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Real-time video communication secured by a chaotic

key stream cipher

G. Millerioux ∗ G. Bloch∗ J. M. Amigó† A. Bastos∗ F. Anstett∗

Abstract — An improvement of the chaotic inverse

system encryption approach is suggested by intro-

ducing piecewise linearities. The usual design pro-

cedure is adapted in order to achieve an Input In-

dependent Global Synchronization. Experiment of

the resulting chaotic key stream encryption setup is

conducted on a real-time video transmission. The

secrecy level is assessed through a linear cryptanal-

ysis.

1 INTRODUCTION

Chaos-based encryption is currently an active field
of research. Indeed, it is reasonable to think that
there is likely a connection between the random-
look behaviors exhibited by chaotic systems and
the required properties for cryptosystems, like con-
fusion and diffusion. Two chaos-based encryption
schemes can be distinguished. On one hand, sev-
eral works have focused on chaotic block encryp-
tion ciphers [1][2][3]. On the other hand, since the
works of Pecora and Carroll [4], many secure com-
munications schemes based on chaos synchroniza-
tion have been suggested. A pioneering work in-
volving a chaotic signal masking can be found in
[5]. Among many secure communications protocols
as chaotic switching, chaotic modulation, the in-
verse system approach presented in [6] has received
a considerable attention.
The objective of this paper is twofold. First, based
on a general equation of the encoder including ei-
ther linear or piecewise linear dynamics, a unified
analysis of existing message-embedding found in
the literature for encryption purposes is performed.
It is shown how the new theoretical results of [7][8]
might be useful to equally deal with linear and
piecewise linear dynamics while ensuring an Input
Independent Global Synchronization (IIGS) which
is a required property for inverse system approaches
(section 2). Secondly, from a practical point of
view, it is shown that the encryption can be in-
cluded in a real time video transmission protocol
over Internet and seems to be robust to linear crypt-
analysis attacks (section 3).

∗Centre de Recherche en Automatique de Nancy (CRAN,
CNRS UMR 7039), CRAN - ESSTIN, 2 Rue Jean Lamour
54500 Vandoeuvre-Les-Nancy (France). Corresponding au-
thor E-mail: millerioux@esstin.uhp-nancy.fr

†Miguel Hernandez University, Dept. of Statistics and
Applied Mathematics, Avda. del Ferrocarril s/n, 03202
Elche (Spain)

2 THE INVERSE SYSTEM APPROACH

2.1 Encoder side

Consider the general description of a switched
discrete-time encoder system :

xk+1 = Aixk + Ei + Biuk

yk = Cixk + Diuk
(1)

where xk ∈ R
n, yk ∈ R

m, uk ∈ R
m are respec-

tively the state, the output and the external in-
put. The state space R

n is partitioned into P dis-
tinct regions Ri with

⋃i=P

i=1
Ri ⊆ R

n. The matri-
ces Ai, Bi, Ci, Di, Ei are assigned with a one-to-one
correspondence to the region Ri visited by xk at the
discrete time k. In an encryption context, the out-
put yk consists of the transmitted signal and acts as
the ciphertext. The external input uk results from
an encoding function such that uk = e(xk,mk). mk

acts as the plaintext and it is assumed that e ad-
mits an inverse decoding function e−1 such that
mk = e−1(xk, uk). The piecewise linear configura-
tion will correspond to matrices Ai, . . . , Ei which
actually depend on index i whereas the linear con-
figuration will correspond to constant matrices in-
dependent from i.

In the following, a brief overview on the con-
nection between the general proposed encrypting
scheme and some usual ones encountered in the lit-
erature is carried out.
In the masking scheme reported in [9], uk is simply
added to the output of the chaotic system. This
scheme will be called output message embedded
and amounts to set Bi = 0 (case 1).
When uk is also injected in the dynamical equa-
tion of the chaotic system (Bi 6= 0), three distinct
cases are usually considered and will correspond
to dynamical/output message embedded schemes.
First, the works of [6][10] are related to the linear
configuration, where all the matrices are constant,
and Di = D = 1, meaning that the output is a
scalar signal (case 2). Secondly, uk may be mixed
to the state vector such that xk is replaced with
x̄k = xk+Miuk (Mi being a suitable so-called ”mix-
ing matrix”). In a linear configuration, substituting
xk by x̄k into (1) amounts to let Bi = B = AM ,
Di = D = CM with M a constant ”mixing ma-
trix”. It corresponds to the works of [11] (case 3).



Thirdly, a less restrictive situation is considered in
[12] or more recently in [8]. It corresponds to a
piecewise linear configuration and amounts to let
Bi = AiMi, Di = CiMi (case 4).
Finally, uk may only be injected on the dynamical
equation (dynamical message embedding) amount-
ing to let Di = 0. Such a situation is considered
in [13] for a linear configuration and extended to a
piecewise linear one in [7] (case 5).
The encoder (1) includes the so-called hybrid
chaotic encryption scheme described in [14]. It
combines a key-based nonlinear data encryption
with a chaotic communication. The message mk

is encrypted via a suitable function e using a key
stream xk but is not directly transmitted to the
receiver. Only a signal yk of dimension m < n is
accessible from the output such that the reconstruc-
tion of the key stream becomes more difficult for an
eavesdropper. It may prevent some attacks like the
ones given in [15][16].

2.2 Decoder side

The design of a decoder system aims at ensuring
that the respective state vectors xk and x̂k involved
in the state reconstruction error εk = xk−x̂k verify :

lim
k→∞

‖εk‖ = 0 ∀x̂0 and ∀uk (2)

When (2) holds, it is said that an Input Inde-
pendent Global Synchronization (IIGS) is achieved.
When designing the decoder, the above-considered
message embeddings must be distinguished into two
classes : the dynamical-output embeddings (case 1
to 4) and the dynamical embedding (case 5).

2.2.1 Dynamical/output embedding

For dynamical/output embedding, let the decoder
be described by :















x̂k+1 = Aix̂k + Ei + Li(yk − ŷk)
ŷk = Cix̂k

ûk = D−1

i (yk − ŷk)
m̂k = e−1(x̂k, ûk)

(3)

with Di assumed to be of full rank. Subtracting x̂k

of (3) from (1) yields :

εk+1 = (Ai − LiCi)εk + (Bi − LiDi)uk (4)

Let us analyse the cases for which (2), that is the
IIGS, may hold. As far as case 1 is concerned, tak-
ing into account (4) and Bi = 0, it is obvious that
εk cannot converge towards zero since neither Li

nor Di can be zero. A residual state reconstruction
error will always persist, preventing an exact recov-
ering of uk. Consequently (2) is never fulfilled.

As for the case 2 (linear configuration), owing to
D = 1, the second term in (4) vanishes provided
that L = B and (2) is fulfilled if the eigenvalues of
A − BC lie in the unit circle (discrete-time case).
Concerning the case 3, the second term turns into
(A − LC)Muk. In order to ensure the IIGS, L
can be computed such that A − LC is nilpotent
(discrete-time case only).
For the special case 4, owing to the presence of
piecewise linearities, (4) turns into :

εk+1 = (Ai − LiCi)εk + (Ai − LiCi)Miuk (5)

As a consequence, the pole assignment of case 3
does no longer hold. To handle such a problem, we
resort to the theoretical results of [8]. The design of
the encoder/decoder setup consists of the computa-
tion of the pairs (Li,Mi) according to Proposition
1.

Proposition 1 The encoder/decoder (1)-(3) are
IIGS and the plaintext mk is exactly recovered if the
gains Li and the mixing matrices Mi are such that:

1a) the null space N (Ai − LiCi) 6= ∅ and Mi ∈
N (Ai − LiCi),

1b) εk+1 = (Ai − LiCi)εk is globally stable.

For in-depth study and proofs, we refer the reader
to the above-cited paper. The sketch of the proof is
the following. If 1a) is satisfied, the second term of
(5) vanishes. Then, 1b) must be verified to achieve
global convergence of εk. It can be shown that those
conditions can be expressed in terms of Linear Ma-
trix Inequalities (LMI), the solutions from which
the Li’s (i = 1, . . . , P ) are derived. Global stability
is ensured by the existence of a special Lyapunov
function called Poly-quadratic Lyapunov function
[17].

2.2.2 Dynamical embedding

The dynamical embedding corresponds to the case
5 where uk does not explicitly appear in the output
equation (Di = 0). To cope with that special situ-
ation, the decoder iterative scheme must be modi-
fied. Let the decoder be now described by :















x̂k+1 = (PiAi − LiCi)x̂k + Liyk+
Qiyk+1 + PiEi

ûk = (CiBi)
−1(yk+1 − CiAix̂k − CiEi)

m̂k = e−1(x̂k, ûk)

(6)

with Pi = 1n − QiCi. The decoder gets the
structure of an Unknown Input Observer adapted
to the piecewise linear configuration.



Subtracting x̂k of (6) from (1) yields :

εk+1 = (PiAi − LiCi)εk + PiBiuk (7)

In order to ensure global convergence of (7) and
so the IIGS, theoretical results of [7] are used.
The design of the encoder/decoder setup consists
of the computation of the pairs (Li, Qi) according
to Proposition 2.

Proposition 2 The encoder/decoder (1)-(6) are
IIGS and the plaintext mk is exactly recovered if :

2a) PiBi = 0,

2b) εk+1 = (PiAi − LiCi)εk is globally stable.

The sketch of the proof is similar. If 2a) is sat-
isfied, the second term of (7) vanishes. Then, 2b)
achieves the global convergence of (7). It can also
be shown that those conditions can be expressed
in terms of LMI’s with Qi’s and Li’s as unknowns.
Again, global stability is ensured by the existence
of a Poly-quadratic Lyapunov function.

3 REAL-TIME PRIVATE COMMUNI-
CATION EXPERIMENT

3.1 Setup description

Figure 1: Decoder capture screen: matched keys

A chaotic encryption experiment is conducted
within a real-time video communication context.
For that purpose, a well-known GNU licensed
program for video transmission over Internet, VIC,

has been chosen. A video tape is connected to
a computer through the S-Video port of a Miro
Studio PCTV RaveTM card. Consequently, the
video tape data are dynamically captured by the
TV-Card and VIC manages the transmission pro-
tocol over Internet. The card has been configured
to work under Linux and is driven by the bttv and
video4linux drivers included in the VIC package.
VIC ’s default package contains an implementation
of DES cryptographic algorithm. However, it also
allows to introduce new cryptographic schemes.
We have chosen the encrypting scheme corre-
sponding to case 4. The well-known Second order
Markov Map has been considered as the chaos
generator. It induces a chaotic behavior which is
reckoned to get some good statistical properties
for encryption purposes. Here, the key is the
parameterization of the chaotic map. The design
of the encoder/decoder obeys the equations (1),
(3) and Proposition 1.
With the same key in both sides, the video is
correctly displayed in the receiver side with a bit
rate equaling 500 kB/sec which seems to be a
good result. A capture screen is shown in Figure
1. Using slightly different key parameters (up to
third decimal) in both sides of the communication
system, the bad decrypted image depicted on Fig-
ure 2 highlights the sensitivity to key parameters.

Figure 2: Decoder capture screen: mismatched keys



3.2 Robustness against linear cryptanalysis

In order to assess the level of secrecy of the encryp-
tion scheme, we resort to a linear cryptanalysis. For
a detailed description of such an attack, the reader
can for instance refer to [2]. However, a brief recall
is given. Denote by b[i] the ith bit of an l-bit long
block b. For a random sample of size N of plain-
texts u (binary blocks of l bits) and corresponding
ciphertexts y = eK(u) (K being the key), calculate
the values of the linear approximation

Zi1,...,ir,j1,...,js
= u[i1]⊕ ...⊕u[ir]⊕y[j1]⊕ ...⊕y[js]

with Zi1,...,ir,j1,...,js
∈ {0, 1} for different choices of

1 ≤ i1 < ... < ir ≤ l, 1 ≤ j1 < ... < js ≤ l. Let
N0 be the number of realizations Zi1,...,ir,j1,...,js

=
0 and define the bias of the linear approximation
Zi1,...,ir,j1,...,js

as
∣

∣

1

2
− N0

N

∣

∣. For good ciphers, the

bias converges to 2−
l+2

2 as N → 2l [20].
In spite of the fact that there exists a distinction be-
tween standard cryptography and chaotic cryptog-
raphy since the former involves reals instead of in-
tegers, after few adaptations, the biases of different
linear approximations have been estimated using
initial segments of orbits containing 30000 iterates
of u, each iterate being the encryption of the previ-
ous one. The numerical results were very promising
since |N0/30000 − 0.5| ≤ 0.01 in all cases, though
a more comprehensive analysis is still needed.

4 CONCLUDING REMARKS

Further works have to be pursued for assessing the
robustness of the proposed cryptosystem against
others standard attacks. However, a special point
is worth noting. Indeed, piecewise linearities are
likely to make more difficult the problems of iden-
tifiability, arising in plaintext encryption attacks as
reported in [19][18], or the problems of observabil-
ity for key stream reconstruction. And yet, identi-
fication or observation of switched systems is still
a problem under study indicating that piecewise
linear systems are likely to be good candidates for
encryption purposes.
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