning other
transducer-based models [4-6].

Ristad and Yianilos define the stochastic edit distance é&&tviwo strings: andy
as (the minus logarithm of) theint probability of the paifx, y). In this paper, we
claim that it would be much more relevant to express the ststahedit distance
from aconditionalprobability.

First, in order to correctly compute the edit distance, wekithat the probabilities
of edit operations over a symbol must be independent of tbosguted over an-
other symbol. In other words, if the transformation of argjri: into another one



y does not require many edit operations, it is expected tleaptbbability of the

substitution of a symbol by itself should be high. But, assbm of the probabili-

ties of all edit operations is one, then the probability & fubstitution of another
symbol by itself can not obviously be too large. Thus, by gsinoint distribution

(summing to 1), one generates an awkward dependence betde@perations.

Moreover, we think that the primitive edit costs of the edgtance must be in-
dependent of the priori distribution p(z) of the input strings. Howevep(x)
can be directly deduced from the joint distributipfi, y), as follows:p(x) =
Sy P(z,y), whereY™ is the set of all finite strings over the output alphabet
Y. This means that this information is totally included in jbmt distribution. By
defining the stochastic edit distance as a function of tha jmiobability, as done
in [1], the edit costs are then dependenp©f). However, if we use a conditional
distribution, this dependence is removed, since it is irsjts to obtairp(z) from
p(y|x) alone.

Finally, although it is sensible and practical to model thexkastic edit distance
by a memoryless transducer, it is possible thatahpiori distributionp(z) may
not be modelled by such a very simple structure. Thus, byiegra transducer
defining the joint distribution(z, y), its parameters can converge to compromise
values and not to the true ones. This can have dramatic £fiech an application
standpoint. Actually, a widely-used solution to find an ol output stringy ac-
cording to an input one consists in first learning the joint distribution transduce
and later deducing the conditional transducer dividingfy) (more precisely by

its estimates over the learning set). Such a strategy isitredavant for the reason
we mentioned above.

In this paper we have developed a way to learn directly thelitional transducer.
After some definitions and notations (Section 2), we inteadin Section 3 the
learning principle of the stochastic edit distance proddse Ristad and Yianilos
[3,1]. Then, by simulating different theoretical joint ttibutions, we show that the
unigue way using their algorithm, to find them consists in samplingaanéng set
of (x,y) pairs according to the marginal distributione( over the input strings)
of the target joint distribution itself. Moreover, we showat for all othera priori
distribution, the difference between the target and thenkxh models increases.
To free the method from this bias, one mdsectly learn at each iteration of the
algorithm EM the conditional distributiop(y|z). Achieving this task requires to
modify Ristad and Yianilos’s framework. That is the goal ec8on 4. Finally, in
Section 5, we carry out a large series of experiments on hattelvdigit recogni-
tion. Through more than 1 million of tests, we show the ret@esof our new model
in comparison with the standard edit distance.



2 Classic String Edit Distance

An alphabetX is a finite nonempty set of symbol&.* denotes the set of all finite
strings overX. Letx € X* be an arbitrary string of lengtlx| over the alphabeX'.
In the following, unless stated otherwise, symbols areciai@id by, b, . . ., strings
byu,v,. ..,z and the empty string by R™ is the set of non negative reals. Lfgt)
be a function, from whichf(z)]x(.,..) is equal tof (x) if the predicater(z, ...)
holds and O otherwise, wheteis a (set of) dummy variable(s).

A string edit distance is characterised by a tripe Y, c.) consisting of the finite
alphabetsX andY and the primitive cost function, : £ — R whereE =
E, U E; U FE; is the alphabet of primitive edit operations, = X x Y/, is the set
of substitutionsf; = X x {¢} is the set of deletiongy; = {¢} x Y is the set of
insertions. Each such tripleX, Y, c.) induces a distance functioh: X* x Y* —
R* that maps a pair of strings to a non negative real value. Theistanced(z, )
between two strings € X andy € Y is defined recursively as:

[Ce(aa b) + d(:L‘/, y/)]aﬁzx’a/\y:y’b
d(z,y) = min ¢ [cc(a, €) + d(2', Y)]s=ara
[ce(e,y) +de(z, y/)]y=y’b

Note thatd(z, y) can be computed i@ (|x| - |y|) time using dynamic programming.

3 Stochastic Edit Distance and Memoryless Transducers

If the edit operations are achieved according to a randomrgss) the edit distance
is then called thstochastic edit distan¢@and notedi,(z, y). Since the underlying
probability distribution is unknown, one solution consist learning the primitive
edit costs by means of a suited model. In this paper, we usetbnyéess transduc-
ers. Transducers are currently used in many applicatiomgg from lexical anal-
ysers, language and speech processing, etc. They are didaedte large amount
of data, in the form of pairs ofi( y) sequences, in a reasonable time complexity.
Moreover, assuming that edit operations are randomly asheji@ndently achieved
(thatis the case in the edit noise [2]), a memoryless tracesds sufficient to model
the stochastic edit distance.



3.1 Joint Memoryless Transducers

A joint memoryless transducer defines a joint probabilistrbution over the pairs
of strings. It is denoted by a tupleX, Y, ¢, v) where X is the input alphabel;” is
the output alphabet,is theprimitive joint probability function¢ : £ — [0, 1] and
~ is the probability of the termination symbol of a string. &se) ¢ E, in order to
simplify the notations, we are going to uge, ¢) andy as synonyms.

Let us assume for the moment that we know the probabilitytfanc: (in fact,
we will learn it later). We are then able to compute the joirgh@bility p(z, v)

of a pair of strings(z, y). Actually, the joint probabilityp : X* x Y* — [0, 1]

of the stringsr, y can be recursively computed by means of an auxiliary functio
(forward)a : X* x Y* — R as:

a(@,y) = [He=ery=c

And then,

In a symmetric wayp(z, y) can be recursively computed by means of an auxiliary
function (backwardp : X* x Y* — R" as:

ﬁ(xay) [1]96 eNYy=e€
+ [e(a, b) - B(@", y)]omaw =ty
+ [c(a, €) - B(',Y)]e=aa’
+ [e(eb) - Bz, y)ly=sy-

And then,

p(z,y) = B(z,y)7.

Both functions (forward and backward) can be computed(jx| - |y|) time using
a dynamic programming technique. This model defines a pilityadiistribution
over the pairs«, y) of strings. More precisely,

> > plry) =1,

reX* yeY'*



that is achieved if the following conditions are fulfilled|[1

v >0,c(a,b),c(eb),cla,e) >0 Vae X,beY

Z c(a,b) =

aceXU{e}
beY U{e}

Givenp(z,y), we can then compute, as mentioned in [1], the stochasticledi
tance between andy. Actually, the stochastic edit distandg(x, y) is defined as
being the negative logarithm of the probability of the grpairp(z, y) according
to the memoryless stochastic transducer.

ds(z,y) = —logp(x,y),Vr € X", Vy € Y~

In order to compute,(z, y), a remaining step consists in learning the parameters
c(a,b) of the memoryless transducee. the primitive edit costs.

3.2 Optimisation of the parameters of the joint memorylemssducer

Let S be a finite set of«, y) pairs ofsimilar strings. Ristad and Yianilos [1] pro-
pose to use the expectation-maximisation (EM) algorithifintt the optimal joint
stochastic transducer. The EM algorithm consists in twpss{gxpectation and
maximisation) that are repeated until a convergence wites achieved.

Given an auxiliary(|X| + 1) x (|Y| + 1) matrix ¢, the expectation step can be
described as followsia € X, b€ Y,

5(&, b) — Z (x7y2 ( ) ( ,)7

(ﬂcax’,yby’)es P :Ea:p yby)
fey= Y AT y)c(ﬁ,b)ﬁ(lx Y

(za! ,yby')eS p(xx , yby )
Sag= Yy HnpAn Iy

(waa’ yy) €S p(zaz’, yy')
a(z,y)y
bee)= 2. Dy |51,
(z,y)€S p x,y)
and the maximisation:
d(a,b)

cla,b) = N Va € X U{e},Vb e Y U{¢}



c*(a,b) € a b c d | c*(a)
€ 0.00| 0.05| 0.08| 0.02| 0.02| 0.17

a 0.01|0.04|0.01|0.01]0.01| 0.08
b 0.02| 0.01| 0.16| 0.04| 0.01| 0.24
c 0.01|0.02| 0.01| 0.15| 0.00| 0.19

d 0.01|0.01| 0.01|0.01| 0.28| 0.32

Table 1
Target joint distribution=*(a, b) and its corresponding marginal distributiof(a).
where
N= > 6ab).
aeXU{e}
beYU{e}

3.3 Limits of Ristad and Yianilos’s algorithm

To analyse the ability of Ristad and Yianilos’s algorithmctwrrectly estimate the
parameters of a target joint memoryless transducer, we ingviemented it and
carried out a series of experiments. Since the joint distidn p(x, y) is a function
of the learned edit costga, b), we only focused here on the functienof the
transducer.

The experimental setup was the following. We simulated getajoint memory-
less transducer from the alphabéis= Y = {a,b,c,d}, such asva € X U
{e},Vb € Y U {e¢}, the target model is able to return the primitive theorética
joint probability ¢*(a, b). The target joint distribution we used is described in Ta-
ble 13. The marginal distribution*(a) can be deduced from this target such that:

c*(a) = ZbEXU{e} c*(a,b).

Then, we sampled an increasing set of learning input stiffigen 0 to 4000 se-
quences) of variable length generated from a given proibalistribution p(a)
over the input alphabeX. In order to simplify, we modelled this distribution in
the form of an automaton with only one statand |X| output transitions with
randomly chosen probabilities satisfying thag. x p(a) + p(#) = 1, wherep(#)
corresponds to the probability of a termination symbol ofreng (see Figure 1).

3 Note that we carried out many series of experiments withouaritarget joint distribu-
tions, and all the results we obtained follow the same belas the one presented in this
section.

4 Here also, we tested other configurations leading to the sasuds.



Fig. 1. Automaton used for generating the input sequendes.pfobabilityp(#) corre-
sponds to the probability of a termination symbol of a striagin other words the proba-
bility of the state to be final.

We used different settings for this automaton to analysdrtipact of the input
distributionp(a) on the learned joint model. Then, given an input sequen(cen-
erated from this automaton) and the target joint distridouti*(a, b), we sampled
a corresponding output Finally, the setS of generated4, y) pairs was used by
Ristad and Yianilos’s algorithm to learn an estimated ptiiraijoint distribution
c(a,b).

We compared the target and the learned distributions to/sedhe behaviour of
the algorithm to correctly assess the parameters of thettgomt distribution. We
computed an average difference between the both, definetll@asd:

Yaexufe Lbevulg [¢(a;b) — ¢*(a, b)]

d(e,c) = 5

Normalised in this wayg(c, ¢*) is a value in the rang@), 1]. Figure 2 shows the
behaviour of this difference according to various configore of the automaton
of Figure 1. We can note that the unique way to converge tos\auifference near
from 0 consists in using the marginal distributioiia) of the target for generating
the input strings. For all the other ways, the differenceobees very large.

As we said at the beginning of this article, we can easily @xphis behaviour. By
learning the primitive joint probability function(a, b), Ristad and Yianilos learn
at the same time the marginal distributiofu). The learned edit costs (and the
stochastic edit distance) are then dependent oftpaori distribution of the in-
put strings, that is obviously awkward. To free of this sttal bias, we have to
learn the primitive conditional probability function inplendently of the marginal
distribution. That is the goal of the next section.
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4 Unbiased Learning of a Conditional Memoryless Transducer

A conditional memoryless transducer is denoted by a tugle’, c, v) whereX is
the input alphabet; is the output alphabet,is the primitive conditional probabil-
ity functionc : E — [0, 1] and~ is the probability of the termination symbol of a
string. As in the joint case, sinde,¢) ¢ FE, in order to simplify the notation we
usey andc(e|e) as synonyms.

The probabilityp : X* x Y* — [0, 1] of the stringy assuming the input one was
ax (notedp(y|x)) can be recursively computed by means of an auxiliary foncti
(forward)a : X* x Y* — R™T as:

a(ylr) = [e=eny=c
+ [e(bla) - (Y |2")Ja=rrany=y
+ [c(ela) - a(y]2)]o=ra
+ [c(bl€) - a(y']x)]y=y-

And then,

p(ylz) = alylz)y.

In a symmetric wayp(y|x) can be recursively computed by means of an auxiliary



function (backward)? : X* x Y* — R* as:

Blyle) = [e=eny=

_|_
o

o>

™
N—
D™
—~
Qd\
=
P
<

Il

o
m\

And then,

p(ylz) = Bylz)y.

As in the joint case, both functions can be compute@fx| - |y|) time using a dy-
namic programming technique. In this model a probabiligtrabution is assigned
conditionally to each input string. Then

S plyle) € {1,0} Vo e X*.

yeY'™*

TheO is in the case the input stringis not in the domain of the function It can
be show (see Annex) that the normalisation of each conditidistribution can be
achieved if the following conditions over the functiorand the parametey are
fulfilled,

v > 0,c(bla), c(ble),c(ela) >0 Vae X,beY Q)
> c(ble) + > c(bla) + c(ela) =1 Vae X (2)
beY beY

> elble)+vy=1 3)
beY

As in the joint case, the expectation-maximisation al¢ponican be used in order
the find the optimal parameters. The expectation step dadistle computation
of the matrixJ:

a(y|z)c(bla)B(y'|2")y

§(bla) =

(bla) (m,%,)es p(yby'|zax’)

5(ble) — a(y|z)c(ble) B(y'|2")
(Ble) (m/%)es p(yby'|zz’)

Sea)= 3 AWdastylr)y

(vax’ yy')€S p(yy'|rax’)
a(ylz)y
Sele) = Y >l) " 15].
(z,y)€S ply|x

)
x

chose to solve it takiné = 0, in order to maintairy _, .. p(y|z) finite.

> If p(z) = 0 thenp(z,y) = 0 and asp(y|r) = ’% we have a(o—] indeterminism. We

10



The maximisation step allows us to deduce the current edtsco

c(ble) = 5%6) Y= N —NN(e)
~ 6(bla) N — N(e) ~ 0(ela) N — N(e)
‘Ol)=Na W ) =Na N
where:
N = Z{ }5(b|a) N(e) = §5(b|6) N(a) = Z{ }5(b\a)
beYU{e}

For further details about these two stages see Annex 2.

We carried out experiments to assess the relevance of ouleaeming algorithm
to correctly estimate the parameters of target transdudéggollowed exactly the
same experimental setup as the one of Section 3.3, excdp tbefinition of our
differenced(c, ¢*). Actually, as we said before, our new framework estimates
conditional distributions. Sd(c, ¢*) is defined as follows :

o _ A+ BIX])
d(C’C)_W

where

A=Y felbla) - ¢ (bla)

a€X beYU{e}

and

B= 3. |c(ble) = c(ble)]

beYU{e}

The results are shown in Figure 3. We can make the two follgwemarks. First,
the different curves clearly show that the convergence tdwee target distribution
is independent of the distribution of the input strings. ngsdifferent parameter
configurations of the automaton of Figure 1, the behaviounwfalgorithm re-
mains the sama,e the difference between the learned and the target condition
distributions tends to 0. Second, we can note ifjatc*) rapidly decreasesge. the
algorithm requires few learning examples to learn the targe

11
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6666666660000212121210076666546600210

Fig. 4. Example of string coding character.

5 Application to the handwritten character recognition

5.1 Description of the database - Constitution of the setaifsp

In order to assess the relevance of our model in a patterrgnéamn task, we
applied it on the real world problem of handwritten digitsddication. We used

12



the NIST Special Database 3 of the National Institute of &aathis and Technology,
already used in several articles such as [7-9]. This da¢atx@ssists in 12& 128
bitmap images of handwritten digits and letters. In thiseseof experiments, we
only focus on digits written by 100 different writers. Eadass of digit (from O
to 9) has about 1,000 instances, then the whole databaseeaslecastains about
10,000 handwritten digits. As we will explain later, a pafrtieem will be used as
a learning seL.S, the remaining digits being kept in a test samplg. Since our
model handles strings, we coded each digit as an octal stalgwing the feature
extraction algorithm proposed in [7]. It consists in scagrthe bitmap left-to-right
and starting from the top. When the first pixel is found, itdals the border of the
character until it returns to the first pixel. During thisvesasal, the algorithm builds
a string with the absolute direction of the next pixel in tloeder. Fig. 4 describes
an example on a given “2”. The vector of features in the forna afctal string is
presented at the bottom of the figure.

As presenting throughout this article, our method requaregt of (input,output)
pairs of strings for learning the probabilistic transduéex we claimed before, the
deduced stochastic edit distance can then be efficiently faseclassification, se-
guence alignment, or noise correction. While it is ratheacin this last case that
pairs in the form of (noisy,unnoisy) strings constitute th@st relevant way to learn
an edit distance useful in a noise correction model, whatt ey represent in a
pattern recognition task, with various classes, such asunvritten digit classi-
fication? As already proposed in [1], a possible solutionsesia in building pairs
of “similar” strings that describe the possible variatimnglistortions between in-
stances of each class. Such pairs can be drawn by an expée afda. In this
series of experiments on handwritten digits, we decidelderato automatically
build pairs of (input,output) strings, where an input is arfeng string ofL.S, and
the output is a prototype of the input. We used as prototypecthresponding 1-
nearest-neighbour ihS of each input. On the one hand, this choice is motivated
from an algorithmic standpoint. Actually, with a learningt €onstituted of LS|
examples, such a strategy does not increase the compléxitg algorithm using
| LS| pairs of strings too. On the other hand, by attributing therest digit to each
character, we ensure to model the main possible distorbietvgeen digits in each
class.

Note that we could have used other ways to construct strimg.gasolution would
be to generate all pairs in the same class. Beyond large eaiptosts, this strat-
egy would not be relevant in such a digit recognition taskuatly, the classes of
digits are intrinsically multimodal. For example a zero tanwritten either with an
open loop or a closed one. In this case, the string that reptean “open” zero can
not be considered as a distortion of a “closed” zero, bueradhk a different manner
(a sort of sub-class) to design this digit. That explains éh@earest-neighbor based
strategy is much more relevant.

To achieve this task, we used here a classic edit distanoefioputing the nearest-

13



neighbourj.e. with the same edit cost for an insertion, deletion or a stigin.
The objective is then to learn a stochastic transducer flavsato optimise the
conditional probabilitie(output/input).

5.2 Experimental setup

We claim that learning the primitive edit costs of an editai€e in the form of
a conditional transducer is more relevant not only thamiegra joint transducer,
but also than fixing these costs in advance by an expert. fidreren the following
series of experiments, we aim at comparing our approachifigtone of Ristad and
Yianilos, and (ii) to the classic edit distance. The expental setup, graphically
described in Fig. 5, is the following:

(1) Learning Stage
e Step 1: each sétof digits (0 = 0, .., 9) is divided in two parts: a learning set
LS; and a test s€ef'S;.
e Step 2: from eaclt.S;, we build a set of string paiBS; in the form(z, NN (x)),
Vz € LS;, where NN (z) = argmingers,—1de(z,y) (dg is the classic
edit distance).
e Step 3: we learn a uniqumnditionaltransducer fronu; PS;.
e Step 4: we learn a unigyeint transducer fronu; P.S;.
(2) Test Stage
e Step 5: we classify each test digite U, T'S;,
- by the class of the learning stringy € U;LS; maximisingp(y|x’)
(using the conditional transducer)
- by the class of the learning stringy € U;LS; maximisingp(2’, y)
(using the joint transducer)
- by the class of its nearest-neighbouv¥ N () € U; LS;

Using the previous experimental setup, we can then comparthtee approaches
under exactly the same conditions. Actually, during thé sésge, each algorithm
uses:

e One matrix concerning the primitive edit operations épriori fixed matrix of
edit costdor the nearest-neighbour algorithm, a learned matriedf probabil-
ities for the two others),

¢ the union of the learning sefsS;.

¢ the classic edit distance algorithm (for the nearest-righ algorithm), or its
probabilistic version (for the others).

Note that for the standard edit distance, we used two difteratrices of edit costs.
The first one is the most classic ongs. each edit operation has the same cost
(here, 1). According to [8], a more relevant strategy wouwddssst in taking costs
proportionally to the relative angle between the directioised for describing a
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TS || LS, PS,
Class0 || X || X (X, NN(X)
o1 o —
Xowg::| Xow (X NNCX0) »
— . . vLem‘“mg Accuracy using
TS, PS, = Conditional Transducer a conditional transducer
Class1 || Xu|i [ Xn (X, NN(X))
X] X
IRASINHERSIY (X, NN(X))

Learning
.

- = Joint Transducer

PS,
(X . NN(X))
91 of

Class 9

(X ,NN(X)) | w| Nearest-Neighbor
N N Algorithm

Fig. 5. Experimental setup in 5 stepé,j (resp.z;;) is the j*" test (resp. learning) string of
the class.

(w. Jolal2sals[e]7]
o of2]z2|3]als|2]1
1 1]of1]|2]3]a]s]2
2 |2|1]of1]2]3]a]s
3 |al2|1|ol1]2]3]a
a als|l2|1]o]1]|2]s
5 |3]als|l2]1]o|1]2
6 | 2|3]|afl3][2]|1]0]1
7 | 1|2]3]als]|2]1]o0

Table 2
Substitution cost§V,. The insertion and deletion costs are fixed to

digit. To assess the efficiency of these other costs, we aksttlne matrix described
in Table 2.

In order to assess each algorithm in different configuratitre number of learning
strings varied from 200 (20 for each class of digits) to 6,(800 for each class),
with a step of 20 strings per class (resulting in 30 stepti@na). The test accuracy
was computed with a test set containing always 2,000 strings| U; T'S;| =
2,000). For each learning size, we run 5 times each algorithm uSidgferent
randomly generated learning sets and we computed the a&vefhgrefore, the
results presented in Fig. 6 were computed from 30 (# of steps)# of methods)
x 5 (# of iterations) = 600 learning processes. During thestsje, 2,000< 600
= 1,200,000 test strings were labelled.
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Fig. 6. Test accuracy on the handwritten digits.

5.3 Results and Discussion

From Fig. 6, we can make the following remarks.

First of all, learning an edit distance in the form of a coiwgtial transducer is in-
disputably relevant to achieve a pattern recognition tdékatever the size of the
learning set, the test accuracy obtained using the stacteaht distance is higher
than the others. However, note that the difference decsdageally with the size

of the learning set. Actually, from a theoretical standpdin: 5| P(d(z, NN (z)) >
€) = 0,¥e > 0. In other words, it means that whatever the distance we &o00s
when the number of examples increases, the nearest-neighban exampler
tends to ber itself. Interestingly, we can also note that for reachingragimately
the same accuracy rate, the standard edit distance (usstg @bTable 2) needs
much more learning strings, and therefore requires a higymer complexity, than
our approach.

Second, the results obtained with Ristad and Yianilos'shoettare logical and
easily interpretable. When the number of learning stringipamall, all the draw-
backs we already mentioned in the first part of this paper dattually, while
a nearest-neighbour is always a string belonging to thailegurset, many learn-
ing strings are not present in the current (small) set ofestareighbours. There-
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Fig. 7. Evolution of the variance throughout the iterations

fore, while all these strings (inputs and outputs) come ftbensame set of digits
(U; LS;), the distribution over the outputs (the nearest-neightjas not the same
as the distribution over the inputs (the learning string¥)course, this bias de-
creases with the rise of the learning set size, but not sefffilyi in this series of
experiments for improving the performances of the clasdicdistance.

Moreover, as already noted in [8], the use of the matrix ofsoETable 2 provides
better results than the naive configuration consistingsingithe same cost for
the three edit operations. Even if the difference is not irtgpd between the two
curves, the first one is always higher than the second. Hawéve not sufficient
to beat the learned edit distance with a conditional traosduo assess the level
of stability of the approaches, we have computed a measulespérsion on the
results provided by the standard edit distance (with cdstalde 2) and our learned
distance. Fig. 7 shows the behaviour of the variance of gteatzuracy throughout
the iterations. Interestingly, we can note that in the larggority of the cases, our
method gives a smaller variance.
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6 Conclusion

In this paper, we proposed a relevant approach for learhi@gtochastic edit dis-
tance in the form of a memoryless transducer. While the stahtgchniques aim at
learning a joint distribution over the edit operations, Wewed that such a strategy
induces a bias in the form of a statistical dependence omihé string distribu-
tion. We overcame this drawback by directly learning a coodal distribution of
the primitive edit costs. The experimental results on a haitigbn digit recognition
task bring to the fore the interest of our approach.

We think that this work deserves further investigationssti-iwe believe that the
way to build the pairs of strings can be efficiently improv8d.far, we used as pro-
totype, the nearest-neighbour of each learning string.kFhearest-neighbours, or
clustering-based strategies should be studied in ourduwtarks. We have also to
study an adaptive strategy which would update the learrehgfgairs by using at

each iteration of the EM algorithm the edit costs learnedngduthe previous stage.
Second, beyond its good behaviour for dealing with a clasgifin task, our model
can be also particularly suited for handling noisy data.uady, it can be used to
correct noisy learning instances before any inferencegamdvioreover, we also
plan to extend our work on semi-structured data, such as.t@ee of our ob-

jective consists in improving classification performanfmgsapplications in music

retrieval, which handles tree-based representationslémtifying new melodies.

Annex 1
We are going to show that eq. 1, 2 and 3 are sufficient to satisfy
> plylr) =1

yey'*

Let us first consider the case when= .

Y. alyl) =1+ > ayble)

yeyY * ybeY *
:1+Zcbeaye
ybeY *
=1+ c(ble) 3 alyle)
bey yeYy'*
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then

> alylel = c(ble) =

yey'* beY

> alyle) = (1 -z c<b|e>)

Let us now consider the complete case

> alylza) =

yeY *

alelza) + Y a(yblza) =

c(ela)a(e \;;GY
+ g a(ylz) + c(ble)aly|za) + c(ela)a(yblr)) =
y a(elz) +bZY c(bla) ZY a(y|r)
+bZY c(ble) EZY ylafy;HC(l ) bZY a(yblz) =
c(e] )lzyj y|yflje +b§/ c(bla) ezyj yyelﬂf)
+é (ble) yezyj aly|za) = y
(C(6|a)+bezl/6(bla)) yeZY a(y|r) +b€ZY c(ble) yeZY y|za)

then

> alylra) (1 = c<b|e>) - (c<e|a> Y c<b|a>) > alyl)

and

> olylza) = (1 -2 0(6\6)) (C(da) +> C(bla)) > olylz)

yey bey bey yeY*

Applying this equation recursively on the lengthuoénd taking in account that the
base case is

> alyle) = (1 - C(bIE))

yeY * beY
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we have

Z* a(ylay ...a,) =
f[l {(1 — Z c(b|e)) (c(e|ai) + Z c(bal))] . (1 — Z c(b|e))
and
z};*p(yml cly) =

f[l {(1 _ gc(me)) (c(e\al-) —i—bz;/c(bai))] . (1 _ bz;c(bk)) y

A sufficient condition fory_, .y p(yla; ... a,) = 1is that each of the terms that
appear in the productory is equal to 1 and that the final priadwadso 1. Then,

(1 -y c(b|e)) (c(e|ai) + 3 c(b|az~)) =1

- ;};C(bk) = c(€|a) + bz;c(bmz‘)
bz: c(ble) + c(ela;) + bz: c(bla;) =1

and we have equation 2, and

(1 -3 c(b|e)> v=1

bey
1= c(ble) =~
beY
v+ clble) =1
bey

and we have equation 3.

Note that these equations are not validjf.y c(ble) = 1 but this is impossible
sincey > 0.

Annex 2

Let us assume that a problem can be represented in terms ohéasure spaces:
O, a space of observable data, anhdne of unobservable data. Suppose that there
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is a parameter vectadron which the distribution® andi/ depend. The aim is to
find thatd that maximises the likelihood functid(O, §) = In(p(O|#)), for a given
setO of O of observed data.

In general, finding is not possible analytically, and so a given approximating a
gorithm should be used instead. The Expectation Maxinueatigorithm produces
iteratively estimates of, each one producing a greater valud.of he procedure
can then be run until the convergenceédoDempsteet al.[10] showed that, given
an estimatd,, of ¢, a better estimaté, , ; can be produced by maximising:

Q(0n, 0 41) = Elln(p(O,U|60,,41))|0, 6,]

whereE is a conditional expectation over the distributidnThe two parts of the
algorithm are therefore tHexpectatiorstep, in which this expectation is found, and
theMaximisationstep, in which a new parametgy, ; that maximises itis deduced.

Let S € X* x Y* be a multiset of pairs of strings(the learning (multi)set), let
S; = A{z : (x,y) € S} and letS, = {y : (z,y) € S} the input and output
multisets. In the case of conditional transducer learnie@ve interested in finding
the parameterd)) of the transducer that maximises the probability of theeobesd
multiset of .S, output strings provided th&; multiset of input strings. Then the
likelihood function to maximise is:

1(S,,0,5:) =In(p(S,10,5:) =In [[ p(yl0,x)

(z,y)€S

with respect to the parameter vecior

In the following, a path allowing us to transform an inputaran output will be
represented by a stringbelonging to the seb™. In other words, the string is the
sequence of the edit operations that have been iteratigelg during the transfor-
mation. The set of all the patlis* characterises then our unobservable data.

Givenz = (x1,11) ... (xzn,yn) € E*, we say thatr is the input string ot (noted
x = i(2)) iff © = x;,...x,. Note thatr is the concatenation of strings of length
smaller or equal to one, among them some can be the empty stritherefore,
the length ofz is smaller or equal ta. Symmetrically, we say thatis the output
string ofz (notedy = o(2)) iff y = y1 ... yn.

On the following, given & = (z,y) € E and any functionf : £ — R we are
going to denote indistinctly(e), f((z,y)) or f(y|z). Remember that we are using
the notatiorc(¢e|e) as a synonym ofy, then we are going to use als((e, ¢)) as a
synonym ofc(e|e).

6 Although in the following we are going to use the set notafammultisets, we have to
take into account that multisets admit repetitions of tkemponents.
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Let (X,Y,c,v) be a memoryless transducer andzlet (zq,vy) ... (x,, yn) € E¥,
then the conditional probability of the paths:

p(eli(2)) = T] elwdaelele)

i=1 i=1

I
o
—~

R
~—r
o
—~
—~
m
™
~—
~—

For each input-outputz, y) pair, we define the path set as:

E(z,y) ={z€ E" :x =i(2),y = 0(2)}
It is easy to see that
plylz) = > p(z]z)
z€EE(z,y)

Given a multisetS ¢ X* x Y*, we define the multiset

E(S) = U(m,y)eSE(xa y)

In our case, thé) function can be written as:

Q(ena en—i—l) - E[ln(p(soa Z|0n+17 Si))|507 0717 Sz]
= Z (2150, 0n, Si) Inp(Sy, 2|0 11, S5)

zeR*

asp(z|y,b,,x) = 0if x #i(z) ory # o(z)

= 3 p(l0(2), 0,i(2) Ip(o(2). 2O, 8(2))

z€E(S)
= > pllo(2), On,i(2)) np(2]fni1,i(2))
z€EE(S)
||
= z(: )p(z\o(z), (Zlnc 0(2:)|0ns1,1 (zz))+lnc(e|9n+1,e)>
z€E(S

= Z Z p(zez'|o(ze2'), 0,,i(ze2")) Inc(elf,11)

eckE zez'€E(S)

+ Z)P ns 1(2))c((€, €)10n11)
—2 c) Inc(e|bhni1) + |S[nc((e, €)]0n11)
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where

de)= > plze|o(zez"),0,,i(ze2"))

zez' €E(S)
_ Z p(O(zez’),zez’|9n,i(zez’))
ez €E(S) plo(zez’)|0,,i(zez"))
p(zez'|0,,i(zez"))
o(ze2')|0,,i(zez"))

zez' €E(S) p( (

Giving
x yl .T, f}/
Sbla) = 30 <\)<(b\)(/|)
(max’,yby/) cS p y y |$a.r )
a(y|x)c(ble)B(y'|x")y
Sy = 3 (y|x) (b|/) (/ '|=")
(za’ ,yby’')€S p(y Y |I‘ZL' )
a(ylz)e(ela)B(y'|2")y
d(ela) = Z <‘><(‘/></| )
(zaz' yy')E€S p(yy'|zaz’)
as required.

Now we have to choosg,,; that minimises the&)(0,,,0,.1) function with the
restrictions:

> (@, b)[0ng1) + Y c((6,0)[0ns1) + (@, €)|0ni1) =1, Vae X

beY beY

> (&) Oni1) + (€, €)10ns1) = 1

bey

Using the Lagrange multipliers

L= > éd(e)Inc(elbnt1) + |S|Inc((e, €)|6nt1)

Y (Z a,b)|0ns1) +bzy €.0)|0ns1) + c((a, €)[0rr) — 1)
— (Z (e, )]ns1) + (e, )]s1) — 1)
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Computing the derivatives and equating to zero we have:

6((a,b)) ~ A((e,0))
fta (€, 0)l6n1) = S Ha + p

d((a, ) _ 15l
o c((&€)|0n+1) = p

c((a, b)[bn41) =

c((a, €)|0nt1) =

Substituting in the normalisation equation we obtain:

Du0((eh) | Tydl@b) | d(ae)

=1, VaeX
Za:ua—i_:u Ha Ha
S0 h) IS _ |
Dallatp B

Now we have a system wittX | + 1 equations andlX'| + 1 unknowns. It is easy to
see that

n= 18— o = N =575
with
N=ToO+IS MO =Tolen) M= 3 i)
) ey beY U{e

is a solution to the system.
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