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Abstract

Many pattern recognition algorithms are based on the nearest neighbour search and use
the well known edit distance, for which the primitive edit costs are usually fixed in ad-
vance. In this article, we aim at learning anunbiasedstochastic edit distance in the form
of a finite-state transducer from a corpus of (input,output) pairs of strings. Contrary to the
other standard methods, which generally use the Expectation Maximisation algorithm, our
algorithm learns a transducer independently on the marginal probability distribution of the
input strings. Such an unbiased way to proceed requires to optimise the parameters of a
conditional transducer instead of ajoint one. We apply our new model in the context of
handwritten digit recognition. We show, carrying out a large series of experiments, that it
always outperforms the standard edit distance.
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1 Introduction

Many applications dealing with sequences require to compute the similarity of a
pair (input,output) of strings. A widely-used similarity measure is the well known
edit distance, which corresponds to the minimum number of operations,i.e. inser-
tions, deletions, andsubstitutions, required to transform theinput into theoutput.
If this transformation is based on a random phenomenon and then on an underlying
probability distribution, edit operations become random variables. We call then the
resulting similarity measure, thestochastic edit distance.

An efficient way to model this distance consists in viewing itas a stochastic trans-
duction between the input and output alphabets [1]. In otherwords, it means that the
relation constituted by the set of (input,output) strings can be compiled in the form
of a 2-tape automaton, called astochastic finite-state transducer. Such a model is
able to assign a probability at each new pair of strings, and could be then very use-
ful to tackle many problems based on edit operations, such assegmentation, DNA
alignment, classification, noisy channel decoding, or moregenerally to handle noise
in sequences. Concerning this last case, note that Sakakibara and Siromomey have
characterised in [2] what they calledit noise, i.e. the result of the corruption of
an input string (into an output one) by random errors of edit operations. In such a
context, learning a transducer providing a probability to each couple (input,output)
of sequences would be very useful in domains where the presence of noise has
dramatic effects on the quality of the inferred models. Thisis the case in gram-
matical inference, for instance, which requires either to remove or correct noisy
data to avoid overfitting phenomena. More generally, the main problem does not
consist in finding domains where such a model of stochastic edit distance could be
efficiently used, but rather in estimating the parameters ofthe transducer itself. Ac-
tually, stochastic finite-state transducers suffer from the lack of a training algorithm.
To the best of our knowledge, the first published algorithm toautomatically learn
the parameters of a stochastic transducer has been proposedby Ristad and Yianilos
[3,1]. They provide a stochastic model which allows us to learn a stochastic edit
distance, in the form of a memoryless transducer (i.e. with only one state), from a
corpus of similar examples, using the Expectation Maximisation (EM) algorithm.
During the last few years, the algorithm EM has also been usedfor learning other
transducer-based models [4–6].

Ristad and Yianilos define the stochastic edit distance between two stringsx andy
as (the minus logarithm of) thejoint probability of the pair(x, y). In this paper, we
claim that it would be much more relevant to express the stochastic edit distance
from aconditionalprobability.

First, in order to correctly compute the edit distance, we think that the probabilities
of edit operations over a symbol must be independent of thosecomputed over an-
other symbol. In other words, if the transformation of a string x into another one
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y does not require many edit operations, it is expected that the probability of the
substitution of a symbol by itself should be high. But, as thesum of the probabili-
ties of all edit operations is one, then the probability of the substitution of another
symbol by itself can not obviously be too large. Thus, by using a joint distribution
(summing to 1), one generates an awkward dependence betweenedit operations.

Moreover, we think that the primitive edit costs of the edit distance must be in-
dependent of thea priori distribution p(x) of the input strings. However,p(x)
can be directly deduced from the joint distributionp(x, y), as follows:p(x) =
∑

y∈Y ∗ p(x, y), whereY ∗ is the set of all finite strings over the output alphabet
Y . This means that this information is totally included in thejoint distribution. By
defining the stochastic edit distance as a function of the joint probability, as done
in [1], the edit costs are then dependent ofp(x). However, if we use a conditional
distribution, this dependence is removed, since it is impossible to obtainp(x) from
p(y|x) alone.

Finally, although it is sensible and practical to model the stochastic edit distance
by a memoryless transducer, it is possible that thea priori distributionp(x) may
not be modelled by such a very simple structure. Thus, by learning a transducer
defining the joint distributionp(x, y), its parameters can converge to compromise
values and not to the true ones. This can have dramatic effects from an application
standpoint. Actually, a widely-used solution to find an optimal output stringy ac-
cording to an input onex consists in first learning the joint distribution transducer
and later deducing the conditional transducer dividing byp(x) (more precisely by
its estimates over the learning set). Such a strategy is thenirrelevant for the reason
we mentioned above.

In this paper we have developed a way to learn directly the conditional transducer.
After some definitions and notations (Section 2), we introduce in Section 3 the
learning principle of the stochastic edit distance proposed by Ristad and Yianilos
[3,1]. Then, by simulating different theoretical joint distributions, we show that the
unique way, using their algorithm, to find them consists in sampling a learning set
of (x, y) pairs according to the marginal distribution (i.e. over the input strings)
of the target joint distribution itself. Moreover, we show that for all othera priori
distribution, the difference between the target and the learned models increases.
To free the method from this bias, one mustdirectly learn at each iteration of the
algorithm EM the conditional distributionp(y|x). Achieving this task requires to
modify Ristad and Yianilos’s framework. That is the goal of Section 4. Finally, in
Section 5, we carry out a large series of experiments on handwritten digit recogni-
tion. Through more than 1 million of tests, we show the relevance of our new model
in comparison with the standard edit distance.
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2 Classic String Edit Distance

An alphabetX is a finite nonempty set of symbols.X∗ denotes the set of all finite
strings overX. Letx ∈ X∗ be an arbitrary string of length|x| over the alphabetX.
In the following, unless stated otherwise, symbols are indicated bya, b, . . . , strings
byu, v, . . . , z, and the empty string byε. R

+ is the set of non negative reals. Letf(·)
be a function, from which[f(x)]π(x,... ) is equal tof(x) if the predicateπ(x, . . . )
holds and 0 otherwise, wherex is a (set of) dummy variable(s).

A string edit distance is characterised by a triple(X, Y, ce) consisting of the finite
alphabetsX and Y and the primitive cost functionce : E → R

+ whereE =
Es ∪ Ed ∪ Ei is the alphabet of primitive edit operations,Es = X × Y , is the set
of substitutions,Ed = X × {ε} is the set of deletions,Ei = {ε} × Y is the set of
insertions. Each such triple(X, Y, ce) induces a distance functiond : X∗ × Y ∗ →
R

+ that maps a pair of strings to a non negative real value. The edit distanced(x, y)
between two stringsx ∈ X andy ∈ Y is defined recursively as:

d(x, y) = min















[ce(a, b) + d(x′, y′)]x=x′a∧y=y′b

[ce(a, ε) + d(x′, y)]x=x′a

[ce(ε, y) + dc(x, y′)]y=y′b

Note thatd(x, y) can be computed inO(|x| · |y|) time using dynamic programming.

3 Stochastic Edit Distance and Memoryless Transducers

If the edit operations are achieved according to a random process, the edit distance
is then called thestochastic edit distance, and notedds(x, y). Since the underlying
probability distribution is unknown, one solution consists in learning the primitive
edit costs by means of a suited model. In this paper, we used memoryless transduc-
ers. Transducers are currently used in many applications ranging from lexical anal-
ysers, language and speech processing, etc. They are able tohandle large amount
of data, in the form of pairs of (x, y) sequences, in a reasonable time complexity.
Moreover, assuming that edit operations are randomly and independently achieved
(that is the case in the edit noise [2]), a memoryless transducer is sufficient to model
the stochastic edit distance.
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3.1 Joint Memoryless Transducers

A joint memoryless transducer defines a joint probability distribution over the pairs
of strings. It is denoted by a tuple(X, Y, c, γ) whereX is the input alphabet,Y is
the output alphabet,c is theprimitive joint probability function,c : E → [0, 1] and
γ is the probability of the termination symbol of a string. As(ε, ε) 6∈ E, in order to
simplify the notations, we are going to usec(ε, ε) andγ as synonyms.

Let us assume for the moment that we know the probability function c (in fact,
we will learn it later). We are then able to compute the joint probability p(x, y)
of a pair of strings(x, y). Actually, the joint probabilityp : X∗ × Y ∗ → [0, 1]
of the stringsx, y can be recursively computed by means of an auxiliary function
(forward)α : X∗ × Y ∗ → R

+ as:

α(x, y) = [1]x=ε∧y=ε

+ [c(a, b) · α(x′, y′)]x=x′a∧y=y′b

+ [c(a, ε) · α(x′, y)]x=x′a

+ [c(ε, b) · α(x, y′)]y=y′b.

And then,

p(x, y) = α(x, y)γ.

In a symmetric way,p(x, y) can be recursively computed by means of an auxiliary
function (backward)β : X∗ × Y ∗ → R

+ as:

β(x, y) = [1]x=ε∧y=ε

+ [c(a, b) · β(x′, y′)]x=ax′∧y=by′

+ [c(a, ε) · β(x′, y)]x=ax′

+ [c(ε, b) · β(x, y′)]y=by′ .

And then,

p(x, y) = β(x, y)γ.

Both functions (forward and backward) can be computed inO(|x| · |y|) time using
a dynamic programming technique. This model defines a probability distribution
over the pairs (x, y) of strings. More precisely,

∑

x∈X∗

∑

y∈Y ∗

p(x, y) = 1,
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that is achieved if the following conditions are fulfilled [1],

γ > 0, c(a, b), c(ε, b), c(a, ε) ≥ 0 ∀a ∈ X, b ∈ Y
∑

a∈X∪{ε}
b∈Y ∪{ε}

c(a, b) = 1

Givenp(x, y), we can then compute, as mentioned in [1], the stochastic edit dis-
tance betweenx andy. Actually, the stochastic edit distanceds(x, y) is defined as
being the negative logarithm of the probability of the string pairp(x, y) according
to the memoryless stochastic transducer.

ds(x, y) = − log p(x, y), ∀x ∈ X∗, ∀y ∈ Y ∗

In order to computeds(x, y), a remaining step consists in learning the parameters
c(a, b) of the memoryless transducer,i.e. the primitive edit costs.

3.2 Optimisation of the parameters of the joint memoryless transducer

Let S be a finite set of (x, y) pairs ofsimilar strings. Ristad and Yianilos [1] pro-
pose to use the expectation-maximisation (EM) algorithm tofind the optimal joint
stochastic transducer. The EM algorithm consists in two steps (expectation and
maximisation) that are repeated until a convergence criterion is achieved.

Given an auxiliary(|X| + 1) × (|Y | + 1) matrix δ, the expectation step can be
described as follows:∀a ∈ X, b ∈ Y ,

δ(a, b) =
∑

(xax′,yby′)∈S

α(x, y)c(a, b)β(x′, y′)γ

p(xax′, yby′)

δ(ε, b) =
∑

(xx′,yby′)∈S

α(x, y)c(ε, b)β(x′, y′)γ

p(xx′, yby′)

δ(a, ε) =
∑

(xax′,yy′)∈S

α(x, y)c(a, ε)β(x′, y′)γ

p(xax′, yy′)

δ(ε, ε) =
∑

(x,y)∈S

α(x, y)γ

p(x, y)
= |S|,

and the maximisation:

c(a, b) =
δ(a, b)

N
∀a ∈ X ∪ {ε}, ∀b ∈ Y ∪ {ε}
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c∗(a, b) ε a b c d c∗(a)

ε 0.00 0.05 0.08 0.02 0.02 0.17

a 0.01 0.04 0.01 0.01 0.01 0.08

b 0.02 0.01 0.16 0.04 0.01 0.24

c 0.01 0.02 0.01 0.15 0.00 0.19

d 0.01 0.01 0.01 0.01 0.28 0.32
Table 1
Target joint distributionc∗(a, b) and its corresponding marginal distributionc∗(a).

where

N =
∑

a∈X∪{ε}
b∈Y ∪{ε}

δ(a, b).

3.3 Limits of Ristad and Yianilos’s algorithm

To analyse the ability of Ristad and Yianilos’s algorithm tocorrectly estimate the
parameters of a target joint memoryless transducer, we haveimplemented it and
carried out a series of experiments. Since the joint distributionp(x, y) is a function
of the learned edit costsc(a, b), we only focused here on the functionc of the
transducer.

The experimental setup was the following. We simulated a target joint memory-
less transducer from the alphabetsX = Y = {a, b, c, d}, such as∀a ∈ X ∪
{ε}, ∀b ∈ Y ∪ {ε}, the target model is able to return the primitive theoretical
joint probabilityc∗(a, b). The target joint distribution we used is described in Ta-
ble 13 . The marginal distributionc∗(a) can be deduced from this target such that:
c∗(a) =

∑

b∈X∪{ε} c∗(a, b).

Then, we sampled an increasing set of learning input strings(from 0 to 4000 se-
quences) of variable length generated from a given probability distribution p(a)
over the input alphabetX. In order to simplify, we modelled this distribution in
the form of an automaton with only one state4 and |X| output transitions with
randomly chosen probabilities satisfying that

∑

a∈X p(a) + p(#) = 1, wherep(#)
corresponds to the probability of a termination symbol of a string (see Figure 1).

3 Note that we carried out many series of experiments with various target joint distribu-
tions, and all the results we obtained follow the same behaviour as the one presented in this
section.
4 Here also, we tested other configurations leading to the sameresults.
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p(#)

a: p(a)
b: p(b)
c: p(c)
d: p(d)

Fig. 1. Automaton used for generating the input sequences. The probabilityp(#) corre-
sponds to the probability of a termination symbol of a string, or in other words the proba-
bility of the state to be final.

We used different settings for this automaton to analyse theimpact of the input
distributionp(a) on the learned joint model. Then, given an input sequencex (gen-
erated from this automaton) and the target joint distribution c∗(a, b), we sampled
a corresponding outputy. Finally, the setS of generated (x, y) pairs was used by
Ristad and Yianilos’s algorithm to learn an estimated primitive joint distribution
c(a, b).

We compared the target and the learned distributions to analyse the behaviour of
the algorithm to correctly assess the parameters of the target joint distribution. We
computed an average difference between the both, defined as follows:

d(c, c∗) =

∑

a∈X∪{ε}

∑

b∈Y ∪{ε} |c(a, b) − c∗(a, b)|

2

Normalised in this way,d(c, c∗) is a value in the range[0, 1]. Figure 2 shows the
behaviour of this difference according to various configurations of the automaton
of Figure 1. We can note that the unique way to converge towards a difference near
from 0 consists in using the marginal distributionc∗(a) of the target for generating
the input strings. For all the other ways, the difference becomes very large.

As we said at the beginning of this article, we can easily explain this behaviour. By
learning the primitive joint probability functionc(a, b), Ristad and Yianilos learn
at the same time the marginal distributionc(a). The learned edit costs (and the
stochastic edit distance) are then dependent of thea priori distribution of the in-
put strings, that is obviously awkward. To free of this statistical bias, we have to
learn the primitive conditional probability function independently of the marginal
distribution. That is the goal of the next section.
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Fig. 2. Average difference between the target and the learned distributions according to
various generations of the input strings.

4 Unbiased Learning of a Conditional Memoryless Transducer

A conditional memoryless transducer is denoted by a tuple(X, Y, c, γ) whereX is
the input alphabet,Y is the output alphabet,c is the primitive conditional probabil-
ity function c : E → [0, 1] andγ is the probability of the termination symbol of a
string. As in the joint case, since(ε, ε) 6∈ E, in order to simplify the notation we
useγ andc(ε|ε) as synonyms.

The probabilityp : X∗ × Y ∗ → [0, 1] of the stringy assuming the input one was
a x (notedp(y|x)) can be recursively computed by means of an auxiliary function
(forward)α : X∗ × Y ∗ → R

+ as:

α(y|x) = [1]x=ε∧y=ε

+ [c(b|a) · α(y′|x′)]x=x′a∧y=y′b

+ [c(ε|a) · α(y|x′)]x=x′a

+ [c(b|ε) · α(y′|x)]y=y′b.

And then,

p(y|x) = α(y|x)γ.

In a symmetric way,p(y|x) can be recursively computed by means of an auxiliary
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function (backward)β : X∗ × Y ∗ → R
+ as:

β(y|x) = [1]x=ε∧y=ε

+ [c(b|a) · β(y′|x′)]x=ax′∧y=by′

+ [c(ε|a) · β(y|x′)]x=ax′

+ [c(b|ε) · β(y′|x)]y=by′ .

And then,

p(y|x) = β(y|x)γ.

As in the joint case, both functions can be computed inO(|x| · |y|) time using a dy-
namic programming technique. In this model a probability distribution is assigned
conditionally to each input string. Then

∑

y∈Y ∗

p(y|x) ∈ {1, 0} ∀x ∈ X∗.

The0 is in the case the input stringx is not in the domain of the function5 . It can
be show (see Annex) that the normalisation of each conditional distribution can be
achieved if the following conditions over the functionc and the parameterγ are
fulfilled,

γ > 0, c(b|a), c(b|ε), c(ε|a) ≥ 0 ∀a ∈ X, b ∈ Y (1)
∑

b∈Y

c(b|ε) +
∑

b∈Y

c(b|a) + c(ε|a) = 1 ∀a ∈ X (2)

∑

b∈Y

c(b|ε) + γ = 1 (3)

As in the joint case, the expectation-maximisation algorithm can be used in order
the find the optimal parameters. The expectation step deals with the computation
of the matrixδ:

δ(b|a) =
∑

(xax′,yby′)∈S

α(y|x)c(b|a)β(y′|x′)γ

p(yby′|xax′)

δ(b|ε) =
∑

(xx′,yby′)∈S

α(y|x)c(b|ε)β(y′|x′)γ

p(yby′|xx′)

δ(ε|a) =
∑

(xax′,yy′)∈S

α(y|x)c(ε|a)β(y′|x′)γ

p(yy′|xax′)

δ(ε|ε) =
∑

(x,y)∈S

α(y|x)γ

p(y|x)
= |S|.

5 If p(x) = 0 thenp(x, y) = 0 and asp(y|x) = p(x,y)
p(x) we have a0

0 indeterminism. We

chose to solve it taking00 = 0, in order to maintain
∑

y∈Y ∗ p(y|x) finite.
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The maximisation step allows us to deduce the current edit costs.

c(b|ε) =
δ(b|ε)

N
γ =

N − N(ε)

N

c(b|a) =
δ(b|a)

N(a)

N − N(ε)

N
c(ε|a) =

δ(ε|a)

N(a)

N − N(ε)

N

where:

N =
∑

a∈X∪{ε}
b∈Y ∪{ε}

δ(b|a) N(ε) =
∑

b∈Y

δ(b|ε) N(a) =
∑

b∈Y ∪{ε}

δ(b|a)

For further details about these two stages see Annex 2.

We carried out experiments to assess the relevance of our newlearning algorithm
to correctly estimate the parameters of target transducers. We followed exactly the
same experimental setup as the one of Section 3.3, except to the definition of our
differenced(c, c∗). Actually, as we said before, our new framework estimates|X|
conditional distributions. Sod(c, c∗) is defined as follows :

d(c, c∗) =
(A + B |X|)

2 |X|

where

A =
∑

a∈X

∑

b∈Y ∪{ε}

|c(b|a) − c∗(b|a)|

and

B =
∑

b∈Y ∪{ε}

|c(b|ε) − c∗(b|ε)|

The results are shown in Figure 3. We can make the two following remarks. First,
the different curves clearly show that the convergence toward the target distribution
is independent of the distribution of the input strings. Using different parameter
configurations of the automaton of Figure 1, the behaviour ofour algorithm re-
mains the same,i.e the difference between the learned and the target conditional
distributions tends to 0. Second, we can note thatd(c, c∗) rapidly decreases,i.e. the
algorithm requires few learning examples to learn the target.
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Fig. 3. Average difference between the target and the learned conditional distributions ac-
cording to various generations of the input strings.
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Primitives

2

3
4

5

6

7
0 1

"2"=222222432444446665656543222222246
6666666660000212121210076666546600210

Fig. 4. Example of string coding character.

5 Application to the handwritten character recognition

5.1 Description of the database - Constitution of the set of pairs

In order to assess the relevance of our model in a pattern recognition task, we
applied it on the real world problem of handwritten digit classification. We used
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the NIST Special Database 3 of the National Institute of Standards and Technology,
already used in several articles such as [7–9]. This database consists in 128× 128
bitmap images of handwritten digits and letters. In this series of experiments, we
only focus on digits written by 100 different writers. Each class of digit (from 0
to 9) has about 1,000 instances, then the whole database we used contains about
10,000 handwritten digits. As we will explain later, a part of them will be used as
a learning setLS, the remaining digits being kept in a test sampleTS. Since our
model handles strings, we coded each digit as an octal string, following the feature
extraction algorithm proposed in [7]. It consists in scanning the bitmap left-to-right
and starting from the top. When the first pixel is found, it follows the border of the
character until it returns to the first pixel. During this traversal, the algorithm builds
a string with the absolute direction of the next pixel in the border. Fig. 4 describes
an example on a given “2”. The vector of features in the form ofa octal string is
presented at the bottom of the figure.

As presenting throughout this article, our method requiresa set of (input,output)
pairs of strings for learning the probabilistic transducer. As we claimed before, the
deduced stochastic edit distance can then be efficiently used for classification, se-
quence alignment, or noise correction. While it is rather clear in this last case that
pairs in the form of (noisy,unnoisy) strings constitute themost relevant way to learn
an edit distance useful in a noise correction model, what must they represent in a
pattern recognition task, with various classes, such as in handwritten digit classi-
fication? As already proposed in [1], a possible solution consists in building pairs
of “similar” strings that describe the possible variationsor distortions between in-
stances of each class. Such pairs can be drawn by an expert of the area. In this
series of experiments on handwritten digits, we decided rather to automatically
build pairs of (input,output) strings, where an input is a learning string ofLS, and
the output is a prototype of the input. We used as prototype the corresponding 1-
nearest-neighbour inLS of each input. On the one hand, this choice is motivated
from an algorithmic standpoint. Actually, with a learning set constituted of|LS|
examples, such a strategy does not increase the complexity of the algorithm using
|LS| pairs of strings too. On the other hand, by attributing the nearest digit to each
character, we ensure to model the main possible distortionsbetween digits in each
class.

Note that we could have used other ways to construct string pairs. A solution would
be to generate all pairs in the same class. Beyond large complexity costs, this strat-
egy would not be relevant in such a digit recognition task. Actually, the classes of
digits are intrinsically multimodal. For example a zero canbe written either with an
open loop or a closed one. In this case, the string that represents an “open” zero can
not be considered as a distortion of a “closed” zero, but rather as a different manner
(a sort of sub-class) to design this digit. That explains that a nearest-neighbor based
strategy is much more relevant.

To achieve this task, we used here a classic edit distance forcomputing the nearest-
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neighbour,i.e. with the same edit cost for an insertion, deletion or a substitution.
The objective is then to learn a stochastic transducer that allows to optimise the
conditional probabilitiesp(output/input).

5.2 Experimental setup

We claim that learning the primitive edit costs of an edit distance in the form of
a conditional transducer is more relevant not only than learning a joint transducer,
but also than fixing these costs in advance by an expert. Therefore, in the following
series of experiments, we aim at comparing our approach (i) to the one of Ristad and
Yianilos, and (ii) to the classic edit distance. The experimental setup, graphically
described in Fig. 5, is the following:

(1) Learning Stage
• Step 1: each seti of digits (i = 0, .., 9) is divided in two parts: a learning set

LSi and a test setTSi.
• Step 2: from eachLSi, we build a set of string pairsPSi in the form(x, NN(x)),
∀x ∈ LSi, whereNN(x) = argminy∈LSi−{x}dE(x, y) (dE is the classic
edit distance).

• Step 3: we learn a uniqueconditionaltransducer from∪iPSi.
• Step 4: we learn a uniquejoint transducer from∪iPSi.

(2) Test Stage
• Step 5: we classify each test digitx′ ∈ ∪iTSi,

· by the classi of the learning stringy ∈ ∪iLSi maximisingp(y|x′)
(using the conditional transducer)

· by the classi of the learning stringy ∈ ∪iLSi maximisingp(x′, y)
(using the joint transducer)

· by the classi of its nearest-neighbourNN(x′) ∈ ∪iLSi

Using the previous experimental setup, we can then compare the three approaches
under exactly the same conditions. Actually, during the test stage, each algorithm
uses:

• one matrix concerning the primitive edit operations (ana priori fixed matrix of
edit costsfor the nearest-neighbour algorithm, a learned matrix ofedit probabil-
ities for the two others),

• the union of the learning setsLSi.
• the classic edit distance algorithm (for the nearest-neighbour algorithm), or its

probabilistic version (for the others).

Note that for the standard edit distance, we used two different matrices of edit costs.
The first one is the most classic one,i.e. each edit operation has the same cost
(here, 1). According to [8], a more relevant strategy would consist in taking costs
proportionally to the relative angle between the directions used for describing a
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Fig. 5. Experimental setup in 5 steps.x′
ij (resp.xij) is thejth test (resp. learning) string of

the classi.

Ws 0 1 2 3 4 5 6 7

0 0 1 2 3 4 3 2 1

1 1 0 1 2 3 4 3 2

2 2 1 0 1 2 3 4 3

3 3 2 1 0 1 2 3 4

4 4 3 2 1 0 1 2 3

5 3 4 3 2 1 0 1 2

6 2 3 4 3 2 1 0 1

7 1 2 3 4 3 2 1 0

Table 2
Substitution costsWs. The insertion and deletion costs are fixed to1.

digit. To assess the efficiency of these other costs, we also used the matrix described
in Table 2.

In order to assess each algorithm in different configurations, the number of learning
strings varied from 200 (20 for each class of digits) to 6,000(600 for each class),
with a step of 20 strings per class (resulting in 30 step iterations). The test accuracy
was computed with a test set containing always 2,000 strings(i.e. | ∪i TSi| =
2, 000). For each learning size, we run 5 times each algorithm using5 different
randomly generated learning sets and we computed the average. Therefore, the
results presented in Fig. 6 were computed from 30 (# of steps)× 4 (# of methods)
× 5 (# of iterations) = 600 learning processes. During the teststage, 2,000× 600
= 1,200,000 test strings were labelled.
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Fig. 6. Test accuracy on the handwritten digits.

5.3 Results and Discussion

From Fig. 6, we can make the following remarks.

First of all, learning an edit distance in the form of a conditional transducer is in-
disputably relevant to achieve a pattern recognition task.Whatever the size of the
learning set, the test accuracy obtained using the stochastic edit distance is higher
than the others. However, note that the difference decreases logically with the size
of the learning set. Actually, from a theoretical standpoint, lim|LS|→∞P (d(x, NN(x)) >
ε) = 0, ∀ε > 0. In other words, it means that whatever the distance we choose,
when the number of examples increases, the nearest-neighbour of an examplex
tends to bex itself. Interestingly, we can also note that for reaching approximately
the same accuracy rate, the standard edit distance (using costs of Table 2) needs
much more learning strings, and therefore requires a highertime complexity, than
our approach.

Second, the results obtained with Ristad and Yianilos’s method are logical and
easily interpretable. When the number of learning string pair is small, all the draw-
backs we already mentioned in the first part of this paper occur. Actually, while
a nearest-neighbour is always a string belonging to the learning set, many learn-
ing strings are not present in the current (small) set of nearest-neighbours. There-
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fore, while all these strings (inputs and outputs) come fromthe same set of digits
(∪iLSi), the distribution over the outputs (the nearest-neighbours) is not the same
as the distribution over the inputs (the learning strings).Of course, this bias de-
creases with the rise of the learning set size, but not sufficiently in this series of
experiments for improving the performances of the classic edit distance.

Moreover, as already noted in [8], the use of the matrix of costs of Table 2 provides
better results than the naı̈ve configuration consisting in using the same cost for
the three edit operations. Even if the difference is not important between the two
curves, the first one is always higher than the second. However, it is not sufficient
to beat the learned edit distance with a conditional transducer. To assess the level
of stability of the approaches, we have computed a measure ofdispersion on the
results provided by the standard edit distance (with costs of Table 2) and our learned
distance. Fig. 7 shows the behaviour of the variance of the test accuracy throughout
the iterations. Interestingly, we can note that in the largemajority of the cases, our
method gives a smaller variance.
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6 Conclusion

In this paper, we proposed a relevant approach for learning the stochastic edit dis-
tance in the form of a memoryless transducer. While the standard techniques aim at
learning a joint distribution over the edit operations, we showed that such a strategy
induces a bias in the form of a statistical dependence on the input string distribu-
tion. We overcame this drawback by directly learning a conditional distribution of
the primitive edit costs. The experimental results on a handwritten digit recognition
task bring to the fore the interest of our approach.

We think that this work deserves further investigations. First, we believe that the
way to build the pairs of strings can be efficiently improved.So far, we used as pro-
totype, the nearest-neighbour of each learning string. Thek-nearest-neighbours, or
clustering-based strategies should be studied in our future works. We have also to
study an adaptive strategy which would update the learning set of pairs by using at
each iteration of the EM algorithm the edit costs learned during the previous stage.
Second, beyond its good behaviour for dealing with a classification task, our model
can be also particularly suited for handling noisy data. Actually, it can be used to
correct noisy learning instances before any inference process. Moreover, we also
plan to extend our work on semi-structured data, such as trees. One of our ob-
jective consists in improving classification performancesfor applications in music
retrieval, which handles tree-based representations for identifying new melodies.

Annex 1

We are going to show that eq. 1, 2 and 3 are sufficient to satisfy

∑

y∈Y ∗

p(y|x) = 1.

Let us first consider the case whenx = ε.

∑

y∈Y ∗

α(y|ε) = 1 +
∑

yb∈Y ∗

α(yb|ε)

= 1 +
∑

yb∈Y ∗

c(b|ε)α(y|ε)

= 1 +
∑

b∈Y

c(b|ε)
∑

y∈Y ∗

α(y|ε)

18



then

∑

y∈Y ∗

α(y|ε)(1−
∑

b∈Y

c(b|ε)) = 1

∑

y∈Y ∗

α(y|ε) =



1 −
∑

b∈Y

c(b|ε)





−1

Let us now consider the complete case

∑

y∈Y ∗

α(y|xa) =

α(ε|xa) +
∑

yb∈Y ∗

α(yb|xa) =

c(ε|a)α(ε|x)

+
∑

yb∈Y ∗

(c(b|a)α(y|x) + c(b|ε)α(y|xa) + c(ε|a)α(yb|x)) =

c(ε|a)α(ε|x) +
∑

b∈Y

c(b|a)
∑

y∈Y ∗

α(y|x)

+
∑

b∈Y

c(b|ε)
∑

y∈Y ∗

α(y|xa) + c(ε|a)
∑

yb∈Y ∗

α(yb|x) =

c(ε|a)
∑

y∈Y ∗

α(y|x) +
∑

b∈Y

c(b|a)
∑

y∈Y ∗

α(y|x)

+
∑

b∈Y

c(b|ε)
∑

y∈Y ∗

α(y|xa) =



c(ε|a) +
∑

b∈Y

c(b|a)





∑

y∈Y ∗

α(y|x) +
∑

b∈Y

c(b|ε)
∑

y∈Y ∗

α(y|xa)

then

∑

y∈Y ∗

α(y|xa)



1 −
∑

b∈Y

c(b|ε)



 =



c(ε|a) +
∑

b∈Y

c(b|a)





∑

y∈Y ∗

α(y|x)

and

∑

y∈Y ∗

α(y|xa) =



1 −
∑

b∈Y

c(b|ε)





−1 

c(ε|a) +
∑

b∈Y

c(b|a)





∑

y∈Y ∗

α(y|x)

Applying this equation recursively on the length ofx and taking in account that the
base case is

∑

y∈Y ∗

α(y|ε) =



1 −
∑

b∈Y

c(b|ε)





−1
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we have

∑

y∈Y ∗

α(y|a1 . . . an) =

n
∏

i=1









1 −
∑

b∈Y

c(b|ε)





−1 

c(ε|ai) +
∑

b∈Y

c(b|ai)









 ·



1 −
∑

b∈Y

c(b|ε)





−1

and

∑

y∈Y ∗

p(y|a1 . . . an) =

n
∏

i=1









1 −
∑

b∈Y

c(b|ε)





−1 

c(ε|ai) +
∑

b∈Y

c(b|ai)









 ·



1 −
∑

b∈Y

c(b|ε)





−1

γ

A sufficient condition for
∑

y∈Y ∗ p(y|a1 . . . an) = 1 is that each of the terms that
appear in the productory is equal to 1 and that the final product is also 1. Then,



1 −
∑

b∈Y

c(b|ε)





−1 

c(ε|ai) +
∑

b∈Y

c(b|ai)



 = 1

1 −
∑

b∈Y

c(b|ε) = c(ε|ai) +
∑

b∈Y

c(b|ai)

∑

b∈Y

c(b|ε) + c(ε|ai) +
∑

b∈Y

c(b|ai) = 1

and we have equation 2, and


1 −
∑

b∈Y

c(b|ε)





−1

γ = 1

1 −
∑

b∈Y

c(b|ε) = γ

γ +
∑

b∈Y

c(b|ε) = 1

and we have equation 3.

Note that these equations are not valid if
∑

b∈Y c(b|ε) = 1 but this is impossible
sinceγ > 0.

Annex 2

Let us assume that a problem can be represented in terms of twomeasure spaces:
O, a space of observable data, andU , one of unobservable data. Suppose that there
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is a parameter vectorθ on which the distributionsO andU depend. The aim is to
find thatθ that maximises the likelihood functionl(O, θ) = ln(p(O|θ)), for a given
setO of O of observed data.

In general, findingθ is not possible analytically, and so a given approximating al-
gorithm should be used instead. The Expectation Maximisation algorithm produces
iteratively estimates ofθ, each one producing a greater value ofl. The procedure
can then be run until the convergence ofθ. Dempsteret al. [10] showed that, given
an estimateθn of θ, a better estimateθn+1 can be produced by maximising:

Q(θn, θn+1) = E[ln(p(O,U|θn+1))|O, θn]

whereE is a conditional expectation over the distributionU . The two parts of the
algorithm are therefore theExpectationstep, in which this expectation is found, and
theMaximisationstep, in which a new parameterθn+1 that maximises it is deduced.

Let S ⊂ X∗ × Y ∗ be a multiset of pairs of strings6 (the learning (multi)set), let
Si = {x : (x, y) ∈ S} and letSo = {y : (x, y) ∈ S} the input and output
multisets. In the case of conditional transducer learning we are interested in finding
the parameters (θ) of the transducer that maximises the probability of the observed
multiset ofSo output strings provided theSi multiset of input strings. Then the
likelihood function to maximise is:

l(So, θ, Si) = ln(p(So|θ, Si)) = ln
∏

(x,y)∈S

p(y|θ, x)

with respect to the parameter vectorθ.

In the following, a path allowing us to transform an input into an output will be
represented by a stringz belonging to the setE∗. In other words, the stringz is the
sequence of the edit operations that have been iteratively used during the transfor-
mation. The set of all the pathsE∗ characterises then our unobservable data.

Givenz = (x1, y1) . . . (xn, yn) ∈ E∗, we say thatx is the input string ofz (noted
x = i(z)) iff x = x1 . . . xn. Note thatx is the concatenation ofn strings of length
smaller or equal to one, among them some can be the empty string ε. Therefore,
the length ofx is smaller or equal ton. Symmetrically, we say thaty is the output
string ofz (notedy = o(z)) iff y = y1 . . . yn.

On the following, given ae = (x, y) ∈ E and any functionf : E → R we are
going to denote indistinctlyf(e), f((x, y)) or f(y|x). Remember that we are using
the notationc(ε|ε) as a synonym ofγ, then we are going to use alsoc((ε, ε)) as a
synonym ofc(ε|ε).

6 Although in the following we are going to use the set notationfor multisets, we have to
take into account that multisets admit repetitions of theircomponents.
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Let (X, Y, c, γ) be a memoryless transducer and letz = (x1, y1) . . . (xn, yn) ∈ E∗,
then the conditional probability of the pathz is:

p(z|i(z)) =
n

∏

i=1

c(yi|xi)c(ε|ε) =
n

∏

i=1

c(zi)c((ε, ε))

For each input-output(x, y) pair, we define the path set as:

E(x, y) = {z ∈ E∗ : x = i(z), y = o(z)}

It is easy to see that

p(y|x) =
∑

z∈E(x,y)

p(z|x)

Given a multisetS ⊂ X∗ × Y ∗, we define the multiset

E(S) = ∪(x,y)∈SE(x, y)

In our case, theQ function can be written as:

Q(θn, θn+1) = E[ln(p(So, z|θn+1, Si))|So, θn, Si]

=
∑

z∈E∗

p(z|So, θn, Si) ln p(So, z|θn+1, Si)

asp(z|y, θn, x) = 0 if x 6= i(z) or y 6= o(z)

=
∑

z∈E(S)

p(z|o(z), θn, i(z)) ln p(o(z), z|θn+1, i(z))

=
∑

z∈E(S)

p(z|o(z), θn, i(z)) ln p(z|θn+1, i(z))

=
∑

z∈E(S)

p(z|o(z), θn, i(z))





|z|
∑

i=0

ln c(o(zi)|θn+1, i(zi)) + ln c(ε|θn+1, ε)





=
∑

e∈E

∑

zez′∈E(S)

p(zez′|o(zez′), θn, i(zez′)) ln c(e|θn+1)

+
∑

z∈E(S)

p(z|o(z), θn, i(z))c((ε, ε)|θn+1)

=
∑

e∈E

δ(c) ln c(e|θn+1) + |S| ln c((ε, ε)|θn+1)
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where

δ(e) =
∑

zez′∈E(S)

p(zez′|o(zez′), θn, i(zez′))

=
∑

zez′∈E(S)

p(o(zez′), zez′|θn, i(zez′))

p(o(zez′)|θn, i(zez′))

=
∑

zez′∈E(S)

p(zez′|θn, i(zez′))

p(o(zez′)|θn, i(zez′))

Giving

δ(b|a) =
∑

(xax′,yby′)∈S

α(y|x)c(b|a)β(y′|x′)γ

p(yby′|xax′)

δ(b|ε) =
∑

(xx′,yby′)∈S

α(y|x)c(b|ε)β(y′|x′)γ

p(yby′|xx′)

δ(ε|a) =
∑

(xax′,yy′)∈S

α(y|x)c(ε|a)β(y′|x′)γ

p(yy′|xax′)

as required.

Now we have to chooseθn+1 that minimises theQ(θn, θn+1) function with the
restrictions:

∑

b∈Y

c((a, b)|θn+1) +
∑

b∈Y

c((ε, b)|θn+1) + c((a, ε)|θn+1) = 1, ∀a ∈ X

∑

b∈Y

c((ε, b)| θn+1) + c((ε, ε)|θn+1) = 1

Using the Lagrange multipliers

L =
∑

e∈E

δ(e) ln c(e|θn+1) + |S| ln c((ε, ε)|θn+1)

−
∑

a∈X

µa





∑

b∈Y

c((a, b)|θn+1) +
∑

b∈Y

c((ε, b)|θn+1) + c((a, ε)|θn+1) − 1





− µ





∑

b∈Y

c((ε, b)|θn+1) + c((ε, ε)|θn+1) − 1




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Computing the derivatives and equating to zero we have:

c((a, b)|θn+1) =
δ((a, b))

µa

c((ε, b)|θn+1) =
δ((ε, b))

∑

a µa + µ

c((a, ε)|θn+1) =
δ((a, ε))

µa

c((ε, ε)|θn+1) =
|S|

µ

Substituting in the normalisation equation we obtain:

∑

b δ((ε, b))
∑

a µa + µ
+

∑

b δ((a, b))

µa

+
δ((a, ε))

µa

= 1, ∀a ∈ X
∑

b δ((ε, b))
∑

a µa + µ
+

|S|

µ
= 1

Now we have a system with|X|+ 1 equations and|X|+ 1 unknowns. It is easy to
see that

µ = |S|
N

N − N(ε)
µa = N(a)

N

N − N(ε)

with

N =
∑

e∈E

δ(e) + |S| N(ε) =
∑

b∈Y

δ((ε, b)) N(a) =
∑

b∈Y ∪{ε}

δ((a, b))

is a solution to the system.
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