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Chaotic Cryptosystems: Cryptanalysis and Identifiability

Floriane Anstett, Gilles Millerioux and Gérard Bloch*

Abstract

A general framework and a systematic methodology for
the cryptanalysis of a large class of chaotic cryptosystems
are proposed. More precisely, it is tested, a priori, during
the design stage, whether the parameters of a chaotic
cryptosystem may play the role of the secret key or not.
Robustness against brute force attacks is first considered.
A connection between uniqueness in the parameters and
identifiability is pointed out. Two approaches, the outputs
equality approach and the input/output relation approach,
are presented to test the identifiability of the system
parameters. The second approach is constructive in the
sense that not only it allows to conclude on the identifia-
bility of the parameters but it also provides a systematic
technique to retrieve the parameters in the context of a
known plaintext attack. It is shown that cryptosystems
involving polynomial nonlinearities, chaotic or not, are
weak against this attack, called algebraic attack.

Keywords: Chaotic cryptosystems, cryptanalysis,
identifiability, brute force attack, known plaintext attack,
algebraic attack

1 Introduction

Chaotic behavior is one of the most complex dynamics
a nonlinear system can exhibit. Because the signals
resulting from chaotic systems are broadband, noiselike,
difficult to predict, the idea of using chaotic systems for
information masking has received much attention since
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the pioneering work of [1]. The proposed communication
schemes involve a chaotic transmitter system and a
receiver system. The transmitter input is the informa-
tion to be masked, the plaintext, and its output is the
encrypted information, the ciphertext, conveyed to the
receiver. Several methods for “hiding” an information
signal into a chaotic signal have been proposed in the
literature. An overview can be found according to the
chronology in [2][3][4][5] including the chaotic masking,
the chaotic switching, the parameter modulation, the
message embedding. These methods are defined either
for continuous-time or discrete-time systems. In general,
the decryption mechanism requires the synchronization
between the transmitter and the receiver.

An essential issue for the validation of cryptosystems
is the cryptanalysis, that is the study of attacks against
cryptographic schemes in order to reveal their possible
weakness. A fundamental assumption in cryptanalysis,
first stated by A. Kerkhoff in 1883 [6], is that the adver-
sary knows all the details of the cryptosystem, including
the algorithm and its implementation, except the secret
key, on which the security of the cryptosystem must be
entirely based. As for chaotic cryptosystems, the system
parameters play a central role because they are expected
to act as the secret key.

One of the problems of great importance related to
this issue is the parameters recovering. In the related
literature, the Kerkhoff assumption is formulated and a
known plaintext attack, where an information sequence
(plaintext) and the corresponding output sequence (ci-
phertext) are known, is considered. In [7] [8] [9] and
[10], the parametric cryptanalysis of different usual
schemes based on chaotic systems (Lorenz, Rossler, ...)
is proposed. It is shown that the considered encryption
schemes are not sufficiently sensitive to parameter



mismatch. In fact, synchronization for decryption can be
achieved despite the parameter mismatch. This reduces
the set of all possible key values and reducing this key
space increases the chance for the adversary to find the
actual key value. The proposed “error function attack”
consists in trying a key in the reduced key space and
in computing the difference between the output of the
actual system and the output of the candidate system,
both of them being forced by the same plaintext. If the
difference converges to zero, the actual key is recovered.
The reconstruction of the system parameters can be
refined by resorting to adaptive techniques [11] [12] [13]
[14] [15] [16]. The basic idea is to adaptively adjust
the parameters to achieve synchronization with remote
chaotic systems. A somewhat different method can be
found in [17] [18] where a chosen ciphertext attack is
considered. For such an attack, the adversary is assumed
to control the input of the receiver, the ciphertext, and to
analyze the corresponding plaintext sequence. It is shown
that the parameters can be reconstructed by solving a set
of algebraic equations. Finally, in [19], another approach
for the parameter recovering has been investigated for
an encryption scheme involving a Lorenz system. The
chaotic system is transformed, by eliminating the state
variables, into a system depending only on the infor-
mation, the output, their derivatives and the parameters.
The resulting system is solved in the parameters. This
approach has been also applied to a chaotic cryptosystem
based on the Henon map, in [20] and has been extended
to a class of chaotic discrete-time systems in [21]. In this
case, the derivatives are replaced by the iterates.

All these works deal with some identification tech-
niques for reconstructing the parameters and most often
on some special cases. In this paper, we propose a general
framework and a systematic methodology for the crypt-
analysis of a large class of chaotic cryptosystems. More
precisely, it is tested, a priori, whether the parameters of
a chaotic cryptosystem may play the role of the secret
key or not. A connection between uniqueness in the
secret parameters and identifiability is pointed out. Very
few works have established this connection, except for
the study in [23]. Some preliminary results have been
presented in [24]. Unlike most of the studies encountered
in the literature, the proposed test applies during the
design stage. Besides, the methodology provided in this

paper is independent of the approach one may resort to
reconstruct the parameters (adaptive, ...).

The paper is organized as follows. In Section 2, a con-
nection between uniqueness in the secret parameters and
identifiability is pointed out. Two approaches, the outputs
equality approach and the input/output relation approach,
are presented to test the identifiability of the system pa-
rameters. Then, in Section 3, a cryptanalytic procedure,
based on the identifiability concept, is carried out on some
specific examples. It is shown that cryptosystems with
polynomial nonlinearities are unfortunately weak against
known plaintext attacks. Throughout the manuscript, we
only consider discrete-time systems but the results still
hold in the continuous case.

2 Problem statement and Identifia-
bility
2.1 Problem statement

Among the different usual methods for hiding an infor-
mation, additive masking, chaotic switching, parameter
modulation, message embedding, we focuse on the last
one because all the results given here can be easily
transposed to the others.

We recall the message embedding scheme, in the
discrete-time case, which involves the transmitter system
Yo given by the general form:

Jo (xi,my)

Yo { X+l =

Yoo = helx,[m])
where x;, € 2 C R" is the state vector, y, € % C R the
measured, and so available, output, m; € .#Z C R the
information signal, fg is a nonlinear chaotic function and
hg a (possibly) nonlinear function, both parameterized by
6,06 =[00, .. 600 c®cRE, the parameter vector.
The most common nonlinearities fy are of polynomial
type (Henon map [25], Logistic map [26], Mandelbrot
map [27], Arnold’s cat map [28], ...). [my] means that
hg can depend on my but not necessary. The initial
condition of x; will be denoted xy. At the receiver side,
the information recovering requires a synchronization
mechanism. Details of chaos-based synchronization are

ey



described in [29] [30].

Having in mind the encryption purposes, we only
consider the practical case where the system Xy has a
single input m; and a single output y; but the following
results can be extended to the case of multiple inputs and
multiple outputs.

We assume that the cryptosystem must face the most
basic attack, i.e. the brute force attack. This attack
consists in trying exhaustively every possible parameter
value in the parameter space (which is in practice a
finite space), in order to retrieve the secret key [31].
The brute force attack is the most expensive one, owing
to the exhaustive search. The quicker the brute force
attack succeeds, the weaker the cryptosystem is. The
worst situation for the eavesdropper, and the best for the
security, is that there exists a unique solution. In this case,
the probability of finding the actual parameter value is
the lowest. The key idea is that the uniqueness of the pa-
rameters is directly linked to the parametric identifiability
concept [32]. Some basic backgrounds are recalled below.

2.2 Identifiability

The following definitions are borrowed from [33].

Definition 1 An input sequence over a window of itera-
tions [0 — T, denoted by {my}1, is called an admissible
input on [0 — T if the difference equation (1) admits a
unique local solution.

Definition 2 The system Yg is locally strongly xo-
identifiable ar 0 through the admissible input sequence
{m}Y if there exists an open neighborhood of 0, v(6) C
©, such that for any 6 € v(8) and for any 6 € v(6):

9759 = {yk(x()?mkvé)}g#{Yk(xo»mbe)}g
(2)

Definition 3 The system Yg is structurally identifiable
if there exist T > 0, an open subset Zy C X and some
dense subsets v(0) C © and ///0T C M, such that, for
every xo € Zo, 6 € v(0) and {mk}g € ///J, the system

Yo is locally strongly xg-identifiable at 0 through the
admissible input sequence {my}?.

In the following, we will equally say that the system or
its parameters are structurally identifiable.

Remark 1 In the definitions above, the subset Zy is
open in order to avoid considering an atypical set of zero
measure which leads to singularities and where no con-
clusion about identifiability is possible. Moreover, these
definitions are given for the initial condition taken at the
particular time step k = 0. However, we can consider any
time step k because the system (1) is shift-invariant.

Remark 2 The Definition 3 is a direct discrete-time
counterpart of that of the structural identifiability of
continuous-time systems, given in [34] and is equivalent
to the definition of rational identifiability of [35].

To test the identifiability of system parameters, two
approaches, the outputs equality approach and the in-
put/output relation approach can be performed.

2.3 Outputs Equality Approach

The outputs equality approach is directly based on Defi-
nition 3. The trajectories y;(6) contain information about
the unknown parameter vector 6. The approach consists
in testing whether the equality of the output trajectories
of systems Xg and X, over an iteration window [0 — T,
implies the equality of the parameter vectors 8 and 6.
So, the following theorem states a sufficient condition for
structural identifiability of system (1).

Theorem 1 The system Xg (1) is structurally identifiable
if the set of equations:

{yx (x0,my, 0)}5 = {yi(xo,my, 0)}]

has a unique solution for 0, that is 6 = .

(€)

The proof is a direct consequence of the implication (2).



Remark 3 In the case of continuous-time systems, this
approach is formulated as the Taylor series expansion
approach [36]. To test their equality, the output trajecto-
ries are approximated by their Taylor series expansions,
whose coefficients are unique and contain information
about the parameters. The aim is then to test whether the
equality of the coefficients of the Taylor series expansions
implies the equality of the parameter vectors 0 and 6 or
not.

Remark 4 T is a positive integer and represents the
number of iterations required to prove that (3) = 6=6.
If T goes to infinity and the previous relation cannot be
proved, no conclusion on structural identifiability can be
given. As T is unknown a priori, Theorem 1 is only a
sufficient condition of structural identifiability.

Besides, to recover 6, Theorem 1 requires the knowledge
of the initial condition. Actually, to test the structural
identifiability, there exists another method which is inde-
pendent of the initial condition : the input/output relation
approach, detailed in the next section.

2.4 Input/Output Relation Approach

The following theorem is a discrete-time counterpart of
the theorem given in [34] for continuous-time systems.
It formulates a necessary and sufficient condition for the
parametric structural identifiability.

Theorem 2 The system Lo (1) is structurally identifiable
if and only if there exists two integers N < o and N < oo
such that the equations (1) can be rearranged in a linear
regression such that, for i = 1,...,L (L is the dimension
of the parameter vector):

Pi(yk7'~'7yk+N7mk7'"amk_HV,)e(i) (4)

—Qi()’k7 co oy VAN My - - ’karN/) =0
where P; and Q; are functions depending only on yi, my
and on their iterates.

If Theorem 2 holds, it is clear that every parameter 6()
can be written as:

Qi()’k»---7)’k+N7mk7--->mk+N’)

ol) =
})i(yky' <oy k4N My - - 7mk+N/)

(&)

unless P, vanishes. The condition P; # 0 is called the
persistent excitation (PE) condition. The set of values
of yr and my corresponding to P, = 0 is a set of zero
measure, in general. This set of zero measure is omitted
because we only consider the set of admissible inputs
(Definition 1).

To obtain (4), we must first eliminate the variable x; and
its iterates in (1), considered as indeterminates. That leads
to a relation depending only on the parameter vector 0,
the output yg, the input my and their iterates, called the
input/output relation:

(6)

where s is the observability index of the system (1) [37]
ands <s.

fl(G,yk,...,ykJrs,mk,...,mkH/) =0

Important remarks: It is worth pointing out that

this approach is constructive. It allows not only to con-
clude on the parameter identifiability but also provides
a way for retrieving the parameters in the context of a
known plaintext attack. Indeed, regarding (5), both the
input and the output must be known.
For chaotic cryptosystems involving polynomial nonlin-
earities, the functions P; and Q; in (4) are polynomials
and (5) can be easily obtained. As a result, the chaotic
cryptosystems involving polynomial nonlinearities can
be always easily broken and that reveals their weakness.
The corresponding attack is called a known plaintext
algebraic attack.

In the following, two approaches for the state elimi-
nation, the Grobner bases approach and the characteristic
set approach, dedicated to polynomial nonlinearities, are
presented.

2.4.1 Grobner bases approach

The method of the Grobner bases is borrowed from the
algebra. The first algorithm of this type is due to [38]



and has been first applied for identifiability purposes
by [34] in the case of continuous-time systems. Some
notions of differential algebra can be found in [39] for
continuous-time systems. However, they can equally be
defined with the derivative operator (continuous-time
case) or with the delay operator (discrete-time case).
Some recalls in the case of discrete-time systems are
carried out below.

Consider a system Yg of the polynomial ring, de-

noted by A = R[x,(:), . ,x,({m] where the indeterminates
are the state vector components, x,((l),...,x,@, and the

coefficients are real numbers.

Definition 4 Arn ideal of A is a subset I of A, such that,
for polynomials p and q:

e VpelVgqel, p+qel
e Vpel,Vge A pgel

For the system Xg (1) with polynomial nonlinearities, the
ideal I C A is the set of all the linear combinations of
equations (1) and their iterates.

Definition 5 A lexicographic order is a ranking accord-
ing to the names of the variables and their iterates such
that:

° x,ii) < x,((ill, VieN,

(i)

i
® X

< xjj) =A< x}f{, VmeN,VIEN, V€N,

o ) <X = (e <« (V)B va e N, VB €N
To obtain (6), the variables of (1) to be eliminated are
considered as the greatest.
If a given pair (my,yy) satisfies (1), it will also sat-

isfy the equations obtained by addition, multiplication
and iteration of (1), that are the equations of the ideal

associated to (1). For a given lexicographic order, it then
suffices to find a basis of this ideal such that one expres-
sion of the basis does no longer contain the variables xy,
but only yy, my, their iterates and 6. This expression is of
the form (6). Such a basis is called a Grobner basis. A
more formal definition of the Grobner bases can be found
in [38] and a theorem of variable elimination based on
this method is detailed in [40].

Another way of eliminating the state vector x; in
(1) to obtain the relation (6) is called the characteristic set
approach and is detailed in the next section.

2.4.2 Characteristic set approach

The theory of the characteristic set was introduced by
Ritt [41]. Before explaining what is a characteristic set,
the following definitions are required.

Definition 6 Given a lexicographic order and a polyno-
mial p € A, the leader of the polynomial p is the highest
ranked iterate of the variables appearing in p.

Definition 7 A polynomial A; is reduced with respect to
a polynomial A; if A; contains neither the leader of A;
with equal or greater algebraic degree, nor its iterates. A
set of polynomials A = {Ay,...,A;} that are all reduced
with respect to each other is called an autoreduced set.

Two autoreduced sets, A = {A},As,...,A,} and B =
{B1,B3,...,By}, ordered in increasing rank with respect
to their leaders sothat A} <A; <...<A,,B1<By<...<
By, are ranked according to the following principle:

e If there exists an integer /, I < min(r,m) such
that rank(A;)=rank(B;) for i = 1,...,] — 1 and
rank(A;)<rank(B;), then A is of lower rank than B.

e If r < m and rank(A;)=rank(B;) fori =1,...,r, then
A is also of lower rank than B.

Definition 8 A lowest rank autoreduced set that can
be formed with polynomials belonging to a given set of



polynomials is called a characteristic set.

The characteristic set of system (1) is of the triangular
form:

Al(yka' oy Yiets My - - - 7mk+s/79(1)a .- 76(L))
1
AZ(ykw ey YVits s My oo ’kars/’G(l)’ .. '76(L)7xk )) =0

A,1+1(yk,...,yk+s,mk,...,mkﬂ/,ﬂ(l),...,O(L),xlgl),...
=0

(N
The relation A; = O represents the input/output relation
(6).
Note that each component x,((’) of the state vector
can also be expressed from {As,...,A,+1}, as a function
only depending on the input, the output, their iterates
and the parameters. This is due to the triangular form
of (7). So, the initial condition x; can be deduced from

{A27"' aAIH-l}'

2.4.3 Summary

The proposed method is summed up by the following
steps.

e The system (1) is iterated s times, where s is the ob-
servability index of system (1). Usually, s is equal to
the dimension n of the system.

e The Grobner bases or the characteristic set associ-
ated to the system (1) and its iterates is computed
in order to obtain the input/output relation (6). This
can be achieved with symbolic computation software
(Maxima, Maple, ...).

e The input/output relation (6) is iterated up to the di-
mension L of the parameter vector, in order to get as
much equations as unknowns:

gl(eaykv"'ayk-‘rsvmka s 7mk+sl) =0
ZL(evy/H»Lflv" <y Yk+N M- L—15 - - - ’mk+N/) =0

3
where Niss+L—1 and N <N.

e From (8), we check if the relations (4) or equiva-
lently (5) can be obtained for every parameter.

The proposed method can be extended for the continuous-
time systems. In this case, we consider the derivatives
instead of the iterates.

3 Parametric cryptanalysis

In this section, the parametric cryptanalysis of usual
chaotic discrete-time cryptosystems involving polyno-
mial nonlinearities is carried out through the concept of
identifiability. The context, given at the beginning of the
paper, is briefly recalled.

It is tested, a priori, during the design stage, whether the
parameters of a chaotic cryptosystem may play the role of
the secret key or not. It is assumed that the eavesdropper
is supposed to know the structure of the system and
the signal y;, as usual in cryptography [6]. It is tested
whether the cryptosystem to be designed is able to face
two kinds of attacks.

The first attack to face is the brute force attack which
consists in trying exhaustively every possible value for
the parameters. For assessing the security in this context,
we check if the parameters are identifiable, i.e. a given
input/output behavior corresponds to a unique value for
the parameters. This situation is the best for the security
of the cryptosystem as previously pointed out.

The second attack to face is the known plaintext attack
where the eavesdropper chooses a sequence {my;} and
analyzes the corresponding sequence {yy}. For assessing
the security in this context, we check if the parameters
can be easily recovered by the input/output relation
approach. This approach corresponds to an algebraic
attack.

These distinct attacks along with the two approaches,
namely, the outputs equality approach and the in-
put/output relation approach, are illustrated through two
examples.



3.1 Example 1

Consider the message embedding scheme (1) where the
information m; is embedded in the Henon map [25]:

S 9(')(x,((1))2+9(2)x,((2)+mk

g1
2= 00 oW, ©)
w o= x

In this example, the structural identifiability of the pa-
rameter vector [0(1) 0 9G)  9W]T (L = 4) is only
treated through the input/output relation approach where
the state is eliminated with the Grobner bases approach.
Since x,(cz) is not directly transmitted through the signal
Yk, it is chosen to be the greatest and the corresponding
lexicographic order is:

®n _ .M (1) @ _.® @)

X <Xy <X <X <oy <xg, o (10)

It can be shown that the observability index of system (9)
is equal to the dimension of the system, n = 2.

For obtaining the input/output relation, that is .2} = 0, the
system (9) is first iterated twice:

x,(<1+)1 - 9(1>()c,((1))2 9(2)x]((2) m =0
1 1 2
x1(<+)2 - 9(1>(x,((+)1)2 - 9(2>x,(( )1 —myy1 =0
x,(i)l — 9(3>x,((1) — 6(4)mk =0
A2 00 —0@Wm,, =0 (11)
_ () 0
Y =X, " =
1
Yi+1 _x]((_gl =0
1
Yie+2 _x]((_gz =0
The software Maxima, available for free at
http://maxima.sourceforge.net, computes,

with the function poly_buchberger, the Grobner
basis of the ideal associated to system (11), with the
lexicographic order (10). One of the Grobner basis
expressions is the input/output relation (6):

0Wye,, + 00y —yi o +mig s +6020Wm =0
(12)
The others expressions of the basis are useless for our
purpose since they involve the state vector. Then, the in-
put/output relation (12) is iterated L — 1 = 3 times and
yields % =0, 45 = 0 and % = 0, respectively:

9<1>y%+2 + 6(2)9(3))’k+1 — YVk+3 + M2+ 9(2)9<4)mk+1 =0
9<])yi+3 +0@00)y 15— yiia+mpy3+0@0®my 5 =0
0Wy?  +0@00)y 3 —yiis+ma+60200m 3=0

—
o

2

(13)
From the set of equations (12) and (13), it can be shown,
for example by using the function solve of Maxima, that
the relation (4) is only fulfilled for CION

Pi(Vis -Vt 5s My« -y y2) 1)

14
7Q1(yk7'"ayk+55mk7"'amk+4):O ( )

with:

Pl (yk7 ceo oy VA5, My - - 7mk+4) =

_ 2 + 2 + 3 _ 2
mk)’k+£yk+3 mk+l)’kyk3+3 M Yiio = M2V Yi12

=M 1Y 1 Yh+2 T M2y

O1 (ks -+ s Ykt 5, My -+ s My 4) =
= ks 1 (mg (Vg a — My3) + g 1mi42)
Yk (i1 (Micy 3 = Yrra) +mi2yiss —m3 )

V2 (M (Mg 2 — Yir3) — Micy2Yier — m;%H )+ mk+1y1%+2)
15)
So, only 61 is identifiable and thus could play the role of
the secret key in the context of brute force attack. At the
opposite, since there exist at least numerous pairs (62,
60)) or (812, 6*)) verifying the relations (12) and (13),
the parameters 6(2), 03 and 6™ are unidentifiable and
cannot play the role of the secret key.
As stressed in the important remarks in Section 2.4, ac-
cording to (5) and here (14), it is clear that, performing a
known plaintext attack, the parameter 8(!) can be easily
reconstructed with P; and Q; in (15). Hence, 61 cannot
finally play the role of the secret key.
As a result, this cryptosystem will be weak against a
known plaintext attack.

3.2 Example 2

Consider the message embedding scheme (1) where the
information my, is embedded in the Burgers map [42]:

x,(;r)l = (1+ 9(1)))6,((1) —|—x,<{1)x,(<2) + my,

D= (1-0@)? — ()2, (16)
1

Xkt+1
Yk = X



The initial condition is xo = [x(()l) x(<)2>}T.

In the following, the structural identifiability of the pa-
rameter vector [0(") 03] (L =2) is tested respectively
with the outputs equality and the input/output relation
approach.

3.2.1 Outputs Equality Approach

The values of the output trajectory {yx(xo,my,6)}] are
denoted for short by y(0). One has:

¥0(6) = xy”
1(8) = (140t + x4 my

2(8) = (1+0M)((1 4+ 0W)xM -+ x{x8 4 mg)

(1= 000 — (3 mo) (146
+x(()1)x82) +mg) +my
(17)
The condition (3) gives here:
y0(0) =y(8) = ! =xV (18)
() =y(6) = BV -0V =0 (19

+(2600 —20() — ()92 L g(Hg(2)

+62 -6 )xél)xé2>

+(6@ — 0@ (V)2

(61— M) (3 mo

—(6W —oMymy

_(9(2)_9(2))x(()2)m020

(20

(18) is trivial and always fulfilled. Assuming

that x(()l) # 0 and xéz) # 0 respectively, (19) leads to
() = () and then, (20) leads to 6@ = 6. As a
result, Theorem 1 is fulfilled for 7 = 2. Consequently,
the parameters 61 and 6 are structurally identifiable.

Note that x(()l) =0and xéz) = 0 is a zero measure (x((Jl) =0

and xéz) = 0 do not belong to Z)) that leads to a singu-

larity and no conclusion about parametric identifiability
is possible.

Besides, to retrieve the parameters from system (17), the
initial condition xq is needed. The input/output relation
approach, independent of the initial condition, is applied
in the following.

3.2.2 Input/Output Relation Approach

For obtaining the input/output relation, that is .Z} = 0, the
system (16) is first iterated up to its observability index
that is also its dimension (s = n = 2):

)c,i+1 -1+ 9<1))x,((]) —x,((l)x,(cz) —my =0

xlgz -1+ 9?)%%1 _x%1§1gr)1 — My =0

x,<(2+)1 —(1— 9<2))x,((2> + (ka) n;k =0

K42 _(1()1 — 6! ))xk+1 + (1) M1 =0 21
Ye—X, " = 0

Yk+1 —x,((lJr)l =0

YVie+2 —x,((lﬁ2 =0

The state x,iz) is not directly transmitted through yy.

Hence, x,(cz) is chosen to be the greatest in the following
lexicographic ranking:

) (D) (1) @ _.® (2)

(1
X <xply <xpl, <x7<xy <x, (22)

Grobner bases approach

The software Maxima computes, with the function
poly buchberger, the Grobner basis of the ideal as-
sociated to (21), with the lexicographic order (22). One of
the Grobner basis expressions is the input/output relation
2 1= 0:

0WO@yy 1+ 03 (=32 + yivkr1 +miyes1)
=Yk 2Yk + Vi1 = ViVkt 1Mk — MYkt + My 1k =0
(23)
The other expressions of the basis are useless for our pur-
pose since they involve the state vector. Then, the in-



put/output relation (23) is iterated and yields % =

0Oy 1yisa + 0P (—y2 5 + Vs 1kt2 + Mk 1k42)
—Yk+3Vk+1 T y%+2 - yz+1yk+2mk+1 — Mg 1Vk+2
+mp2Yk+1 =0
(24
(23) and (24) can be rewritten in the form (4) for every
parameter. Indeed, the function solve of Maxima com-
putes successfully:

o) — 10k Vi3, Mk, M)
Pr(Vks ooy Ykt 3s Mgy -, M4 2)
(25)
0(2) — Qz(yky'-'7yk+3amk7"'7mk+2)
Poy(Yky ooy Ykt 3: My, My 2)
with:
PL(Vies - s Va3, My« - o, Myg2) =

ViV es 143 — 2V 1Vern + (M 1YkVesy + Vi
—(myyp + m)ye, g + (2mit — M) yiyie1)Vie2

Q

l(ykv ayk+3amk7~"amk+2):

3 2 3
Yier — O+ mk)ka Vi3 = YiVeso
+((2y — mkyk)yk+1 + 2mi1Yk) Vs
+(mk+1yk+1 (M1 yx + mymy g )y§+ 1
+(
+(

—

3
, — Yi+1
meys — My +m)ye, |+ (mgmes1y; )

My — 2Mp 1)V + MM 2) Vi 1 — Mig, k) Vk+2

Py (Vi ooy Ykt 35 Mk, o MYg2) =
kai+z + (_yl%JrI + MYk 1 — M1 k) Vi+2

QZ(yka ey Y43, Mey - - 7mk+2) =
—(VhVket 143 — 290742 + (M 1905741 + it
—(miy +mi)yie1 + (2mpsy — mi2)ye)yes2)
(26)
Thus, Theorem 2 is fulfilled and 6(!) and 6 are
structurally identifiable.

Characteristic set approach
The set of polynomials defining system (16) are:

B = x = (1400 —xVaf
By = = (1= — (VP @D
B3 = yk_xkl

with respect to Bs.

According to the lexicographic order (22), the leader of

)

By is x;”, the leader of B; is x,(jr)l and the leader of B3

(1

is x; *. To compute the characteristic set, polynomials B
and B; must be reduced with respect to polynomial B3. It
gives:
2
B = Y1 —(1+0W)y —ykx,(( ) —my
B, = x,(jr)l —(1— 9<2))x,(€2) — yimy, (28)
a
By = yi—x;

The leader of Bj is x,(cz) and the state x,((l) or its iterates

does no longer appear in B;. Consequently, B; is reduced

The leader of B is still x\. As

(1)

the state x; ’ and its iterates do not appear in By, Bj is
reduced with respect to Bz. However, polynomial B, must
be reduced with respect to B;. It leads to:

B = yk+1*(1+9(1))yk*ykxl(<2)*m
B, = 010y +6? (=Yhay YKkt +Miyest)
—YVk+2Yk + y%_‘_l - yzyk+1 My — M Y41 + Mi- 1Yk
By = w _xkl
(29)

The leader of B, is now yy». It is reduced with respect
to By. The polynomials By, B, and B3 are all autoreduced
and the characteristic set is given by:

Al(yk7yk+17yk+27mk7mk+l7mk+259( >a9( )) BZ
=00y +9< (=2, + Ykt + miyest)
—Vk+2Yk + y,%H kak+1mk — My Yk+1 + My 1Yk

AZ(Yk7Yk+17)’k+2amk7mk+l7mk+2a 9(1)a0(2>7x]((1)) :B3
:yk—x;(:)
A3(yk7yk+17yk+27mkamk+l7mk+27 9(1>a 0(2)7x]((1)7x](<2)) = Bl
2
= a1 — (1+0W)y; *ka,({ )
(30)

In the characteristic set (30), A; = O represents the
input/output relation and is identical to (23) given by
the Grobner basis approach.
fulfilled and the parameters 6(") and 6 are structurally
identifiable.

Hence, Theorem 2 is



In the context of brute force attack, since the pa-
rameters 0(1) and 0 are identifiable, they could play
the role of the secret key.

However, it is clear that, performing a known plaintext
attack, the parameters 6" and 6 can be easily recon-
structed. Hence, this cryptosystem is weak against known
plaintext algebraic attack.

4 Conclusion

In this paper, a general framework based on identifia-
bility for the cryptanalysis of a large class of chaotic
cryptosystems is proposed. More precisely, it is pro-
vided a systematic methodology to test, a priori, during
the design stage, whether the parameters of a chaotic
cryptosystem may play the role of the secret key or not.
From a cryptanalysis point of view, this paper leads to the
following conclusions.

Firstly, if the parameter vector of the transmitter is
identifiable, it is more difficult for the eavesdropper
to find it by a brute force attack (exhaustive search).
Consequently, this parameter vector may be a good
candidate to play the role of the secret key against a brute
force attack.

If the parameter vector is not identifiable, the eaves-
dropper has a higher favorable chance to find it by a
brute force attack. Thus, this parameter vector is a bad
candidate to play the role of the secret key against a brute
force attack.

Secondly, if the parameters are identifiable, which
is a necessary condition for the security against brute
force attack, an explicit form of each parameter can be
established. For cryptosystems involving polynomial
nonlinearities, the parameters can be easily retrieved by a
known plaintext attack.

As a consequence, all these cryptosystems are weak
against algebraic attacks. Let us point out that this
weakness is independent of the motion exhibited by
the system, chaotic or not. All these results can be
easily extended to the case of continuous-time chaotic
systems and can be transposed to the other usual methods
for hiding an information, additive masking, chaotic
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switching and parameter modulation.
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