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Navier-Stokes regularization of multidimensional Euler

shocks

Olivier Guès∗, Guy Métivier†, Mark Williams‡, Kevin Zumbrun§

December 6, 2005

Abstract

We establish existence and stability of multidimensional shock fronts in the van-
ishing viscosity limit for a general class of conservation laws with “real”, or partially
parabolic, viscosity including the Navier–Stokes equations of compressible gas dynamics
with standard or van der Waals-type equation of state. More precisely, given a curved
Lax shock solution u0 of the corresponding inviscid equations for which (i) each of the
associated planar shocks tangent to the shock front possesses a smooth viscous profile
and (ii) each of these viscous profiles satisfies a uniform spectral stability condition
expressed in terms of an Evans function, we construct nearby smooth viscous shock
solutions uǫ of the viscous equations converging to u0 as viscosity ǫ→ 0, and establish
for these sharp linearized stability estimates generalizing those of Majda in the inviscid
case. Conditions (i)–(ii) hold always for shock waves of sufficiently small amplitude,
but in general may fail for large amplitudes.

We treat the viscous shock problem considered here as a representative of a larger
class of multidimensional boundary problems arising in the study of viscous fluids,
characterized by sharp spectral conditions rather than symmetry hypotheses, which
can be analyzed by Kreiss-type symmetrizers.

Compared to the strictly parabolic (artificial viscosity) case, the main new features
of the analysis appear in the high frequency estimates for the linearized problem. In
that regime we use frequency-dependent conjugators to decouple parabolic components
that are smoothed from hyperbolic components (like density in Navier-Stokes) that are
not. The construction of the conjugators and the subsequent estimates depend on a
careful spectral analysis of the linearized operator.

Nous démontrons l’existence et la stabilité d’ondes de chocs multidimensionnelles
à viscosité évanescente pour une classe générale de systèmes de lois de conservation
partiellement paraboliques possédant une viscosité ”réaliste”, et incluant le système des
équations de Navier-Stokes de la dynamique des gaz compressibles pour une équation
d’état standard ou de type Van der Vaals. Plus précisémment, étant donnée une solu-
tion onde de choc u0 du système hyperbolique sans viscosité pour laquelle (i) chaque
choc plan tangent admet un profil de choc visqueux et (ii) chacun de ces profils de chocs
satisfait une hypothèse spectrale de stabilité uniforme formulée en termes de fonction
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d’Evans, nous contruisons une famille de solutions uε du problème visqueux qui conver-
gent vers u0 lorsque la viscosité ε → 0. Nous établissons pour celles-ci des estimations
linéarisées optimales qui généralisent les estimations obtenues par Majda dans le cas
des ondes de choc sans viscosité. Les conditions (i) et (ii) sont toujours satisfaites pour
des ondes de chocs d’amplitude suffisamment petite, mais peuvent ne pas l’être pour
des chocs de grande amplitude.

Notre approche du problème de la stabilité des chocs visqueux est représentative
d’une classe de problèmes aux limites multidimensionnels apparaissant en mécanique
des fluides, qui sont caractérisés par des hypothèses de stabilité spectrales (plutot
que par des hypothèses de symétrie) et dont l’analyse s’effectue par des méthodes de
”symétriseurs de Kreiss”.

Par rapport au cas strictement parabolique (viscosité artificielle), les plus impor-
tantes nouveautés de l’analyse apparaissent dans les estimations à hautes fréquences
pour le problème linéarisé. Dans ce régime, on introduit des matrices de conjugaison
dépendant des variables de fréquence afin de découpler les composantes ”paraboliques”
qui sont régularisées, de celles ”hyperboliques” qui ne le sont pas (comme la densité
dans Navier-Stokes). La construction de ces matrices et l’obtention des estimations
correspondantes nécessitent une analyse spectrale soignée de l’opérateur linéarisé.

1 Introduction

A number of equations in continuum mechanics may be written as viscous, or second-order
perturbations

(1.1) ∂tf0(u
ε) +

d∑

j=1

∂jfj(u
ε) − ε

d∑

j,k=1

∂j
(
Bj,k(u

ε)∂ku
ε
)

= 0

of first-order systems of hyperbolic conservation laws

(1.2) ∂tf0(u) +

d∑

j=1

∂jfj(u) = 0,

where u, f j ∈ RN , Bj,k ∈ RN×N . Here the second-order Bj,k terms model transport
effects such as viscosity and heat, magnetic, or electric conduction, while the coefficient ε
is a dimensionless parameter depending on the length and time scales under consideration.
The main examples that we have in mind are the Navier–Stokes and Euler equations of
compressible gas dynamics, which have forms (1.1) and (1.2), respectively. In general, we
will refer to Bj,k terms as (generalized) viscosity terms, and 1

ε as a (generalized) Reynolds
number. See Part 2 for a precise description of the Navier–Stokes and Euler equations.

Systems (1.2) are well known to support shock wave, or travelling discontinuity front
solutions

(1.3) u0(y, x, t) =

{
u−0 x ≤ ψ(t, y)

u+
0 x ≥ ψ(t, y).
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Here (t, y, x) := (x0, x1, . . . , xd) and u±0 , ψ are smooth functions satisfying the Rankine-
Hugoniot jump conditions

(1.4)
d−1∑

j=0

∂jψ
[
fj(u)

]
=
[
fd(u)

]

on the shock front {x = ψ(t, y)}, and (1.2) on the respective sides of the front. A wide
class of such solutions has been constructed by A. Majda [M2, M3] under an appropriate
spectral stability condition (the “uniform Lopatinski condition”, Definition (7.1)) on the
family of all planar shock fronts tangent to ψ. A fundamental question in the theory
of hyperbolic conservation laws, known as the “viscous profile” or “vanishing viscosity”
problem, is whether there exist “viscous regularizations” of such inviscid shock solutions,
that is, solutions uε of the viscous equations (1.1) such that uε approaches u0 in the vanishing
viscosity limit ε→ 0. That is, does the behavior of solutions of the model (1.2) accurately
predict the behavior of solutions of the more complicated model (1.1)?

In the case that (1.1) is strictly parabolic, a complete solution of the viscous profile prob-
lem was given in [GMWZ3], extending partial results of [GMWZ2], answering in the affir-
mative under the assumption of a viscous spectral stability condition (the “uniform Evans
condition”, Definition (2.20)) analogous to that of Majda in the inviscid case. However,
physical systems are typically not strictly parabolic, but rather of a composite, symmetric
hyperbolic–partially parabolic form identified by Kawashima [Ka, KaS1, KaS2]; in partic-
ular, the Navier–Stokes equations of compressible gas- or magnetohydrodynamics (MHD)
have this form. Thus, the problem remains open in the physical context from which it
originally derived.

In this paper, we continue the program begun in [GMWZ1, GMWZ2, GMWZ3], extend-
ing the results of [GMWZ3] to a general class of hyperbolic–parabolic systems containing
in particular the Navier–Stokes equations of compressible gas dynamics. Viscous regular-
izations are shown to exist assuming the uniform Evans condition; the condition is known
to hold for weak shocks [PZ]. With suitable modifications, our methods can be applied also
to the equations of MHD [GMWZ5]. The class of systems we consider is somewhat more
general than the one defined by Kawashima, and is defined by replacing his symmetrizabil-
ity hypotheses with sharper spectral hypotheses. The relation between the two classes is
analogous to that between the classes of hyperbolic and Friedrichs symmetric hyperbolic
systems.

In the inviscid case the standard approach [M2, M3, Met1] toward the analysis of solu-
tions (1.3) is to flatten the shock by the change of variables involving the unknown ψ

(1.5) x̃ = x− ψ(t, y),

transforming (1.2) into

(1.6)

d−1∑

j=0

Aj(u)∂ju+ Ãd(u, dψ)∂x̃u = 0 ,
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where Aj(u) := f ′j(u) is the Jacobian matrix of fj and

(1.7) Ãd(u, dψ) := Ad(u) −
d−1∑

j=0

∂jψAj(u)

is the boundary matrix. The equation (1.6) is then solved separately on {x̃ > 0} and
{x̃ < 0}, together with the transmission conditions

(1.8)
d−1∑

j=0

∂jψ
[
fj(u)

]
=
[
fd(u)

]
on {x̃ = 0}

induced by (1.4).
In the viscous case, under appropriate “physical” hypotheses (see Section 2, or discus-

sion in [Z3], Section 1.3.1 and references therein), the discontinuity is smoothed by the
joint action of hyperbolic and parabolic terms, and so there is no well-defined front and
no transmission condition (1.4). Nonetheless, following [GW, GMWZ3] we introduce an
artificial unknown front ψǫ and perform the transformation

x̃ = x− ψǫ(t, y)(1.9)

to convert the equations to a form

(1.10)
d−1∑

j=0

Aj(u
ε)∂ju

ε + Ãd(u
ε, dψε)∂x̃u

ε − ε
d∑

j,k=1

Dj

(
Bj,k(u

ε)Dku
ε
)

= 0

analogous to the inviscid one, where Dj = ∂j − (∂jψ
ε)∂x̃ when 1 ≤ j < d and Dd = ∂x̃.

Note that the function ψǫ which defines the “viscous front” is distinct from the function ψ
that defines the inviscid shock.

The introduction of the viscous front allows us to reformulate (1.10) as a transmission
problem. Let B̃d,d(u

ε,∇ψε) be the coefficient of ∂2
d in (1.10). Since solutions are expected

to be smooth in the viscous case, we set uε± := uε|±x≥0, replace the jump conditions (1.8)
with tangency conditions

(1.11)
[
uε
]

= 0 ,
[
B̃d,d(u

ε,∇ψε)∂x̃uε
]

= 0 on x̃ = 0,

and observe that every smooth solution uǫ±, ψǫ of the transmission problem (1.10), (1.11)
pieces together to give a smooth solution of (1.10), or equivalently (after changing back to
the original variables), the original viscous problem (1.1) on the whole space.

This puts the viscous and inviscid problems into the common framework of fixed-
boundary transmission problems and, in particular, allows us to apply Kreiss-type sym-
metrizers to the viscous problem. (Recall that in [K] Kreiss constructed symmetrizers for
strictly hyperbolic boundary problems.) Still to be determined are the separation of viscous
and inviscid effects in the enlarged system (1.10) and the relation of (1.11) to (1.8) in the
singular limit ε→ 0. Note that the “size” of the viscous boundary-transmission system, and
the number of transmission conditions both depend on the rank of B̃d,d; thus, (1.11) repre-
sents an appropriate generalization to real viscosity systems of the corresponding condition
introduced in [GW, GMWZ3] in the strictly parabolic case.
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By suitable extension of the methods of [GW, GMWZ3], we find (see Section 5) that,
provided (i) the inviscid solution u0 (1.3) satisfies the spectral stability condition imposed
by Majda on his constructed solutions and (ii) each tangent planar discontinuity has a
transversal planar viscous profile (as defined in Section 2.3), then we may construct a
hierarchy of approximate solutions

(1.12) uε,Ma =
∑

0≤j≤M
εjU j(t, y, x̃, x̃/ε) , ψε,Ma =

∑

0≤j≤M
εjψj(t, y)

of (1.10)–(1.11) of order M ≥ 0 satisfying the equations up to order εM+1. In this expansion
the first term ψ0 is the inviscid shock front (called ψ in (1.3)) and

U0(t, y, x̃, z) = u0(t, y, x̃+ ψ0(t, y)) + V 0(t, y, z) in ± x̃ ≥ 0,(1.13)

where V 0(t, y, z) decays exponentially to zero as z → ±∞ and describes the viscous bound-
ary layers on each side of the inviscid shock. In addition, for

p(t, y) = (u+
0 (t, y, ψ0(t, y)), u−0 (t, y, ψ0(t, y)), dψ0(t, y)),(1.14)

W0(z, p(t, y)) := U0(t, y, 0, z) satisfies the viscous profile equation (2.22), (2.23) associated
to the inviscid shock.

The goal is then to convert the formal approximation error to a rigorous convergence
error: that is, to show that (uε,Ma , ψε,Ma ) is order εM+1 close to an exact solution (uε,
ψε). The main issue therefore, as in [GMWZ2, GMWZ3], is to establish sufficiently strong
stability estimates about the highly singular approximate solutions uε,Ma , ψε,Ma to carry out
an appropriate nonlinear iteration for uε, ψε.

To this end, we impose a spectral stability condition on the viscous shock profiles asso-
ciated with the family of planar shocks tangent to the inviscid shock ψ0, analogous to the
condition imposed by Majda on the planar shocks themselves. As described in [ZS, Z1], this
may be expressed in terms of an Evans function analogous to the Lopatinski determinant
of the inviscid case; moreover, it is a striking fact that the viscous spectral condition in the
low frequency regime is equivalent to the combination of the inviscid spectral condition and
transversality of the viscous profile. The latter two conditions are the main ones needed
for our construction of approximate solutions. A precise statement of the equivalence is
given by Theorem 7.2 in the Appendix. Thus, the viscous stability condition is a natural
generalization of the uniform Lopatinski condition of Majda, which we call the uniform
Evans condition. Like the Lopatinski condition, the uniform Evans condition is satisfied
for sufficiently small-amplitude shocks [PZ, FS], but may fail for large-amplitude shocks
[E, Z2]. Under this condition we establish uniform stability estimates for ε sufficiently
small, estimates that reduce in the vanishing viscosity limit ε → 0 to those established by
Majda [M2, M3] in the inviscid case, and yield eventually the following main Theorem. The
hypotheses (H0)-(H10) are partitioned among Assumptions 2.1, 2.4, 2.6, 2.9, 2.21, and 4.1.

Theorem 1.1. Given models (1.1)–(1.2) and a piecewise smooth inviscid shock solution
u0, ψ0 of (1.6)–(1.8) defined on a time interval 0 ≤ t ≤ T , satisfying hypotheses (H0)-
(H9) and (H10)(a) (including the uniform Evans condition (H9)), there exist approximate
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solutions uε,Ma , ψε,Ma of (1.10)–(1.11) as described in (1.12) of all orders M ≥ 0, and an
exact solution uε, ψε of (1.10)–(1.11), such that, for all 2 ≤ p ≤ ∞,

(1.15)
∥∥uε,Ma − uε

∥∥
Lp([0,T ],y,x̃)

≤ CεM+1,
∣∣ψε,Ma − ψε

∣∣
Lp([0,T ],y)

≤ CεM+1.

Consequently,

(1.16) ‖uε − u0‖Lp([0,T ],y,x̃) ≤ Cε1/p, |ψε − ψ0|Lp([0,T ],y) ≤ Cε

and therefore

(1.17) ‖ũε − ũ0‖Lp([0,T ],y,x) ≤ Cε1/p,

where ũε and ũ0 denote the associated solutions of (1.1) and (1.2), and C > 0 is a constant
independent of ε.

This theorem is an immediate corollary of the more precise result Theorem 6.18. To-
gether with our linearized stability estimates, Theorem 1.1 represents a natural extension of
the results of Majda [M2, M3] for inviscid equations (1.2) to the partially parabolic viscous
regularization (1.1), analogous to that carried out in [GMWZ3] in the strictly parabolic
case.

Our analysis in the low and medium frequency regimes follows that of [GMWZ3], with
appropriate modifications to accommodate partially parabolic viscosity. In particular, we
use the central ideas introduced in [GMWZ3] of working with the problem linearized with
respect to both u and ψ, and of introducing an extra boundary condition supplementing
(1.11) in the form of a local front evolution rule. Having introduced the extra unknown ψǫ in
(1.10), we should expect the problem to be underdetermined without some extra boundary
condition. The key to the low frequency stability analysis, here as in [GMWZ3], is to
choose the extra boundary condition in a way that removes the translational degeneracy of
the linearized problem in the low frequency regime.

The high-frequency stability analysis of [GMWZ3] in the strictly parabolic case was
based on a relatively straightforward rescaling argument. Here it is trickier due to the
partial parabolicity and is carried out in a different way. In this regime, after a careful
spectral analysis of the full operator, we are able to use paradifferential conjugators to
decouple parabolic components that are smoothed from hyperbolic components (like density
in Navier-Stokes) that are not. The estimate of the hyperbolic components depends on a
further spectral analysis of the corresponding block evaluated near the endstates of the
profile, and on a choice of norms exponentially weighted in a suitable way along the profile.
The estimate of the parabolic components proceeds just as in the case of artificial viscosity.

New arguments are also required in the construction of the approximate solutions, espe-
cially in the choice of boundary conditions for the “slow” parts of the higher order profiles.
In addition, the weaker high frequency estimate associated with real viscosity requires, for
its application to the small viscosity limit, a nonlinear iteration scheme quite different from
the one used in [GMWZ3].

The high frequency analysis and the associated identification of useful structural condi-
tions on the equations sufficient to carry out the analysis represent the main contributions
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of the paper. In this paper and its successors we identify general classes of hyperbolic-
parabolic systems characterized by sharp spectral hypotheses rather than symmetry hy-
potheses, which can be analyzed using Kreiss-type symmetrizers. Such problems include
the viscous shock problem considered here, the Navier-Stokes noncharacteristic boundary
layers studied in [GMWZ4], and the viscous MHD shocks studied in [GMWZ5].

Plan of the paper. In Part 2 we present the various assumptions made in our analysis
and discuss the fully linearized problem. The assumptions are satisfied in particular for
sufficiently small-amplitude, Lax-type shock waves of the Euler/Navier-Stokes equations
of compressible flow, with standard or van der Waals-type equation of state. The main
ideas and difficulties of the paper are already present in the frozen coefficient analysis of
Part 3, which is completely free of paradifferential operators. Paradifferential operators are
used only in Part 4 in order to extend the estimates of Part 3 to the variable coefficient
case. This is essential in order to handle curved shocks. Section 4.2 contains all the needed
paradifferential facts. In Part 5 we construct high order approximate solutions to the vis-
cous transmission problem (1.10), (1.11), and in Part 6 we find exact solutions nearby. In
the appendix we give a proof the Zumbrun-Serre [ZS, Z1, Z2] result, relating low frequency
behavior of the Evans function to the Majda inviscid stability determinant.

Remark 1.2. 1. We call attention to the convention on stating hypotheses described in
Remark 2.25.

2. We don’t distinguish between vǫ and vǫ, u
0 and u0, w

± and w±, etc.. Especially when
other indices are present, it is sometimes more convenient to have an index up rather than
down or vice versa.

2 Equations and assumptions

2.1 The physical equations

Our assumptions are modeled on the fundamental example of the Navier-Stokes equations
of compressible gas dynamics with general, possibly van der Waals type equation of state.
The full Navier-Stokes equations are the 5 × 5 system

(a) ρt +

3∑

j=1

(ρv)jxj
= 0

(b) (ρvi)t +
3∑

j=1

(ρvivj + pδij)xj =
3∑

j=1

{µ(vixj
+ vjxi

) + λ(
3∑

k=1

vkxk
)δij}xj , i = 1, 2, 3

(c) {ρ(e+
|v|2
2

)}t +

3∑

j=1

{ρvj(e+
|v|2
2

) + pvj}xj =

3∑

j=1

{µ
3∑

i=1

vi(vixj
+ vjxi

) + λuj
3∑

k=1

vkxk
+ κθxj}xj .

(2.1)
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Here we choose to work with the unknowns ρ, v = (v1, v2, v3) and θ which denote the
density, fluid velocity, and temperature, respectively. The pressure p and internal energy e
are given smooth functions of ρ > 0 and θ > 0 satisfying

∂θe > 0.(2.2)

We take the viscosity coefficients µ, λ and the heat conduction coefficient κ to satisfy

µ = εµ(ρ, θ), λ = ελ(ρ, θ), κ = εκ(ρ, θ)(2.3)

where µ, λ and κ are positive functions. ǫ > 0 is a small parameter that we’ll sometimes
refer to as “the viscosity”. Note that the condition (2.2), together with the condition κ > 0,
is necessary for the well posedness of the heat conduction equation in θ. Note also that the
inviscid system of Euler’s equation (2.1) with ε = 0 is hyperbolic only when

(2.4) ∂ρp > 0,

which may hold on a strictly smaller domain of (ρ, θ) than does (2.2), as seen in the example
of a van der Waals gas.

2.2 Structural assumptions

The Navier-Stokes system is a particular case of systems (1.1). We note that viscous terms
appear only in the last four equations and that these terms involve second derivatives of
v and θ only. We split vectors f ∈ R5 into their first component f1 and the remaining
ones f2 ∈ R4. With u1 = ρ and u2 = (v, θ) we see that the Navier-Stokes system has the
structure of (1.1) with

(2.5) A0(u) := f ′0(u) =

(
A11

0 0
A21

0 A22
0

)
, Bjk(u) =

(
0 0
0 B22

jk

)
,

where Mαβ denote the sub-blocks of the matrix M corresponding to the splitting u =
(u1, u2). In particular,

(2.6) Bj,k(u) := A0(u)
−1Bjk(u) =

(
0 0

0 B
22
jk(u)

)
.

Extending these properties we consider systems (1.1) which satisfy (2.5):

Assumption 2.1. (H0) (Smooth fluxes and viscosity.) Let U∗ be an open subset of RN .
The fluxes fj are C∞ functions of u ∈ U∗ with values in RN and the Bj,k are C∞ N ×N
matrices on U∗. Moreover, for all u ∈ U∗, the matrix f ′0(u) is invertible.

(H1) (Block form.) Possibly after a change of variables u and multiplication on the left
by an invertible constant coefficient matrix, there is s ∈ {1, . . . , N} and there are coordinates
u = (u1, u2) ∈ RN−s ×Rs and f = (f1, f2) ∈ RN−s ×Rs such that the block form condition
(2.5) is satisfied.
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Remark 2.2. This assumption can be put in a more geometric form, at least locally. First
observe that under a change of variables u = Φ(ũ), the fluxes fj and matrices Bj,k are
changed to

(2.7) f̃j = fj ◦ Φ, B̃j,k = (Bj,k ◦ Φ)Φ′

so that Bj,k is changed to

(2.8) Ã−1
0 B̃j,k = (Φ′)−1(Bj,k ◦ Φ)Φ′ .

When (2.6) holds, the kernel and image of Bj,k = A−1
0 Bj,k satisfy

kerBj,k(u) ⊃ K := RN−s × {0}s ImBj,k(u) ⊂ I := {0}N−s × Rs .

Moreover,
ImBj,k(u) ⊂ J := {0}N−s × Rs .

Conversely, locally, Assumption 2.1 is the conjunction of five properties, which can be
checked in any coordinate system u:

1. there is a space K(u) of dimension N −s such that for all u ∈ U∗, kerBj,k(u) ⊃ K(u);

2. there is a space J of dimension s such that for all u ∈ U∗, ImBj,k(u) ⊂ J;

3. for all u ∈ U∗, RN = K(u) ⊕ I(u), where I(u) = A0(u)
−1J;

4. the vector bundle K(u) is smooth and integrable;

5. the vector bundle I(u) is smooth and integrable.

Indeed, 3), 4) and 5) imply that, at least locally, there is a change of coordinates u = Φ(ũ),
with ũ = (u1, u2) ∈ RN−s × Rs such that

K(u) = Φ′(ũ)
(
RN−s × {0}s

)
, I(u) = Φ′(ũ)

(
{0}N−s × Rs

)
.

By 2), we can choose linear coordinates f = (f1, f2) such that J = {f1 = 0} = {0}N−s×Rs.
This implies that B̃j,k = (Bj,k ◦ Φ)Φ′ has the block diagonal form in (2.5). Moreover,
Ã−1

0 = (Φ′)−1(A−1
0 ◦ Φ) maps J to J, thus Ã−1

0 and Ã0 have the triangular form in (2.5).
This shows that the conditions in (H1) are satisfied in the coordinates ũ.

Example 2.3. We have already shown that (H1) is satisfied for Navier-Stokes equations.
More generally, suppose that there are splittings of coordinates u = (u1, u2) ∈ RN−s × Rs,
f = (f1, f2) ∈ RN−s × Rs such that

(2.9) f1
0 (u) = f̂1

0 (u1) , Bj,k(u)∂ku =

(
0

B̂j,k(u)∂k(Ψ(u))

)
,

where Ψ ∈ C∞(U∗; Rs) and the B̂j,k are s × s smooth matrices. Then, if the mapping
u 7→ (u1, ψ(u)) is a diffeomorphism, taking u1 and ψ(u) as coordinates, we see that (H1) is
satisfied.
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The assumption (H1) has an important consequence for the structure of equation (1.1)
written in nonconservative form: it reads

(2.10)
d∑

j=0

Aj(u)∂ju− ε

d∑

j,k=1

Bj,k(u)∂
2
j,ku− ε

d∑

j,k=1

gj,k(u, ∂ju, ∂ku) = 0

with
gj,k(u, v, w) =

(
v · ∇uBj,k(u)

)
w

bilinear in v and w. Moreover, (2.5) implies that the first N − s components of gj,k vanish:

(2.11) gj,k(u, v, w) =

(
0

g2
j,k(u, v, w)

)
.

This is useful in the nonlinear stability analysis, since it allows us to consider terms like εg
as lower order perturbations.

The triangular form of the equations also reveals the importance of the (1, 1) block:

(2.12) L11(u, ∂) =
d∑

j=0

A11
j (u)∂j , or L

11
(u, ∂) =

(
A11

0 (u)
)−1

L11(u, ∂),

which plays a special role in the analysis.

From now on we work with variables u = (u1, u2) ∈ U∗ such that (2.5) and (2.6) hold.
We set

Aj = f ′j , Aj = A−1
0 Aj , Bj,k = A−1

0 Bj,k,(2.13)

and systematically use the notation Mαβ for the sub-blocks of a matrix M corresponding
to the splitting u = (u1, u2).

Assumption 2.4. (H2) (Partial parabolicity.) There is c > 0 such that for all u ∈ U∗ and

ξ ∈ Rd, the eigenvalues of B
22

(u, ξ) =
∑d

j,k=1 ξjξkB
2,2
j,k(u) satisfy Reµ ≥ c|ξ|2.

(H3) (Hyperbolicity of (1,1) block.) The eigenvalues of A
11

(u, ξ) =
∑d

j=1 ξjĀ
11
j (u) are

real and semisimple with constant multiplicities for u ∈ U∗ and ξ ∈ Rd\{0}.
Remark 2.5. 1. Assuming (H1), the condition (H2) is equivalent to the following coordinate-
independent condition:

(H2′) for all u ∈ U∗ and ξ ∈ Rd\{0}, 0 is an eigenvalues of B(u, ξ) =
∑
ξjξkBj,k(u)

with constant multiplicity N − s and the remaining eigenvalues satisfy Reµ ≥ c|ξ|2.
2. When s = N − 1, which is the case for the Navier-Stokes equations, then

A
11

(u, ξ) =
d∑

j=1

ξjA
11
j (u)(2.14)

with A
11
j (u) ∈ R. Therefore, the condition (H3) is automatically satisfied. (H3) is also

clearly satisfied in cases where A
11

(u, ξ) is a (real) scalar multiple of the identity IN−s, as
occurs for MHD in the case of infinite magnetic permeability.
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Next we assume that the inviscid equations are hyperbolic for u in some open subdomain
U ⊂ U∗. Let

A(u, ξ) =

d∑

j=1

ξjAj(u) and B(u, ξ) =

d∑

j,k=1

ξjξkBj,k(u).(2.15)

Assumption 2.6. (H4) (Hyperbolicity near endstates.) For u ∈ U and ξ ∈ Rd\{0} the
eigenvalues of A(u, ξ) are real and semisimple with constant multiplicity.

(H5) (Strict dissipativity near endstates.) There is c > 0 such that for u ∈ U and
ξ ∈ Rd, the eigenvalues µ of iA(u, ξ) +B(u, ξ) satisfy

(2.16) ℜµ ≥ c|ξ|2
1 + |ξ|2 .

Remark 2.7. 1. It is important for applications to allow that U can be strictly smaller than
U∗. For instance, for Euler’s equation U is the sub-domain of states such that ∂ρp > 0;
recall section 2.1. Note also that for such states u, Euler’s equation satisfies the constant
multiplicity assumption (H4).

The hypothesis (H4), which plays a role only in our low frequency analysis, is violated
by the equations of viscous MHD, where characteristics of variable multiplicity appear in the
hyperbolic part. Symmetrizers for viscous MHD in the low frequency regime are constructed
in [GMWZ5]. MHD can be treated by combining the low frequency analysis of [GMWZ5]
with the medium and high frequency analysis given here.

2. Hypothesis (H2) is clearly satisfied by the Navier-Stokes equations when ∂θe > 0.
We refer to [KaS1, KaS2] or [Z3], Remark 1.25, for verification that the Navier-Stokes
equations satisfy (H5) whenever ∂θe > 0, ∂ρp > 0. More generally, for systems that are
symmetrizable in the sense that the matrices Aj, Bj,k may be taken symmetric, (2.16) is
equivalent to the genuine coupling condition of Kawashima: no eigenvector of Ā(u, ξ) lies
in the kernel of B̄(u, ξ) for ξ ∈ Rd \ {0}. This condition is checked for the Navier–Stokes
equations in [KaS2].

3. There is a slight redundancy in Assumption 2.6, since (H5) implies that the eigen-
values of A(u, ξ) are real.

2.3 Profiles and Evans functions

Next we consider planar shocks. Denoting by (y1, . . . , yd−1, x) the space variables, we con-
sider solutions of the inviscid equation (1.2) consisting of two constant states u− and u+ in
U separated by a plane {x = h0t+

∑d−1
j=1 hjyj}. The states u± and the front h must satisfy

the Rankine Hugoniot condition:

(2.17)

d−1∑

j=0

hj [fj(u)] = [fd(u)]

11



where [f ] denotes f(u+) − f(u−). With ν = ν(h) := (−h0,−h1, . . . ,−hd−1, 1), let us
introduce the normal flux and the normal boundary matrices

(2.18)

f̃d(u, ν) =
d∑

j=0

νjfj(u)

Ãd(u, ν) =
d∑

j=0

νjAj(u) , Ad(u, ν) = A0(u)
−1Ãd(u, ν),

B̃d,d(u, ν) =
d∑

j,k=1

νjνkBj,k(u).

Remark 2.8. Let us also define for j = 1, . . . , d− 1

B̃j,d(u, ν) =

d∑

k=1

νkBj,k(u) , B̃d,j(u, ν) =

d∑

k=1

νkBk,j(u).(2.19)

Observe that the equation (1.10) can then be rewritten

d−1∑

j=0

Aj(u)∂ju+ Ãd(u, ν(dψ))∂du− ǫ
d∑

j,k=1

∂j(B̃j,k(u, ν(dψ))∂ku) = 0.(2.20)

We’ll sometimes abuse notation slightly and write, for example, Ãd(u, dψ) in place of
Ãd(u, ν(dψ)).

In the viscous case, discontinuities are replaced by profiles, and shocks are replaced by
travelling waves

(2.21) uε(t, y, x) = w
(x− ψ(t, y)

ε

)
ψ(t, y) := h0t+

d−1∑

j=1

hjyj .

Then uε is a solution of (1.1) if and only if w solves the profile equation

(2.22) ∂z
(
f̃d(w(z), ν)

)
− ∂z

(
B̃d,d(w(z), ν)∂zw

)
= 0

The profile is associated to a shock p = (u−, u+, h) when

(2.23) lim
z→−∞

w(z) = u− and lim
z→+∞

w(z) = u+ .

Recall that the Rankine-Hugoniot conditions (2.17) follow from (2.22) (2.23).
The next two assumptions mean that we are considering a family of profiles associated

to Lax shocks, with an additional assumption of “hyperbolicity in the ν direction” for the
(1, 1) block.
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Assumption 2.9. (H6) (Lax shocks.) We are given a C∞ manifold C ⊂ U ×U ×Rd, with
C compact, such that each p = (u−, u+, h) in C satisfies (2.17). Moreover, the boundary
matrices Ad(u

±, ν(h)) are invertible and the numbers N− (resp. N+) of positive (resp.
negative) eigenvalues of Ad(u

−, ν) (resp. Ad(u
+, ν)) satisfy N+ +N− = N + 1.

(H7) (Shock profiles.) We are given a C∞ function W0(z, p) from R×C to U∗ such that
for all p ∈ C, W0(·, p) is a solution of (2.22) (2.23). We refer to such a function as a “shock
profile”.

(H8) (Hyperbolicity of (1,1) block with respect to ν.) For each p = (u+, u−, h) ∈ C,

one of ±A11
d (w, ν(h)) has only strictly positive eigenvalues for all w in the closed orbit

{W0(z, p) : z ∈ R}cl.

In addition to the parameters p = (u−, u+, h), we introduce new parameters (u′, h′) ∈
RN × Rd to represent perturbations of profiles and fronts. We set

q = (p, u′, h′), W (z, q) = W0(z, p) + u′, W (±∞, q) = u± + u′(2.24)

and

Aj(z, q) := Aj(W (z, q)), Aj(z, q) = Aj(W (z, q)), j ≤ d− 1

Ãd(z, q) = Ãd(W (z, q), ν(h+ h′)), Ad(z, q) = Ad(W (z, q), ν(h+ h′)).
(2.25)

Proposition 2.10. Let W (z, q) be as in (2.24) and assume (H3) and (H8). There exists a
neighborhood O of (0, 0) ∈ RN

u′×Rd
h′ such that for all z ∈ R∪{±∞}, p ∈ C, and (u′, h′) ∈ O,

we have W (z, q) ∈ U∗ and

(a) one of ±A
11
d (z, q) has only strictly positive eigenvalues;

(b) the eigenvalues of Ã11
d (z, q)−1


A11

0 (z, q)τ +
d−1∑

j=1

A11
j (z, q)ηj


(2.26)

are real and semisimple with constant multiplicity for (τ, η) ∈ Rd \ 0. In addition there
exists Z > 0 such that for all q as above,

|z| ≥ Z ⇒W (z, q) ∈ U .(2.27)

Proof. 1. For ξ ∈ Cd+1 the homogeneous polynomial π(ξ) is said to be hyperbolic in the
real direction β if and only if π(β) 6= 0 and for all real ξ′ /∈ Rβ the roots r ∈ C of π(rβ+ ξ′)
are real. For (z, q) as above, (H3) implies that

π(z, q, ξ) = det




d∑

j=0

A11
j (z, q)ξj


(2.28)

is hyperbolic in the direction dt = (1, 0, . . . , 0). (2.26)(a) holds if and only if one of ±ν(h+h′)
lies in the same component as dt of the open set {ξ : π(z, q, ξ) 6= 0} ([H], Lemma 8.7.3).
Hypothesis (H8), compactness of C, and compactness of the closed orbit associated to each
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p ∈ C allow us to choose O so this is the case. π(z, q, ξ) is hyperbolic with respect to all
directions in that component, so (2.26)(a) implies that the roots r of

π(z, q, rν(h+ h′) + ξ′) = 0, ξ′ /∈ Rν(2.29)

are real, which is equivalent to saying the eigenvalues in (2.26)(b) are real.
2. Changing the notation for frequencies, we set

A11(z, q, η, ξd) =

d−1∑

j=1

A
11
j (z, q)ηj +A

11
d (z, q)ξd,

G11(z, q, τ, η) = Ã11
d (z, q)−1


A11

0 (z, q)τ +
d−1∑

j=1

A11
j (z, q)ηj


 .

(2.30)

(H3) implies that for (τ, η) real, all eigenvalues ξd of G11(z, q, τ − iγ, η) have nonzero imagi-
nary part when γ > 0. From (2.26)(a) it follows that these eigenvalues lie in the same fixed
half plane, one of ±ℑξd > 0.

3. Suppose now that ξ
d

is an eigenvalue of G11(z, q, τ , η) for (τ , η) ∈ Rd \ 0. By (H3)

there exists a unique eigenvalue β(z, q, η, ξd) of A11, which is C∞ in all arguments, analytic
in ξd, of constant multiplicity, and such that

τ + β(z, q, η, ξ
d
) = 0.(2.31)

Note then that (τ , η, ξ
d
) is nonglancing, which means that

∂ξdβ 6= 0 at (z, q, η, ξ
d
),(2.32)

for otherwise the equation

τ − iγ + β(z, q, η, ξd) = 0(2.33)

has roots in ξd with ℑξd of both signs when γ > 0, contradicting the conclusion of part 2.
It follows that −ξ

d
is a semisimple eigenvalue of G11(z, q, τ , η) with multiplicity equal to

that of −τ as an eigenvalue of A11(z, q, η, ξ
d
) ([MZ3], Proposition 3.9). Thus, the assertion

of semisimplicity and constant multiplicity in (2.26)(b) follows from that in (H3).
4. The ability to choose Z as in (2.27) is immediate from compactness.

Remark 2.11. 1. Hypothesis (H6) is the starting point for constructing shock solutions of
the inviscid equation. The construction of profiles as in (H7) is the first step in the analysis
of the viscous perturbation. We refer to [Gi, MPe] for the construction of profiles for the
Navier-Stokes equations. For example, Gilbarg shows that for a convex pressure law, profiles
exist for shocks of any strength. See [Pe, MPe] for construction of small-amplitude profiles
of general systems.

2. Following [MaZ3, Z3] we may take advantage of the divergence form of (2.22),
integrating from −∞ to z to express the profile equation as an algebraic relation

(2.34) f̃1
d (w, ν) − f̃1

d (u−, ν) ≡ 0,
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combined with the reduced ODE

(2.35) ∂zw
2 =

(
B̃22
d,d

)−1(
f̃2
d (w, ν) − f̃2

d (u−, ν)
)
.

Since Ã11
d = f̃1′

d is invertible by the first part of (H8), we may solve for w1 as a function of
w2 in (2.34), reducing the algebro-differential system (2.34)–(2.35) to a standard ODE in
the variable w2.

3. Hypothesis (H8), especially through its consequence, Proposition 2.10, plays an im-
portant part in the high frequency estimate. In the estimate (3.97)(a) for the hyperbolic
block, it is essential that the eigenvalues of A11 be nonglancing (2.32). One can show that
if the eigenvalues of A11 are nonglancing and (H8) fails to hold, then constant multiplicity
for A11 (H3) fails.

(H8) is satisfied in physical examples, and it holds in particular for the Navier-Stokes
equations. More generally, consider the case where s = N − 1, so that L11 is a vector field

(2.36) L11 = A11
0 (u)∂t +

d∑

j=1

A11
j (u)∂j

with A11
j ∈ R. In this case (H8) reduces to the condition that

(2.37) Ã11
d (W0(z, p), ν(h)) =

d∑

j=0

νjA
11
j (W0(z, p)) 6= 0

for all p ∈ C and z ∈ R ∪ ±∞.
For the Navier-Stokes equations,

L11 = ∂t +

d∑

j=1

vj∂j

and the condition reads

h0 6= vd −
d−1∑

j=1

hjvj along the profile,(2.38)

where, with H = |(−h1, . . . ,−hd−1, 1)|,

h0/H and vn = (vd −
d−1∑

j=1

hjvj)/H

are the speed of the shock and fluid speed normal to the shock respectively. One can show
that (2.38) is a consequence of the profile equations; see Appendix A.1, [Z2]. For weak
shocks this condition is clear, since Lax shocks are associated to acoustic modes and their
speed is ≈ vn ± c, where c is the sound speed.

Definition 2.12. A solution w of the connection problem (2.34)-(2.35), (2.23) is called
transversal if the unstable manifold of (2.35) at u−2 and the stable manifold of (2.35) at u+

2

intersect transversally along w2.
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Proposition 2.13 ([MaZ3, Z3]). Suppose that w is a shock profile associated to a planar
Lax shock p = (u−, u+, h). Then w converges exponentially in all derivatives to its end
states u± and ∂zw2(z) 6= 0 for all z ∈ R. Moreover, if w is transversal, then it is unique up
to translation.

Proof. Evaluating ∂w2
w1 in (2.34) using the Implicit Function Theorem, we find that the

linearization of the righthand side of (2.35) about the endstates w±
2 is

(2.39) (B̃22
d,d)

−1
(
Ã22
d − Ã21

d (Ã11
d )−1Ã12

d

)
.

By Assumption (H2) and Assumption (H8) we have

(2.40) det
(
(B̃22

d,d)
−1
(
Ã22
d − Ã21

d (Ã11
d )−1Ã12

d

))
= det Ãd/(det B̃22

d,d det Ã11
d ) 6= 0,

so that w±
2 are nondegenerate rest points of (2.35). With Assumption (H5) this implies

that (2.39) has no purely imaginary eigenvalues. Therefore, w±
2 are hyperbolic rest points,

from which exponential decay follows by classical ODE theory [Co]. Likewise, ∂zw2(z) 6= 0
follows from uniqueness of solutions of ODE. Uniqueness up to translation follows from the
relation

(2.41) s+ + s− − s = N+ +N− −N ([Z2], Appendix A.2),

where s+ denotes the number of eigenvalues with negative real part of (2.39) at w+
2 and

s− denotes the number of eigenvalues with positive real part of (2.39) at w−
2 ; this quantity

equals one for Lax shocks.

Remark 2.14. 1. Profiles for viscous shock solutions of the Navier-Stokes equations are
transversal if they exist [MaZ3]. Such shocks are in general extreme shocks.

2. We prove the relation (2.41) in Corollary 3.45.

From Proposition 2.13, we obtain as in the proof of Proposition 2.6, [GMWZ3] the
following local verification of (H7).

Proposition 2.15 ([GMWZ3]). i) Suppose that p is a planar Lax shock. Then there is a

neighborhood ω of p in U ×U ×Rd such that the set of shocks in ω form a smooth manifold
C of dimension N + d and each p ∈ C is a Lax shock.

ii) Suppose in addition that w is a shock profile associated to p and that w is transversal.

Then, shrinking ω if necessary, there is a C∞ mapping W0 from R × C to U∗ ⊂ RN such
that W0(z, p) = w(z) and for all p = (u−, u+, h) ∈ C, W0(·, p) is a shock profile associated
to p. This connection is unique, up to a translation in z by a smooth shift k(p).

In (2.24) and Proposition 2.10 we have already introduced a more general type of profile.
We formalize that notion in the next definition.

Definition 2.16. Let p = (u−, u+, h) ∈ C be as in (H6) and let W0(z, p) be a shock profile
as in (H7). For parameters (u′, h′) ∈ RN × Rd and q = (p, u′, h) we define the function
W (z, q) = W0(z, p) + u′ to be a profile associated to the front h+ h′ if
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(a) W (z, q) ∈ U∗ for all z;
(b) there exists Z > 0 such that |z| ≥ Z ⇒W (z, q) ∈ U ;
(c) for |z| ≥ Z, Ad(z, q) is invertible;

(d) for all z one of ±A11
d (z, q) has only strictly positive eigenvalues.

Remark 2.17. From Proposition 2.10 we see that for parameters (u′, h′) contained in a
small enough neighborhood of 0, W (z, q) as defined above satisfies conditions (a)-(d) with a
Z that can be taken independent of q. Moreover, it follows as in [GMWZ3], Prop. 2.6 that
for some θ > 0 we have estimates

|∂kz ∂αqW (z, q)| ≤ Ck,αe
−θ|z| on ± z ≥ 0.(2.42)

Note that we distinguish between “shock profiles” as in (H7) and more general profiles as
in Definition 2.16.

2.3.1 The Uniform Evans condition

For a fixed q = (p, u′, h′) we consider a profile W (z, q) as in Definition 2.16. We consider
the linearization of equations (2.20) around

(2.43) wε(t, y, x) = W (x/ε, q) , ψ(t, y) = (h+ h′) · (t, y).

For simplicity, we have changed the notation x̃ to x.
We first compute the “partially linearized” operator with respect to u alone (we compute

the fully linearized operator in Section 2.4, following). This has the form

(2.44) Lu̇ := −ε∂x
(
B̃d,d∂xu̇

)
+ ∂x(A

♯u̇) +
1

ε
M ♯u̇

where 



A♯v = Ãdv −
d−1∑

j=1

(B̃j,d + B̃d,j)ε∂jv − (∇uB̃d,d · v)∂zW,

M ♯v = A0ε∂tv +

d−1∑

j=1

A♯jε∂jv −
d−1∑

j=1,k

Bj,kε
2∂j∂kv,

with

(2.45)

A♯jv = Ajv − (∇uB̃j,d · v)∂zW + ∇uB̃j,d · ∂zW )v, j = 1, ..., d− 1

B̃j,d(u, ν) =

d∑

k=1

νkBj,k(u) , B̃d,j(u, ν) =

d∑

k=1

νkBk,j(u) , j = 1, . . . , d− 1,

where ν(h) = (−h0,−h1, . . . ,−hd−1, 1) and matrix coefficients are evaluated at u = W (x/ε, q).
The coefficients are smooth functions of q and z = x/ε, and A♯ and M ♯ are differential op-
erators in ε∂t and ε∂y.

Since the coefficients of L are independent of the tangential space-time variables (t, y),
one can perform a Fourier-Laplace transform with respect to (t, y). This leads to symbols
A(z, q, ζ) and M(z, q, ζ), depending on (z, q) and ζ = (τ, η, γ) ∈ R × Rd−1 × R, obtained
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by evaluating the coefficients at (z, q) and replacing ∂j and ∂t in the definitions above by

iηj , j = 1, . . . , d − 1 and γ + iτ respectively. Denoting by û (resp., f̂) the Fourier-Laplace
transform of u̇ (resp., Lu̇), one has:

(2.46) f̂(x, ζ̂) = −ε∂x(B(
x

ε
, q)∂xû) + ∂x

(
A
(x
ε
, q, εζ̂

)
û
)

+
1

ε
M
(x
ε
, q, εζ̂

)
û.

Denote by L̂ the operator in the right hand side acting on û. It is then natural to rescale
the variables. After setting

(2.47) ζ = εζ̂ , z = x/ε , u∗(z, ζ) = û(x, ζ̂) , f∗(z, ζ) = εf̂(x, ζ̂) ,

and

(2.48) L(z, q, ζ, ∂z)u
∗ := −∂z (B(z, q)∂zu

∗) + ∂z (A (z, q, ζ)u∗) + M (z, q, ζ)u∗,

the equation (2.46) reads

(2.49) f∗ = L(z, q, ζ, ∂z)u
∗ .

Dropping the stars, we now consider the well posedness of the equation

(2.50) L(z, q, ζ, ∂z)u = f.

This is a degenerate second order differential equation, and the equation is equivalent to
the transmission problem where one looks for solutions u+ and u− on {z ≥ 0} and {z ≤ 0}
separately, which satisfy the transmission conditions

(2.51) u−(0) = u+(0) , ∂zu
−
2 (0) = ∂zu

+
2 (0) .

Note that these are equivalent to (1.11), by the block structure assumption (2.5).

Definition 2.18. Given a profile W (z, q) as in Definition 2.16, we denote by E+(q, ζ)
(resp., E−(q, ζ)) the set of initial data (u(0), ∂zu2(0)) such that the corresponding solution
of L(z, q, ζ, ∂z)u = 0 on {z ≥ 0} (resp., {z ≤ 0}) is bounded as z tends to +∞ (resp., −∞).

In the sequel, we denote by R
d+1
+ the set of parameters ζ = (τ, η, γ) ∈ R × Rd−1 × R

such that γ ≥ 0 and by R
d+1
+ \{0} the set of ζ 6= 0 with γ ≥ 0. The proof of the next lemma

is given in Section 3.3.

Lemma 2.19. Assume (H0)-(H2) and (H5)-(H8). Let W (z, q) be a profile as in Definition
2.16. Then for

q = (p, u′, h′) ∈ Q := C × O,(2.52)

with (u′, h′) in a small enough neighborhood O of 0, E+(q, ζ) and E−(q, ζ) are smooth vector
bundles of fixed dimensions K, N + s −K in CN+s over Q × Rd+1

+ \{0}. In fact, K = N

when the eigenvalues of A
11
d (z, q) are all positive, and K = s when those eigenvalues are all

negative.
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There are nontrivial bounded solutions of Lu = 0 if and only if E+ ∩ E− 6= {0}. The
distance between these two spaces can be measured via the Evans’ function

(2.53) D(q, ζ) = det
(
E+(q, ζ),E−(q, ζ)

)

where the determinant is obtained by taking any orthonormal basis in the given spaces.
Note that, by Lemma 2.19, the function D is smooth on Q× Rd+1

+ \{0}.
There is an alternate way of computing the Evans functionD. Considering the transmis-

sion problem as a boundary problem, the natural space of initial data of bounded solutions
is E−×E+ ⊂ CN+s×CN+s. Its dimension is N+s. The boundary condition can be written
Γ(U−, U+) = 0 where Γ is the mapping (U−, U+) 7→ U+−U− from CN+s×CN+s to CN+s.
Thus dim ker Γ = N + s and

(2.54) D(q, ζ) = det
(
E−(q, ζ) × E+(q, ζ) , ker Γ

)
.

The weak Evans condition requires that D does not vanish when ζ 6= 0 and γ ≥ 0. The
uniform condition requires in addition an optimal control when ζ is small or large. It turns
out that for large ζ appropriate control follows already from the Assumptions (H0) to (H8),
and so no explicit assumption is necessary in this regime; see Remark 3.29. For small ζ, we
know from [ZS, Z2] that the determinant D is O(|ζ|). Following [Z1] the uniform stability
condition reads:

Definition 2.20 (Stability conditions).
i) The shock profile W0(z, p) associated to a Lax shock q = (p, 0) is spectrally stable

(satisfies the weak Evans condition) if the Evans function D(p, 0, ζ) does not vanish for

ζ ∈ R
d+1
+ \{0}.

ii) It is uniformly stable (satisfies the uniform Evans condition) if in addition there is

a positive constant c such that for all ζ ∈ R
d+1
+ \{0} with |ζ| ≤ 1,

(2.55) |D(p, 0, ζ)| ≥ c|ζ|.

Assumption 2.21. (H9) For all p ∈ C, the planar profile W0(z, p) is uniformly stable.

Remark 2.22. In [PZ] it is shown that profiles associated to a large class of weak Lax
shocks, including weak shocks for the Euler equations, are uniformly stable. See also [FS]
for a similar result in the one-dimensional case.

The following Proposition extends a result of [ZS] in the case of artificial viscosity to
the real viscosity setting. The Proposition refers to Majda’s uniform stability condition for
inviscid shocks, which is recalled in the Appendix along with the proof of the proposition.

Proposition 2.23. Suppose that Assumptions (H0)-(H2) and (H4)-(H8) are satisfied and
that W0 is a shock profile associated to a planar Lax shock p.

i) If W0 is uniformly stable, then W0 is transversal and the planar shock p is uniformly
stable in the sense of Majda [M2].

ii) Conversely, if W0 is transversal and the shock p is uniformly stable, then (2.55)

holds for ζ ∈ R
d+1
+ \{0} small enough.
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Corollary 2.24. Under the Assumptions of Proposition 2.23, a profile W0 associated to a
Lax shock p is uniformly stable if and only if:

i) it is spectrally stable ,
ii) W0 is transversal,
iii) p is uniformly stable in the sense of Majda.

Remark 2.25. We shall adopt the convention from now on that hypotheses (H0)-(H1) and
(H6)-(H7) are automatically assumed in every Theorem, Proposition, etc. of the paper.
Thus, in Proposition 3.8 for example, where the only explicitly stated assumption is (H2),
our intention is to highlight the fact that (H2) is the only extra assumption needed beyond
the automatically assumed ones.

2.4 The fully linearized equations

The vanishing of the Evans function associated to a Lax shock profileW0 at ζ = 0 is the main
source of difficulty in the low frequency analysis. It reflects the translational degeneracy in
the partially linearized operator L expressed by the fact

L(z, q, 0, ∂z)∂zW0 = 0 when q = (p, 0).(2.56)

This degeneracy leads to an L2 estimate for the transmission problem (2.50), (2.51) that
is too weak for our purposes here. In addition, having introduced the extra unknown ψǫ

in (1.10), we should expect the transmission problem (1.10), (1.11) to be underdetermined
without some extra boundary (or transmission) condition. The key to the low frequency
stability analysis, here as in [GMWZ3], is to work with the fully linearized problem and to
choose the extra boundary condition in a way that removes the translational degeneracy
in the low frequency regime. This strategy then commits us to working with the fully
linearized equations in the medium and high frequency regimes as well, even though the
partially linearized problem is well behaved there.

Consider again a profile W (z, q) with q = (p, u′, h′). The fully linearized equation from
(1.10) around wε = W (x/ε, q), ψ(t, y) = (h+ h′) · (t, y) reads

(2.57) Lu̇−Kψ̇ = ḟ ,

where L is given by (2.44) and

(2.58)

Kψ̇ =∂tψ̇∂xf0(w
ε) +

d−1∑

j=1

∂jψ̇∂xfj(w
ε)

−
d−1∑

j=1

ε∂jψ̇∂x

(
(B̃j,d + B̃d,j)∂xw

ε
)
− ε

d−1∑

j,k=1

∂j∂kψ̇Bj,k∂xw
ε.

The key idea introduced in [GMWZ3] is to consider the problem (2.57) with transmission
conditions

[u̇] = 0, [∂xu̇2] = 0, ∂tψ̇ − ε∆yψ̇ + ℓ · u̇2 = 0 on x = 0,(2.59)
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for ℓ = ℓ(q) ∈ Rs. The special choice of the heat operator in the extra boundary condition
is not essential. It can be replaced by any parabolic operator of the same type, possibly
depending on p. There is also a large freedom in the choice of ℓ. We assume ℓ(q) satisfies

(2.60) ℓ(q) · ∂zW2(0, q) > 0 .

Such a choice is always possible for profiles close enough to shock profiles since ∂zW2(0, q) 6=
0 when q = (p, 0) by Proposition 2.13.

The operators L and K are closely related. Denote by E(u, ψ) the left hand side of (1.10)
and consider for a moment the full and partial linearizations of (1.10) about an arbitrary
choice of (u, ψ), together with the original transmission conditions:

(a) E ′
u(u, ψ)u̇+ E ′

ψ(u, ψ)ψ̇ = ḟ , [u̇] = 0, [∂xu̇2] = 0

(b) E ′
u(u, ψ)u̇ = ḟ , [u̇] = 0, [∂xu̇2] = 0,

(2.61)

where E ′
u and E ′

ψ are the linearizations of E with respect to u and ψ respectively.

Lemma 2.26. We have

(2.62) E ′
u(u, ψ)u̇+ E ′

ψ(u, ψ)ψ̇ = E ′
u(u, ψ)(u̇− ψ̇∂xu) + ψ̇∂xE(u, ψ) .

Proof. Denoting by F(u) the left hand side of the equation (1.1) in the original coordinates,
and by ∗ the substitution u∗(t, y, x) = u(t, y, x− ψ(t, y)), one has

(2.63) F(u∗) = {E(u, ψ)}∗ .

Through linearization, one has δ(u∗) = (δu− δψ∂xu)∗. Moreover, differentiating in u alone,
one checks that (E ′

u(u, ψ)v)∗ = F ′
u(u

∗)(v)∗. Linearizing (2.63) implies (2.62).

Remark 2.27. The identity (2.62) was pointed out by S. Alinhac ([Al]) along with the role
of what he called “the good unknown” u̇− ψ̇∂xu. Consider the example where u = W0(

x
ǫ , p)

and ψ = h · (t, y) are an exact solution of the problem (1.10), (1.11). In this case, the error
term ∂xE(u, ψ) is exactly equal to zero in the right hand side of (2.62) and the original
transmission conditions for u̇ and v̇ = u̇ − ψ̇∂xu are equivalent. Hence, the transmission
problems (2.61)(a) for u̇ and (2.61)(b) for v̇ are equivalent. This observation is useful in
the medium and high frequency regions, where the partially linearized problem (2.61)(b) is
well-behaved. There we may prove estimates for the good unknown v̇ satisfying (2.61)(b),
and then use the extra boundary condition

(∂t − ε∆y)ψ̇ + ψ̇ (ℓ · ∂xu2) = −ℓ · v̇2 on x = 0,

to estimate ψ̇ after estimating the trace of v2.
This approach has to be modified in the small frequency region because of the translational

degeneracy at ζ = 0. By making a more subtle choice of good unknown as explained in
section 3.3, one can again reduce to proving estimates for the partially linearized operator
E ′
u. The original transmission conditions are replaced by new (pseudodifferential) boundary

conditions arising from (2.59) on the good unknown, and these conditions have the effect of
removing the translational degeneracy.
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The coefficients of K (2.58) are independent of (t, y), so we again perform a Fourier-
Laplace transform with respect to (t, y). Denote by g the additional term −Kψ̇ in (2.57)
and by ψ̂ and ĝ the Fourier-Laplace transforms of ψ̇ and g respectively. Parallel to (2.46)
there holds

(2.64) ĝ(x, ζ̂) = − 1

ε2
ψ̂(ζ̂)K(

x

ε
, q, εζ̂)

where

(2.65)

K(z, q, ζ) =∂zf0(W )(γ + iτ) +
d−1∑

j=1

∂zfj(W )iηj

−
d−1∑

j=1

∂z

(
(B̃j,d + B̃d,j)∂zW

)
iηj +

d−1∑

j,k=1

Bj,k∂zWηjηk

and the coefficients are now evaluated at u = W (z, q). The natural rescaling for ĝ and ψ̂,
which supplements (2.47), is:

g∗(z, ζ) = εĝ(x, ζ̂) , ψ∗(ζ) =
1

ε
ψ̂(ζ̂) ,(2.66)

so that

g∗(z, ζ) = −ψ∗(ζ)K(z, q, ζ) .

Similarly, the Fourier-Laplace transform of the extra boundary condition reads

(γ̂ + iτ̂ + ε|η̂|2)ψ̂(ζ̂) + ℓ · û2|x=0(ζ̂) = 0 .

Adding up, after Fourier-Laplace transform and rescaling as in (2.47) and (2.66), we see
that the linearized equations read:

L(z, q, ζ, ∂z)u
∗ − ψ∗K(z, q, ζ) = f∗

a(ζ)ψ∗ + ℓ · u∗2(0) = 0 on z = 0,
(2.67)

with a(ζ) = γ + iτ + |η|2.

Lemma 2.28. Given a profile W (z, q) with q = (p, u′, h′) as above, the following identity
is satisfied:

K(z, q, ζ) = L(z, q, ζ, ∂z)∂zW + ∂zP(W, ν(h+ h′)) ,

where P(W, ν) := ∂z

(
B̃d,d(W, ν)∂zW

)
− ∂z

(
f̃d(W, ν)

)
.

Proof. This is easily checked by direct computation; it can also be deduced from the identity
(2.62).

Remark 2.29. In the case when W0 is a shock profile associated to the front h, we have
P(W0, ν(h)) = 0.
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3 Frozen coefficient L
2 estimates

3.1 Transmission problems depending on frequency

Consider an approximate solution (uε,Ma , ψε,Ma ) as in (1.12). It can be written

uε,Ma (x) = W0(
x

ε
, p(t, y)) + u′(t, y, x, ǫ)

dψε,Ma = dψ0(t, y) + h′(t, y, x, ǫ),
(3.1)

where

p(t, y) = (u0
+(t, y, 0), u0

−(t, y, 0), dψ0(t, y)) ∈ C(3.2)

is the given inviscid shock and u′, h′ are perturbations that can be read off from (1.12).
We also allow u′ and h′ to include additional corrections of the form εL(vn, dφn) like those
that will appear later in the iteration scheme for the exact solution. Let us now freeze
q = (p, u′, h′) and consider the rescaled, Fourier-Laplace tranformed, transmission problem
(2.67):

L(z, q, ζ, ∂z)u− ψK(z, q, ζ) = f

[u] = 0, [∂zu2] = 0, a(ζ)ψ + ℓ(q) · u2(0) = 0 on z = 0.
(3.3)

The problem (3.3) is a transmission problem in z depending on (q, ζ) as parameters.
In this part we show how to obtain estimates for this problem, uniform with respect to
the parameters, in each of the three frequency regimes where |ζ| is small, medium, or large.
This ODE question already contains most of the main difficulties. The frequency-dependent
conjugators and symmetrizers constructed here will serve as symbols of the paradifferential
operators we’ll use in the next part to obtain estimates for the variable coefficient linearized
problem.

The following Propositions give the frozen coefficient estimates in the three frequency
regimes.

Proposition 3.1 (High frequency). Consider solutions (u, ψ) of (3.3) where q = (p, u′, h′)
with p ∈ C and (u′, h′) small. There exist constants R, δ such that for |ζ| ≥ R, 0 ≤ γ ≤ δ|ζ|,
we have

(1 + γ)‖u1‖ + Λ‖u2‖ + ‖∂zu2‖ +
√

1 + γ|u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |∂zu2(0)| + Λ
5

2 ‖ψ‖
≤ C(‖f1‖ + Λ−1‖f2‖),

(3.4)

where ‖f‖ = |f |L2(z) and Λ(ζ) = (1 + γ2 + τ2 + |η|4)1/4.
For γ ≥ δ|ζ|, |ζ| ≥ R, we have the stronger estimate

|ζ|‖u1‖ + Λ‖u2‖ + ‖∂zu2‖ +
√
|ζ||u1(0)| + Λ

1

2 |u2(0)| + Λ− 1

2 |∂zu2(0)| + Λ
5

2 ‖ψ‖
≤ C(‖f1‖ + Λ−1‖f2‖).

(3.5)

23



Proposition 3.2 (Low frequency). Consider solutions (u, ψ) of (3.3) where q = (p, u′, h′)
with p ∈ C and (u′, h′) small. There exists a constant ρ0 such that for |ζ| ≤ ρ0 we have:

λ2‖u‖ + λ‖∂zu2‖ + λ|u(0)| + λ|∂zu2(0)| + λ|ζ||ψ| ≤ C‖f1, f2‖,(3.6)

where λ(ζ) = (γ + |ζ|2)1/2.
Proposition 3.3 (Medium frequency). Consider solutions (u, ψ) of (3.3) where q = (p, u′, h′)
with p ∈ C and (u′, h′) small and let ρ0 and R be as above. For ρ0 ≤ |ζ| ≤ R we have:

‖u‖ + ‖∂zu2‖ + |u(0)| + |∂zu2(0)| + |ψ| ≤ C‖f1, f2‖.(3.7)

Remark 3.4. As we show explicitly later, there is another route to the problem (3.3).
Linearizing (1.10) about the approximate solution (3.3), one obtains, in addition to terms
like those appearing in L (2.44) and K (2.58), a number of other terms that are small in the
sense that they turn out to be negligible in the proof of the L2 estimate (4.11). Throwing the
small terms away leaves us with the principal part of the fully linearized operator. Freezing
q = (p, u′, h′) in the principal part, Fourier transforming, and rescaling yields (3.3).

3.2 High frequency estimate

Our goal in this section is to prove the estimates (3.4) and (3.5). We begin with the more
difficult case 0 ≤ γ ≤ δ|ζ|.

3.2.1 Reduction to the partially linearized case

The estimate (3.4) will be deduced from an estimate for the partially linearized transmission
problem:

L(z, q, ζ, ∂z)u = f

[u] = 0, [∂zu2] = 0 on z = 0.
(3.8)

Proposition 3.5. There exist constants R, δ such that for 0 ≤ γ ≤ δ|ζ|, |ζ| ≥ R, solutions
u of (3.8) satisfy

(1 + γ)‖u1‖ + Λ‖u2‖ + ‖∂zu2‖ +
√

1 + γ|u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |∂zu2(0)|
≤ C(‖f1‖ + Λ−1‖f2‖).

(3.9)

To derive estimate (3.4) from Proposition 3.5, define the good unknown

u# = u− ψ∂zW(3.10)

for (u, ψ) satisfying (3.3), and observe using Lemma 2.28

(a) Lu# = f + ψ∂zP
(b) (a(ζ) + ℓ · ∂zW2)ψ = −ℓ · u#

2 on z = 0.
(3.11)

The coefficient of ψ in (3.11)(b) is ∼ Λ2, and ∂zW is exponentially decaying as z → ±∞,
so the estimate (3.9) for u# implies the estimate (3.4) for (u, ψ). So now we concentrate on
the proof of Proposition 3.5.
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Remark 3.6. The same good unknown is used to reduce the proof of the estimate (3.5) to
showing the following estimate for (3.8):

|ζ|‖u1‖ + Λ‖u2‖ + ‖∂zu2‖ +
√

|ζ||u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |∂zu2(0)|
≤ C(‖f1‖ + Λ−1‖f2‖).

(3.12)

3.2.2 Spectral properties of the symbol of L
We begin by writing out the explicit form of L(z, q, ζ, ∂z). We’ll use notation like that in
(2.24), where q = (p, u′, h′) and all matrix coefficients are evaluated at (z, q), with the (z, q)
dependence entering entirely through W (z, q) and ν(h+ h′). The matrices Ãd, B̃d,d (2.18)
and B̃j,d, B̃d,j (2.45) are as before, and when convenient we write

Ãj = Aj for j = 1, . . . , d− 1,

B̃j,k = Bj,k for j ≤ d− 1, k ≤ d− 1.
(3.13)

We have

L(z, q, ζ, ∂z)u = −B̃d,d∂2
zu+


Ad −

d−1∑

j=1

(B̃j,d + B̃d,j)iηj


 ∂zu+


E +A0(iτ + γ) +

d−1∑

j=1

Ajiηj +
d−1∑

j,k=1

B̃j,kηjηk


u,

(3.14)

where

Ajv = Ãjv − (∂zW · duB̃d,j)v − (v · duB̃j,d)∂zW, j = 1, . . . , d,

Ev = (v · duÃd)∂zW − (v · duB̃d,d)∂2
zW − d2

uB̃d,d(v, ∂zW )∂zW.
(3.15)

We also set L = A−1
0 L and, for ξ ∈ Rd, write its symbol

L(z, q, τ − iγ, ξ) = (iτ + γ)I +

d∑

j=1

Ajiξj +

d∑

j,k=1

Bj,kξjξk + E,

= (iτ + γ)I + iA(z, q, ξ) +B(z, q, ξ) + E(z, q),

(3.16)

where now

Aj = A−1
0 Ãj , Aj = A−1

0 Aj , Bj,k = A−1
0 B̃j,k, E = A−1

0 E.(3.17)

As before set

A(z, q, ξ) =

d∑

j=1

Ajξj .(3.18)
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Remark 3.7. 1. In the statement of hypotheses (H2)-(H5), the matrices Aj, Bj,k are
defined differently from (3.17) (for example, Ãd in (3.17) is replaced by Ad in the original
definition (2.13) of Ad). However, it is easy to check that whenever (H2)-(H5) hold for
those matrices with their original definitions, the same hypotheses hold when the matrices
are defined as in (3.17).

2. We shall prove the estimate (3.9) by separate arguments for the regions 0 ≤ γ ≤ δ|ζ|
and γ ≥ δ|ζ|. In the first region we may not treat Ev as a negligible lower order term.

3. Observe that A and A are functions of (z, q, ξ), while Aj and Aj are functions of
(z, q).

We will label each Proposition, Corollary, etc., in this section with either a (P) or an
(E) to indicate, respectively, either that it holds all along the profile (i.e., for all z) or just
near the endstates (i.e., just for |z| sufficiently large).

The first Proposition will allow us to reformulate the strict dissipativity condition (H5)
and verify it for L when |ξ| is large enough. Throughout this section we let O be a bounded
open neighborhood of 0 as in Proposition 2.10, and for q = (p, u′, h′) with

p ∈ C, (u′, h′) ∈ O,(3.19)

we take W (z, q) to be a profile in the sense of Definition 2.16.

Proposition 3.8 (P). (a) Assume (H2) (ellipticity of the block B
22

(z, q, ξ)) and (3.19).
For |ξ| large enough there are C∞ matrices V (z, q, ξ), symbols of degree 0 in ξ, such that

V −1(iA +B + E)V =

(
Â11 0

0 B̂22

)
,(3.20)

with

Â11(z, q, ξ) = iA
11

(z, q, ξ) + (A
12

(B
22

)−1A
21

+ E
11

) +O(|ξ|−1),

B̂22(z, q, ξ) = B
22

(z, q, ξ) +O(|ξ|),

V (z, q, ξ) = I +

(
0 iA

12
(B

22
)−1

−i(B22
)−1A

21
0

)
+O(|ξ|−2).

(3.21)

(b) The same result holds when E is set equal to zero and A is replaced by A.

Proof. A direct computation and simple perturbation argument shows that (3.20) holds for
a V of the given form.

Corollary 3.9 (P). Assume (H2) and (3.19). There exist R > 0 and c > 0 such that for
|ξ| ≥ R, the eigenvalues λ of iA(z, q, ξ) +B(z, q, ξ) satisfy ℜλ > c if and only if

spec{iA11
(z, q, ξ) +A

12
(B

22
)−1A

21} ⊂ {ℜλ > c}.(3.22)

Proof. Given (H2), this follows from part (b) of the above Proposition.
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Corollary 3.10 (E). Assume (H2), (H5), and (3.19). There exist R > 0 and Z1 ≥ Z such
that for |ξ| ≥ R and |z| ≥ Z1, the following equivalent properties hold:

(a) spec{iA11
(z, q, ξ) +A

12
(B

22
)−1A

21} ⊂ {ℜλ > c},
(b) spec{iA11

(z, q, ξ) + A
12

(B
22

)−1A
21

+ E
11

(z, q)} ⊂ {ℜλ > c},
(c) spec{iA(z, q, ξ) +B(z, q, ξ) + E(z, q)} ⊂ {ℜλ > c}

(3.23)

for some constant c > 0 which may vary from line to line.

Proof. Hypothesis (H5) and Corollary 3.9 imply that (3.23)(a) holds for |ξ| large and |z| ≥
Z.

Since A
11

(z, q, ξ) = A
11

(z, q, ξ) and

|A12
(B

22
)−1A

21 −A
12

(B
22

)−1A
21| + |E11| ≤ Ce−θ|z|(3.24)

for some δ > 0, (3.23)(a) is equivalent to (3.23)(b) for |z| ≥ Z1 large enough. The equiva-
lence of (3.23)(b) and (3.23)(c) then follows from part (a) of Proposition 3.8.

Example 3.11. Assume s = N − 1 or, more generally, that

L11
= (iτ + γ +

d∑

j=1

aj(z, q)iξj + e)I(3.25)

with aj, e scalar. Then (3.23) holds for |z| and |ξ| large if and only if

spec
(
A

12
(B

22
)−1A

21
)
⊂ {ℜλ > c}.(3.26)

By (H3) the eigenvalues of A
11

(z, q, ξ) are real and semisimple with constant multiplici-
ties, and we can push further the diagonalization process. Denote by λk(z, q, ξ) the distinct

eigenvalues of A
11

(z, q, ξ) = A
11

(z, q, ξ) with multiplicities rk. Then, locally in ξ, there
exists a smooth, homogeneous symbol V1(z, q, ξ) of degree zero in ξ such that

(V1)
−1A

11
V1 = diag(λkIrk),(3.27)

where Ir denotes the r× r identity matrix (see Remark 3.13). By perturbation there is, for
|ξ| large, a matrix W1 = V1 +O(|ξ|−1) such that for Â11 as in (3.21) we have

(W1)
−1Â11W1 = diag(Â11

k ), Â11
k = iλkIrk + C11

k ,(3.28)

where the rk×rk blocks C11
k (z, q, ξ) are symbols of order zero in ξ. This yields the following

additional corollary of Proposition 3.8:

Corollary 3.12 (E). Assume (H2), (H5), and (3.19). There exist positive constants R, c,
and Z1 such that for |ξ| ≥ R and |z| ≥ Z1, the following property, equivalent to those in
(3.23), holds:

spec C11
k ⊂ {ℜλ > c} for all k,(3.29)

with C11
k as in (3.28).

Remark 3.13. The results of subsection 3.2.2 still hold for W (z, q) satisfying only condi-
tions (a) and (b) of Definition 2.16. This observation is used later in estimating solutions
supported away from the front, where we must allow u′ to be large.
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3.2.3 Reduction to a first-order system

Separating the equation

L(z, q, ζ, ∂z)u = f(3.30)

into its first and second components and using

A1k
j = Ã1k

j , k = 1, 2,(3.31)

we obtain

(a) Ã11
d ∂zu

1 + Ã12
d ∂zu

2+

E11u1 + E12u2 +A11
0 (iτ + γ)u1 +

d−1∑

j=1

(Ã11
j iηju

1 + Ã12
j iηju

2) = f1

(b) − B̃22
d,d∂

2
zu

2 + A21
d ∂zu

1 +


A22

d −
d−1∑

j=1

(B̃22
j,d + B̃22

d,j)iηj


 ∂zu

2+

E21u1 + E22u2 +A21
0 (iτ + γ)u1 +A22

0 (iτ + γ)u2+

d−1∑

j=1

A21
j iηju

1 + (

d−1∑

j=1

A22
j iηj +

d−1∑

j,k=1

B̃22
j,kηjηk)u

2 = f2.

(3.32)

Let

U =




u1

u2

∂zu
2


 and J f =




(Ã11
d )−1f1

0

−(B̃22
d,d)

−1(f2 − A21
d (Ã11

d )−1f1)


 .(3.33)

We can now rewrite the second-order N × N transmission problem (3.8) as an equivalent
first-order (N + s) × (N + s) transmission problem:

∂zU −G(z, q, ζ)U = J f
[U ] = 0 on z = 0,

(3.34)

where

G =



G11 G12 G13

0 0 I
G31 G32 G33


 ,(3.35)
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with

G11(z, q, ζ) = −(Ã11
d )−1(z, q)


E11(z, q) +A11

0 (iτ + γ) +

d−1∑

j=1

Ã11
j iηj




G12 = −(Ã11
d )−1


E12 +

d−1∑

j=1

Ã12
j iηj




G13 = −(Ã11
d )−1Ã12

d

G31 = (B̃22
d,d)

−1


E21 +A21

0 (iτ + γ) +
d−1∑

j=1

A21
j iηj + A21

d G
11




G32 = (B̃22
d,d)

−1


E22 +A22

0 (iτ + γ) +
d−1∑

j=1

A22
j iηj +

d−1∑

j,k=1

B̃22
j,kηjηk + A21

d G
12




G33 = (B̃22
d,d)

−1


A22

d −
d−1∑

j=1

(B̃22
j,d + B̃22

d,j)iηj + A21
d G

13


 .

(3.36)

We note that:

G11 is first order in ζ,

G12 is first order in η,

G13 is independent of ζ,

G31 is first order in ζ,

G32 is first order in iτ + γ and second order in η,

G33 is first order in η.

3.2.4 Decoupling.

In the proof of the estimate (3.9), a key step is to obtain a decoupling of G into hyperbolic
and parabolic blocks. We’ll see in section 3.2.7 that this can be done without any further
change of dependent variable for frequencies in any region of the form γ ≥ C|ζ|. In this
section we concentrate on the region 0 ≤ γ ≤ δ|ζ|, where δ is some small enough constant
to be chosen.

For later error control in the variable coefficient estimates, it is desirable to accomplish
the decoupling with a conjugator whose entries are homogeneous symbols (like |ζ|). After
decoupling, the estimate for the hyperbolic block will be carried out using homogeneous
symbols, but for the parabolic block we introduce a rescaling based on the parabolic symbol
Λ(ζ) to obtain an optimal estimate.
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The decoupling is easier when G is rescaled as follows. If U = (u1, u2, u3) in (3.34) is
replaced by Ũ = (u1, |ζ|u2, u3), then G must be replaced by

G̃ =



G11 G12|ζ|−1 G13

0 0 |ζ|Is
G31 G32|ζ|−1 G33


 :=

(
G11 M12

M21 M22

)
,(3.37)

a zero-order perturbation of the first-order matrix

(
G11 0
M21 M22

)
. Note that M22 and

M22
in =

(
0 I
G32 G33

)
(3.38)

have the same eigenvalues.

Lemma 3.14 (P). Assume (H2), (H3), (H8), and (3.19). There exist positive constants c,
δ, and R such that for |ζ| ≥ R, 0 ≤ γ ≤ δ|ζ| and all z, the distance between the spectrum
of G11(z, q, ζ) and the spectrum of M22(z, q, ζ) is larger than c|ζ|.

Proof. The dependence on (z, q) enters only through W (z, q) and ν(h + h′), so we may
reduce by compactness to considering a single choice of (z, q). Since we are concerned only
with large |ζ|, it suffices to consider just the principal terms (homogeneous of degree one in
ζ) in these matrices, and to show that the principal parts G11

p and M22
p have no common

eigenvalue when |ζ| = 1 and γ is small enough.
Suppose γ = 0. Then by Proposition 2.10 the eigenvalues of G11

p are purely imaginary.
If η 6= 0, (H2) implies that eigenvalues µ2 of M22

p satisfy ℜµ2 6= 0. Moreover, when η = 0,
we have M22

p = 0 and

G11
p = −(Ã11

d )−1A11
0 iτ(3.39)

has nonzero eigenvalues. Thus, for γ = 0 and |ζ| = 1, the matrices G11
p and M22

p have no
common eigenvalue. This remains true for γ small.

Definition 3.15. Let ζ = (τ, γ, η) and for a multi-index α = (ατ , αη), set |α| = ατ + |αη|
and ‖α‖ = 2ατ + |αη|.

Denote by Γm the space of homogeneous symbols of order m

Γm = {h(z, q, ζ) ∈ C∞ : |∂βz,q∂ατ,ηh| ≤ Cβα|ζ|m−|α|, |ζ| ≥ 1, any α, β}.

Denote by PΓm the space of parabolic symbols of order m

PΓm = {h(z, q, ζ) ∈ C∞ : |∂βz,q∂ατ,ηh| ≤ Cβα|Λ(ζ)|m−‖α‖, |ζ| ≥ 1, any α, β}.

We use the same notation for spaces of homogeneous or parabolic matrix symbols of any
fixed dimension.

The following corollary of Lemma 3.14 gives a partial decoupling of G̃.
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Corollary 3.16 (P). Under the assumptions of Lemma 3.14, there is a homogeneous symbol

W (z, q, ζ) =

(
IN−s 0
W 21 I2s

)
∈ Γ0(3.40)

such that

W−1G̃W =

(
G11 +M12W 21 M12

−W 21M12W 21 M22 −W 21M12

)
:= G̃0 ∈ Γ1,(3.41)

where the off-diagonal blocks belong to Γ0.

Proof. A short computation using the explicit forms of W , G̃, and G̃0 shows that we just
need to choose W 21 satisfying

W 21G11 −M22W 21 = M21.(3.42)

Now W 21 is a 2s × (N − s) matrix, so we can identify it with an element of Cp, where
p = 2s(N − s). Let

h : Cp → Cp(3.43)

be the linear map defined by the left side of (3.42) using this identification. The eigenvalues
of h are differences µ1 − µ2, where µ1 (resp., µ2) is an eigenvalue of G11 (resp., M22). The
map h is given by a p×p matrix whose entries belong to Γ1 and whose determinant satisfies

|deth| ≥ C|ζ|p(3.44)

by Lemma 3.14. Thus, h−1 ∈ Γ−1 and

W 21 = h−1(M21) ∈ Γ0.(3.45)

From Corollary 3.16 we deduce readily the following partial decoupling of G itself.

Corollary 3.17 (P). Under the assumptions of Lemma 3.14 and for W 21 as in (3.40), let

W 21 =

(
W 21
a

W 21
b

)
and W21 =

(
W 21
a |ζ|−1

W 21
b

)
,(3.46)

where the a and b entries are each of size s× (N − s). Then

W =

(
I 0

W21 I

)
∈ Γ0(3.47)

satisfies

W−1GW =



G11 +M12W 21 G12 G13

G21
0 −W 21

a |ζ|−1G12 Is −W 21
a |ζ|−1G13

G31
0 G32 −W 21

b G12 G33 −W 21
b G13


 := G0,(3.48)

where

G21
0 = −W 21

a (|ζ|−2G12W 21
a + |ζ|−1G13W 21

b ) ∈ Γ−1

G31
0 = −W 21

b (|ζ|−1G12W 21
a +G13W 21

b ) ∈ Γ0.
(3.49)
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Proof. For each (i, j) the equation expressing equality of the (i, j) entries in GW = WG0

is a multiple of the corresponding equation for G̃W = WG̃0.

Remark 3.18. We’ll use the partial decoupling given by Corollary 3.17 in the high frequency
estimate. The complete decoupling of G̃ given in the next Proposition is useful for the
spectral analysis of the block

G11 +M12W 21 = G11
0 .(3.50)

Proposition 3.19 (P). Under the assumptions of Lemma 3.14, there is a matrix W(z, q, ζ) ∈
Γ0 such that

W−1G̃W =

(
Ĝ11 0

0 M̂22

)
:= Ĝ,(3.51)

where

Ĝ11 = G11 +M12W 21 = G11
0 ∈ Γ1,

M̂22 = M22 + g ∈ Γ1, g ∈ Γ0.
(3.52)

Proof. Set

W =

(
IN−s b
W 21 I2s

)
(3.53)

where b ∈ Γ−1, and solve for b and g by equating corresponding entries in

G̃W = WĜ.(3.54)

Define g in terms of b using equality of the (2, 2) entries, substitute into the equality for the
(1, 2) entries, and solve the resulting nonlinear equation for b using invertibility of

h̃(b) = G11b− bM22,(3.55)

as follows from Lemma 3.14.

3.2.5 Spectral properties of Ĝ11

Let µk(z, q, ζ) of multiplicity sk, k = 1, . . . , k0, denote the distinct eigenvalues of G11
p (z, q, ζ),

the principal part of G11. By Proposition 2.10 the µk are purely imaginary and semisimple
with constant multiplicity for γ = 0. In addition we have:

Proposition 3.20 (P). Assume (H3), (H8), and (3.19). There exists a δ > 0 such that for
0 ≤ γ ≤ δ|ζ|, the µk are C∞ in (z, q, η), analytic in τ − iγ and semisimple with constant
multiplicity. Moreover, for γ > 0, ℜµk 6= 0 and has the same sign for all k, namely −sgn(β),

where β is any eigenvalue of A
11
d (z, q).
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Proof. The µk(z, q, ·) are real analytic in (τ, η) ∈ Rd \ 0 and homogeneous of degree one,
so can be extended analytically in τ − iγ near γ = 0 as smooth functions of (z, q, η).
The eigenvectors associated to µk extend analytically as well. Semisimplicity and constant
multiplicity of the extended µk follow from analyticity.

Hyperbolicity of A
11

(z, q, ξ) (H3) implies ℜµk 6= 0 for γ > 0. Setting (τ, η) = 0 in G11
p

and using (H8) shows that the signs are as described.

Using Proposition 3.20 and arguing as in (3.28), we obtain, for |ζ| large and 0 ≤ γ ≤ δ|ζ|,
matrices V(z, q, ζ) ∈ Γ0 such that

V−1Ĝ11V = diag(µkIsk
+Rk),(3.56)

where Rk ∈ Γ0 is an sk × sk block, k = 1, . . . , k0.

Remark 3.21. At first sight the matrices V(z, q, ζ) and Rk can be chosen smoothly only
locally in (z, q, ζ). A classical result of Kato ([Kat], p. 99-102) implies that for (q, ζ) with |ζ|
large and lying in a conic neighborhood of an arbitrary basepoint (q, ζ̂) such that 0 ≤ γ̂ ≤ δ,

such conjugators can be chosen smoothly in (z, q, ζ) for all z. Here ζ̂ = ζ/|ζ|. We use this
observation later in the variable coefficient analysis.

The main result of this subsection, needed for the estimate of the hyperbolic block, is
that for all k, the real part of spec Rk is bounded away from zero and has the same fixed

sign, namely −sgn(β) = sgn(ℜµk), where β is any eigenvalue of A
11
d (z, q) (recall (H8)).

Recalling that (z, q) dependence enters only through W (z, q), we let

R±∞
k (q, ζ) = lim

z→±∞
Rk(z, q, ζ).(3.57)

Proposition 3.22. Assume (H2), (H3), (H5), (H8), and (3.19). Let µk(z, q, ζ) denote the

distinct eigenvalues of G11
p , the principal part of G11, and let β be any eigenvalue of A

11
d .

Let νkl denote the eigenvalues of Rk. There exist positive constants R, Z1, c, and δ such
that:

(i)(P ) (−sgnβ)ℜµk ≥ cγ for 0 ≤ γ ≤ δ|ζ|, all (z, q), and all k.
(ii)(E) For |ζ| ≥ R, |z| ≥ Z1, and 0 ≤ γ ≤ δ|ζ|, we have

sgn(ℜνkl) = sgn(ℜµk) = −sgn(β) for all k, l

|ℜνkl| ≥ c for all k, l.
(3.58)

The proof is given below.

In view of (3.58), after modifying V if necessary, we may assume for ζ as in (3.58)

−sgn(β)ℜRk ≥ c > 0 for |z| ≥ Z1 and all k.(3.59)

Together with part (i) of the Proposition, this gives

Corollary 3.23 (P). With assumptions as in Proposition 3.22, we have for all k, |ζ| ≥ R,
0 ≤ γ ≤ δ|ζ|, and all (z, q),

(P ) − sgn(β)ℜ
(
µk(z, q, ζ)Isk

+R±∞
k (q, ζ)

)
≥ c(γ + 1).(3.60)
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Remark 3.24. The proof of Proposition 3.22 depends on the next Lemma. In preparation
note first that for |ζ| large and δ small, the functions Ĝ11 and Rk in (3.56) are analytic in
τ − iγ for 0 ≤ γ ≤ δ|ζ|. Writing λk(z, q, ξ) = λk(z, q, η, ξd) for λk as in (3.28) and letting
ξd denote a complex variable now, we see by arguing as in Proposition 3.20 that the λk can
be extended analytically in ξd to 0 ≤ |ℑξd| ≤ δ1|η, ξd| for δ1 small enough, as semisimple

eigenvalues of A
11

(z, q, η, ξd) with constant multiplicities. Moreover, for large |η, ξd| the
functions Â11 and C11

k in (3.28) extend analytically in ξd to 0 ≤ |ℑξd| ≤ δ1|η, ξd|.

Lemma 3.25 (P). Assume (H2), (H3), (H8), and (3.19). Fix C1 > 0 and assume |iτ+iγ| ≤
C1|η, ξd|2. There exist positive constants R and δ such that for |η, ξd| ≥ R, 0 ≤ γ ≤ δ|ζ|,
and |ℑξd| ≤ δ|η, ξd| we have

det(iξd − Ĝ11(z, q, ζ)) = c(z, q, ζ, ξd) det(iτ + γ + Â11(z, q, η, ξd)),(3.61)

where

c(z, q, ζ, ξd) = (detA
11
d )−1 +O(|ζ, ξd|−1).(3.62)

Proof. 1. With L as in (3.16) we have

det(iξd − G̃(z, q, ζ)) = det(iξd −G) = c1(z, q) detL, with

c1(z, q) = (−1)s det(Ã11
d )−1 det(B̃22

d,d)
−1 detA0,

(3.63)

as follows by performing obvious row and column operations on det(iξd −G). Propositions
3.8 and 3.19 thus give

det(iξd − Ĝ11) det(iξd − M̂22) = c1(z, q) det(iτ + γ + Â11) det(iτ + γ + B̂22).(3.64)

2. We’d like to cancel the final factors on each side of (3.64). First, with M22
in as in

(3.38) we have

det(iξd − M̂22) = det(iξd −M22) +O(|ζ, ξd|2s−1) = det(iξd −M22
in ) +O(|ζ, ξd|2s−1)

= c2(z, q) det(iτ + γ +B
22

(z, q, ξ)) +O(|ζ, ξd|2s−1)

= c2(z, q) det(iτ + γ + B̂22(z, q, ξ)) +O(|ζ, ξd|2s−1),

(3.65)

where c2(z, q) = (−1)s det(B̃22
d,d)

−1 detA22
0 , as follows by performing row operations on

det(iξd −M22
in ).

3. By (H2), for ξ = (η, ξd) real and µ an eigenvalue of B
22

(z, q, ξ) we have

ℜµ ≥ |ξ|2.(3.66)

For δ small (3.66) continues to hold for 0 ≤ |ℑξd| ≤ δ|η, ξd|. Thus, for 0 ≤ |ℑξd| ≤ δ|η, ξd|,
and |iτ + γ| ≤ C1|η, ξd|2, there holds

|det(iτ + γ +B
22

(z, q, ξ))| ≈ |η, ξd|2s.(3.67)
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We may now cancel in (3.64) and obtain (3.61) with

c(z, q, ζ, ξd) =
c1(z, q)

c2(z, q)
+O(|ζ, ξd|−1) = (detA

11
d )−1 +O(|ζ, ξd|−1).(3.68)

Before proving Proposition 3.22, we first illustrate it in an important special case that
includes the Navier-Stokes equations.

Example 3.26. Assume s = N − 1, so that

L11
= iτ + γ +

d∑

j=1

A
11
j (z, q)iξj + E

11
(3.69)

with A
11

, E
11

scalar. Writing

Â11(z, q, ξ) = iA
11

(z, q, ξ) + E
11

(z, q) + R(z, q, ξ)

Ĝ11(z, q, ζ) = G11(z, q, ζ) +R1(z, q, ζ)
(3.70)

we have ℜµ1 = −(A
11
d )−1γ now and, by Corollary 3.12,

R(z, q, ξ) ≥ c > 0 for |ξ| and |z| large.(3.71)

The equation (3.61) is

iξd − (G11 +R1) = c(z, q, ζ, ξd)


iτ + γ +

d−1∑

j=1

A
11
j iηj +A

11
d iξd + E

11
+ R


 .(3.72)

Using (3.62) and setting

ξ̃d = −(A
11
d )−1(τ − iγ +

d−1∑

j=1

A
11
j ηj − iE

11
)

we find

R1(z, q, ζ) = −(A
11
d )−1R(z, q, η, ξd)|ξd=ξ̃d

+O(|ζ|−1).

With (3.71) this implies the conclusions of Proposition 3.22 for this example. In particular,

sgn ℜR1 = −sgn β = −sgn A
11
d and |ℜR1| ≥ c > 0.

Proof of Proposition 3.22. 1. If iξd ∈ spec G11
p (z, q, ζ), then

−(iτ + γ) ∈ spec iA
11

(z, q, η, ξd) = spec



d−1∑

j=1

A
11
j iηj +A

11
d iξd


 ,(3.73)
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so

|iτ + γ| ≤ C|η, ξd| and |η, ξd| ≈ |ζ|(3.74)

for some C > 0. Thus, (3.74) holds also for iξd ∈ spec Ĝ11(z, q, ζ) for |ζ| large, so we may
assume (3.74) in the proof of Proposition 3.22. In particular, Lemma 3.25 applies.

2. Introducing polar coordinates ζ = ρζ̂ = ρ(τ̂ , γ̂, η̂) and setting

ǫ = 1/ρ, ξ̂d = ξd/ρ,(3.75)

we may use the block decompositions of Â11 (3.28) and Ĝ11 (3.56) to rewrite the equation
(3.61) as

∏

k

det
(
(iξ̂d − µk(z, q, τ̂ − iγ̂, η̂))Isk

− ǫRk(z, q, τ̂ − iγ̂, η̂, ǫ)
)

=

c
∏

j

det
(
(iτ̂ + γ̂ + iλj(z, q, η̂, ξ̂d))Irj + ǫC11

j (z, q, η̂, ξ̂d, ǫ)
)
.

(3.76)

Here

Rk(z, q, τ̂ − iγ̂, η̂, ǫ) := Rk(z, q, ζ) = Rk0(z, q, ζ̂) +O(ǫ)

C11
j (z, q, η̂, ξ̂d, ǫ) := C11

j (z, q, η, ξd) = C11
j0 (z, q, η̂, ξ̂d) +O(ǫ),

(3.77)

where Rk0 (resp. C11
j0 ) is homogeneous of degree zero in ζ (resp. (η, ξd)).

3. We work near a basepoint (τ̂ , 0, η̂) 6= 0, ǫ = 0. Consider an eigenvalue (necessarily

purely imaginary) µ̂
k

= iξ̂
d

of G11
p (z, q, τ̂ , 0, η̂). By (H3) there exists a unique eigenvalue λj

of A
11

(z, q, ξ) such that

τ̂ + λ(z, q, η̂, ξ̂
d
) = 0.(3.78)

Moreover, by (2.32) (τ̂ , η̂, ξ̂
d
) is nonglancing:

∂ξdλj(z, q, η̂, ξ̂d) := α ∈ R \ 0.(3.79)

From (3.76) we obtain

△j := det
(
(iτ̂ + γ̂ + iλj(z, q, η̂, ξ̂d))Irj + ǫC11

j (z, q, η̂, ξ̂d, ǫ)
)

=

c′△̃k := c′ det
(
(iξ̂d − µk(z, q, τ̂ − iγ̂, η̂))Isk

− ǫRk(z, q, τ̂ − iγ̂, η̂, ǫ)
)
,

(3.80)

with c′(z, q, ζ̂, ξ̂d, ǫ) 6= 0 near the basepoint.
4. Taylor expanding (3.80) about the basepoint with ξ′d = ξ̂d − ξ̂

d
and τ ′ = τ̂ − iγ̂ − τ̂

both complex gives

△j(z, q, τ̂ − iγ̂, η̂, ξd, ǫ) = det
(
i(τ ′ + αξ′d)Irj + ǫC11

j

)
+O(|τ ′, ξ′d, ǫ|rj+1) =

c′△̃k(z, q, τ̂ − iγ̂, η̂, ξd, ǫ) = c′ det
(
i(ξ′d − τ ′∂γℜµk(z, q, τ̂ , η̂))Isk

− ǫRk
)

+O(|τ ′, ξ′d, ǫ|sk+1),

(3.81)
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where underlining indicates evaluation at the basepoint. Taking ǫ = 0 and τ ′ = −iγ̂ in
(3.81) and equating leading terms gives

irj (−iγ̂ + αξ′d)
rj = c′isk(ξ′d + iγ̂∂γℜµk)sk ,(3.82)

from which we conclude

rj = sk and ∂γℜµk(z, q, τ̂ , η̂) = − 1

α
∈ R \ 0,(3.83)

giving, in particular, part (i) of Proposition 3.22. (We knew rj = sk already from part 3 of
the proof of Prop. 2.10.)

5. Now take τ ′ = 0 and equate leading terms in (3.81) to get

det(iαξ′dIrj + ǫC11
j ) = c′ det(iξ′dIrj − ǫRk).(3.84)

Thus, the eigenvalues of Rk are the same as the eigenvalues of − 1
αC

11
j . By Corollary 3.12

this implies that for |z| large, if νkl is an eigenvalue of Rk(z, q, τ̂ , η̂), then

ℜνkl 6= 0 and sgn(ℜνkl) = sgn(− 1

α
) = sgn(∂γℜµk) = −sgn(β).(3.85)

The last equality is a consequence of Proposition 3.20. By continuity and compactness,
(3.85) implies part (ii) of Proposition 3.22.

3.2.6 Spectral properties of the parabolic block M22
in

Introduce “parabolic polar coordinates at infinity”

Λ0(ζ) = (τ2 + γ2 + |η|4)1/2

ζ̌ = (τ̌ , γ̌, η̌) =

(
τ

Λ2
0

,
γ

Λ2
0

,
η

Λ0

)
,

(3.86)

and write

G32(z, q, ζ) = Λ2
0Ǧ

32, G33 = Λ0Ǧ
33

M22
in =

(
0 I
G32 G33

)
, M̌22

in :=

(
0 I

Ǧ32 Ǧ33

)
.

(3.87)

In the next Proposition we allow q to vary in a set Q∗ which may be larger than Q = C×O
as in (3.19).

Proposition 3.27 (P). Assume (H2) and that for all (z, q) ∈ R×Q∗, W (z, q) ∈ U∗. There
exist positive constants R and C such that for |ζ| ≥ R and all (z, q), the 2s × 2s matrix
M22
in (resp. M̌22

in ) has s eigenvalues, counted with their multiplicities, in ℜµ > 0 and s
eigenvalues in ℜµ < 0. They satisfy |ℜµ| ≥ CΛ0(ζ) (resp. |ℜµ| ≥ C).
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Proof. The proof is identical to that of Lemma 2.5 (i) in [MZ1]. Hypothesis (H2) and
compactness imply the result for M̌22

in . The result for M22
in follows since

spec (M22
in ) = spec (Λ0M̌

22
in ).(3.88)

The following immediate Corollary of Proposition 3.27 will be used in the construction
of symmetrizers for the parabolic block. Let λ = 1/Λ0 and for any z let Πn(z, q, ζ̌, λ)
(resp. Πp(z, q, ζ̌, λ) denote the spectral projectors onto the s-dimensional invariant spaces
F∞
n (z, q, ζ̌, λ) ⊂ C2s (resp. F∞

p (z, q, ζ̌, λ)) of M̌22
in associated to eigenvalues with negative

(resp. positive) real part. Proposition 3.27 implies the projectors are defined and smooth
for λ ∈ [0, λ0] for some small λ0. Define

Γ : C4s → C2s, Γ(v+, v−) := v+ − v−

F∞(z, q, ζ̌, λ) = F∞
n (z, q, ζ̌, λ) × F∞

p (z, q, ζ̌, λ) ⊂ C4s.
(3.89)

Corollary 3.28 (P). Under the assumptions of Proposition 3.27, there exists λ0 > 0 such
that the following two equivalent statements hold for λ ∈ [0, λ0] and all (z, q):

C2s = F∞
n (z, q, ζ̌, λ) ⊕ F∞

p (z, q, ζ̌, λ)

F∞(z, q, ζ̌, λ) ∩ ker Γ = {0}.
(3.90)

Remark 3.29. We use (3.90) only for z = 0 in the construction of symmetrizers. In that
case the statement implies that an appropriately rescaled Evans function (as in [GMWZ3],
Prop. 2.12) is bounded away from zero for |ζ| large. The construction can be done without
introducing such an Evans function, so we don’t define it here.

3.2.7 Estimates

In this subsection we complete the proof of Proposition 3.5, using the reduction to a first-
order system (3.34). Let f = (f1, f2) be as in the estimate (3.9).

Proof of Proposition 3.5. 1. Reductions; the case 0 ≤ γ ≤ δ|ζ|. For U = (u1, u2, u3)
satisfying the transmission problem (3.34):

∂zU −G(z, q, ζ)U = J f :=



g1
0
g3




[U ] = 0 on z = 0

(3.91)

to prove the estimate (3.9) it suffices to show

(1 + γ)‖u1‖ + Λ‖u2‖ + ‖u3‖ +
√

1 + γ|u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |u3(0)|
≤ C(‖g1‖ + Λ−1‖g3‖),

(3.92)

since ‖g1‖ + Λ−1‖g3‖ ≤ C(‖f1‖ + Λ−1‖f2‖).
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We first treat the more difficult case where the frequency ζ satisfies 0 ≤ γ ≤ δ|ζ|.
For the conjugator W as in (3.48), set U = WV to derive the equivalent problem for

V = (v1, v2, v3):

Vz −G0V = W−1



g1
0
g3


− (W−1Wz)V =




g1
O(|ζ|−1)g1
O(1)g1 + g3


+




0
O(|ζ|−1)v1
O(1)v1




[V ] = 0 on z = 0,

(3.93)

where

G0 =




Ĝ11 O(|η|) O(1)
O(|ζ|−1) O(1) I +O(|ζ|−1)
O(1) G32 +O(|η|) G33 +O(1)


 .(3.94)

Estimating the components of U in terms of those of V , we reduce to proving the estimate

(1 + γ)‖v1‖ + Λ‖v2‖ + ‖v3‖ +
√

1 + γ|v1(0)| + Λ
1

2 |v2(0)| + Λ− 1

2 |v3(0)|
≤ C(‖g1‖ + Λ−1‖g3‖)

(3.95)

for (3.93).
Next use (3.94) to rearrange (3.93)

Vz −



Ĝ11 0 0
0 0 I
0 G32 G33


V =




g1 +O(|η|)v2 +O(1)v3
O(|ζ|−1)g1 +O(|ζ|−1)v1 +O(1)v2 +O(|ζ|−1)v3
O(1)g1 + g3 +O(1)v1 +O(|η|)v2 +O(1)v3


 :=



h1

h2

h3


 .

(3.96)

The estimate (3.95) follows directly from the estimates

(a) (1 + γ)‖v1‖ +
√

1 + γ|v1(0)| ≤ C‖h1‖
(b) Λ‖v2‖ + ‖v3‖ + Λ

1

2 |v2(0)| + Λ− 1

2 |v3(0)| ≤ C(‖h2‖ + Λ−1‖h3‖)
(3.97)

for (3.96), after absorbing a few terms from the right by taking |ζ| large. It remains just to
prove (3.97).

2. The hyperbolic block. Consider the (N − s) × (N − s) transmission problem

∂zv1 = Ĝ11v1 + h1, [v1] = 0 on z = 0.(3.98)

With notation as in (3.56) let

Λ = diag(µkIsk
+Rk), v1 = V(z, q, ζ)w,(3.99)

and rewrite (3.98)

∂zw = Λw + V−1h1 − V−1Vzw
[w] = 0 on z = 0.

(3.100)
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On ±z ≥ 0 we have Rk − R±∞
k = O(e−θ|z|) and V−1Vz = O(e−θ|z|) for θ > 0 as in

Definition 2.16. Let

w = (w1, . . . ,wk0) and V−1h1 = (h1, . . . , hk0).(3.101)

Then the equation given by the kth block in (3.100) is, say when k = 1,

∂zw1 =
(
µ1 +R±∞

1 +O(e−θ|z|)
)

w1 + h1 +
∑

k>1

O(e−θ|z|)wk.(3.102)

Since we want an estimate valid for 0 ≤ γ ≤ δ|ζ|, we can’t simply absorb the O(e−θ|z|)
terms in (3.102) by taking γ large. Instead, we take advantage of the exponentially decaying
factors by introducing exponential weights eφ(z) as follows.

Consider the case −sgn(β) = 1. By Corollary 3.23 we have then

ℜ(µk +R±∞
k ) ≥ c(γ + 1) for all k.(3.103)

For a uniformly bounded weight function φ(z) to be chosen, set

ω = (ω1, . . . , ωk0) = eφw = eφ(w1, . . . ,wk0).(3.104)

Letting ω± = ω|±z≥0 we first estimate ω+. From (3.102) we have for z ≥ 0:

∂zω
+
1 =

(
µ1 +R+∞

1 +O(e−θz) + φ′
)
ω+

1 + eφh1 +
∑

k>1

O(e−θz)ω+
k .(3.105)

Denote the inner product in Csk by ( , ). Pairing (3.105) with ω+
1 and integrating

∫∞
0 yields

|ω+
1 (0)|2 + 2ℜ

∫ ∞

0

(
(µ1 +R+∞

1 )ω+
1 , ω

+
1

)
+ 2ℜ

∫ ∞

0

(
(O(e−θz) + φ′)ω+

1 , ω
+
1

)
=

− 2ℜ
∫ ∞

0
(eφh1, ω

+
1 ) − 2ℜ

∫ ∞

0

∑

k>1

(ω+
k , O(e−θz)ω+

1 ).
(3.106)

Using (3.103) we find

|ω+
1 (0)|2 + 2c(γ + 1)‖ω+

1 ‖2 + 2ℜ
∫ ∞

0

(
(O(e−θz) + φ′)ω+

1 , ω
+
1

)
≤

c(γ + 1)‖ω+
1 ‖2 + Cφ

‖h+
1 ‖2

γ + 1
+ α‖ω+‖2 + Cα‖e−θzω+

1 ‖2,

(3.107)

where Cα depends just on α and V.
The O(e−θz) term on the left in (3.106) depends on R1 as well as V. Anticipating similar

estimates for the other ω+
k and noting that α and Cα can be fixed independently of k ahead

of time, we now choose φ uniformly bounded on [0,∞) such that

2ℜ
(
O(e−θz) + φ′

)
≥ Cαe

−2θz for all k,(3.108)
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and cancel terms in (3.107) to obtain

|ω+
1 (0)|2 + c(γ + 1)‖ω+

1 ‖2 ≤ Cφ
‖h+

1 ‖2

γ + 1
+ α‖ω+‖2.(3.109)

Adding (3.109) to similar estimates for the other components ω+
k , we find, provided α

was taken small enough,

√
1 + γ|ω+(0)| + (γ + 1)‖ω+‖ ≤ C‖h+

1 ‖.(3.110)

The boundedness of φ implies

√
1 + γ|w+(0)| + (γ + 1)‖w+‖ ≤ C‖h+

1 ‖.(3.111)

A similar argument on (−∞, 0] yields

(γ + 1)‖w−‖ ≤ C
(
‖h−1 ‖ +

√
1 + γ |w−(0)|

)
.(3.112)

Combining the estimates (3.111) and (3.112) using w+(0) = w−(0), and recalling v1 = Vw
gives (3.97)(a) in the case −sgn(β) = 1. The case −sgn(β) = −1 is essentially the same.

Remark 3.30. The exponentially weighted estimate used for the hyperbolic block is similar
to estimates that appear in some papers dealing with the one-dimensional case; see for
example [Go, GX].

3. The parabolic block. To prove (3.97)(b) we set ũ = (v2, v3) ∈ C2s and consider
the transmission problem

∂zũ = M22
in ũ+

(
h2

h3

)
, [ũ] = 0 on z = 0.(3.113)

With G = M̌22
in as in (3.87) and u = (u2, u3) := (Λ0(ζ)v2, v3), we have the equivalent

problem

∂zu = Λ0Gu+

(
Λ0h2

h3

)
, [u] = 0 on z = 0.(3.114)

We can use the spectral projectors Πn, Πp defined just below (3.88) to construct a smooth
conjugator V (z, q, ζ̌, λ) for λ ∈ [0, λ0] such that

V −1GV =

(
Pp 0
0 Pn

)
,(3.115)

where the spectrum of Pp (resp. Pn) lies in a compact subset of ℜµ > 0 (resp. ℜµ < 0).
Modifying V if necessary, we arrange to have

ℜPp > CIs, ℜPn < −CIs,(3.116)

for some C > 0.
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Remark 3.31. We claim that the conjugator V (z, q, ζ̌, λ) can be chosen smoothly for q in a
small ball about an arbitrary basepoint q, ζ̂ ∈ Šd+ = {ζ̌ : γ̌ ≥ 0}, and λ ∈ [0, λ0]. Choosing a
smooth conjugator is equivalent to choosing a smoothly varying basis for the fibre space of a
bundle, so this follows from the fact that contractible base spaces admit only trivial bundles
([St], Corollary 11.6).

Using ± to denote functions defined on or restricted to ±z ≥ 0, we next construct
self-adjoint symmetrizers S±(z, q, ζ̌, λ) with the properties

(a) ℜ(S±G±) ≥ I2s on ± z ≥ 0

(b) (S+a, a) − (S−b, b) ≥ |a, b|2 − C|Γ(a, b)|2 on z = 0
(3.117)

for some C > 0, where Γ : C4s → C2s is defined by

Γ(a, b) = a− b(3.118)

and (·, ·) is the inner product on C2s. For large enough positive constants k±p , k±n , property
(3.117)(a) is clearly satisfied by

S± = (V −1
± )∗

(
k±p Is 0

0 −k±n Is

)
V −1
± .(3.119)

To arrange (3.117)(b) observe first that for some positive constants c, C, we have on
z = 0:

(S+a, a) − (S−b, b) ≥
c
(
k+
p |Πpa|2 + k−n |Πnb|2

)
− C

(
k+
n |Πna|2 + k−p |Πpb|2

)(3.120)

For F∞(z, q, ζ̌, λ) as in (3.89) we have at z = 0

(Πna,Πpb) ∈ F∞(0, q, ζ̌, λ),

so the transversality condition (3.90) implies

|Πna,Πpb| ≤ C|Γ(Πna,Πpb)| ≤ C(|Γ(a, b)| + |Πpa,Πnb|)(3.121)

for some C > 0. Using (3.120) and (3.121) we obtain the property (3.117)(b) by taking the
ratios k+

p /k
+
n and k−n /k

−
p large enough.

Adding the identities
∫ ∞

0

(
(2ℜ(S+Λ0G+) + ∂zS

+)u+, u+
)
dz + (S+(0)u+(0), u+(0)) =

− 2ℜ
∫ ∞

0
(S+

(
Λ0h

+
2

h+
3

)
, u+)dz,

∫ 0

−∞

(
(2ℜ(S−Λ0G−) + ∂zS

−)u−, u−
)
dz − (S−(0)u−(0), u−(0)) =

− 2ℜ
∫ 0

−∞
(S−

(
Λ0h

−
2

h−3

)
, u−)dz

(3.122)
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and using the properties (3.117), we obtain for |ζ| large the following estimate equivalent
to (3.97)(b):

‖u‖ +
1

Λ
1/2
0

|u(0)| ≤ C
1

Λ0
‖Λ0h2, h3‖.(3.123)

4. The case γ ≥ C|ζ|. Let C > 0 and consider again the transmission problem (3.91)
for U = (u1, u2, u3):

∂zU −G(z, q, ζ)U =



g1
0
g3




[U ] = 0 on z = 0.

(3.124)

For frequencies ζ such that

ζ ∈ Z := {ζ : γ ≥ C|ζ|, |ζ| ≥ R},

we’ll prove a stronger estimate than (3.92), namely

|ζ|‖u1‖ + Λ‖u2‖ + ‖u3‖ +
√
|ζ||u1(0)| + Λ

1

2 |u2(0)| + Λ− 1

2 |u3(0)|
≤ C(‖g1‖ + Λ−1‖g3‖).

(3.125)

The argument now does not require any subtle conjugations or exponential weights like φ(z)
in (3.104). With the larger weight on ‖u1‖ we can easily absorb larger errors.

Let G11
p be the principal part, homogeneous of degree one in ζ, of G11. First rewrite

(3.124) as

∂zU −



G11
p 0 0

0 0 I
0 G32 G33


U =



g1 +O(1)u1 +O(|η|)u2 +O(1)u3

0
g3 +O(|ζ|)u1


 :=



h1

0
h3


 .(3.126)

The estimate (3.125) will follow directly by adding the estimates

|ζ|‖u1‖ +
√

|ζ||u1(0)| ≤ C‖h1‖
Λ‖u2‖ + ‖u3‖ + Λ

1

2 |u2(0)| + Λ− 1

2 |u3(0)| ≤ CΛ−1‖h3‖
(3.127)

after absorbing a few error terms from the right by taking |ζ| ≥ R large enough. In particular
to absorb the Λ−1O(|ζ|)‖u1‖ term we use Λ(ζ) ≥

√
|ζ|.

It remains to prove (3.127). The (u2, u3) estimate is done exactly as before.
Before estimating u1, we note that for γ ≥ C|ζ| we do not know that the eigenvalues µk

of G11
p are semisimple with constant multiplicities. Hyperbolicity of A

11
implies ℜµk 6= 0

whenever γ > 0, so by homogeneity we have

|ℜµk(z, q, ζ)| ≥ c|ζ| for γ ≥ C|ζ|.(3.128)

This is the simplest “elliptic” case for the construction of Kreiss symmetrizers.
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From Proposition 3.20 we deduce that for ζ ∈ Z, ℜµk has the same fixed sign for all k,

namely −sgn(β), where β is any eigenvalue of A
11
d (z, q). We take −sgn(β) = 1, the other

case being similar.
The argument is closely parallel to the earlier treatment of the parabolic block, but

simpler. Let ζ = |ζ|ζ̂ and write G11
p = |ζ|G11. There is a smooth conjugator V (z, q, ζ̂) such

that

V −1G11V = G11, where ℜG11 ≥ CIN−s(3.129)

for some C > 0. The positive and negative invariant spaces of G11 are respectively,

Fp(z, q, ζ̂) = CN−s and Fn(z, q, ζ̂) = 0,(3.130)

and, defining

Γ : C2(N−s) → CN−s, Γ(a, b) = a− b,(3.131)

we have the exact analogue of Corollary 3.28.
We construct symmetrizers

S±(z, q, ζ̂) = (V −1
± )∗(k±p IN−s)V

−1
± ,(3.132)

where k+
p > 0 is large enough and k−p = 1, satisfying

ℜ(S±G11
± ) ≥ IN−s on ± z ≥ 0

(S+a, a) − (S−b, b) ≥ |a, b|2 − C|Γ(a, b)|2 on z = 0.
(3.133)

Repetition of the proof for the parabolic block gives the estimate

|ζ|‖u1‖ +
√

|ζ||u1(0)| ≤ C‖h1‖(3.134)

in place of (3.123).

Remark 3.32. As we explain later in the proof of Proposition 6.6, the fully linearized
operator that we actually use in the nonlinear iteration scheme has a principal part in the
high frequency regime that differs slightly (after freezing coefficients, Fourier transforming,
and rescaling) from the operator appearing in (3.3):

L(z, q, ζ, ∂z)u− ψK(z, q, ζ) = f.(3.135)

The correct high frequency operator is defined by replacing L in (3.135) by L̃, where L̃ is
defined just like L except that the (2, 1) entry of the matrix coefficient Ad(z, q) (3.15) is
replaced by

Ã21
d = A21

d (z, q) + r,(3.136)

where r is a (frozen) s× (N − s) matrix of small norm.
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The identity in Lemma 2.28 now becomes:

L̃∂zW = K − ∂zP +

(
0

r∂2
zW1

)
.(3.137)

With this change the reduction carried out in subsection 3.2.1 goes through just as before,
except that the partially linearized problem is now

L̃u = f

[u] = 0, [∂zu2] = 0 on z = 0
(3.138)

instead of (3.8), and (3.11)(a) should be replaced by

L̃u# = f + ψ∂zP − ψ

(
0

r∂2
zW1

)
,(3.139)

where the profile W = (W1,W2).
Moreover, for arbitrary sufficiently small r all the constructions and estimates of sub-

sections 3.2.2 to 3.2.7 go through exactly as before for the new problem (3.138). This is
because the change in A21

d has no effect on the validity of hypotheses (H2), (H3), and (H8).
Also, Corollary 4.1 implies that with such a change, hypothesis (H5) still holds for |ξ| large.
The hyperbolicity hypothesis (H4) may no longer hold, but (H4) was not used in Section
3.2.

It is convenient then to redefine the parameter q = (p, u′, h′) (2.24) to include r. So
henceforth

q = (p, u′, h′, r)(3.140)

and we drop the tildes on L and A21
d . When working in the low and medium frequency

regimes, we always take r = 0. This reflects the fact, demonstrated in section 4.4, that the
perturbation produced by rǫ in the low and medium frequency variable coefficient estimates
is a negligible one.

3.3 Low and medium frequency estimates

In this section we discuss the estimates of Propositions 3.2 and 3.3 for the fully linearized
transmission problem (3.3):

L(z, q, ζ, ∂z)u− ψK(z, q, ζ) = f

[u] = 0, [∂zu2] = 0, a(ζ)ψ + ℓ(q) · u2(0) = 0 on z = 0.
(3.141)

The low and medium frequency analysis for the systems of Navier-Stokes type that
we study in this paper has much in common with the analysis of [GMWZ3] for the fully
parabolic case; so we’ll give proofs when different arguments are needed, but otherwise shall
refer to previous work. We first describe the reduction to the partially linearized problem
for this range of frequencies. All the results depend on the conjugations to limiting and
block forms explained later.
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3.3.1 Reduction to the partially linearized case

In the medium frequency regime the same choice of good unknown that worked for high
frequencies,

u# = u− ψ∂zW,(3.142)

allows us to prove estimate (3.7) for solutions (u, ψ) of the fully linearized problem (3.3) by
showing that solutions of the partially linearized problem,

L(z, q, ζ, ∂z)u = f

[u] = 0, [∂zu2] = 0 on z = 0,
(3.143)

satisfy

‖u‖ + ‖∂zu2‖ + |u(0)| + |∂zu2(0)| ≤ C‖f1, f2‖.(3.144)

The proof of (3.144) does not differ essentially from that of [MZ1], Lemma 2.12. This
works because the Evans assumption (H10) implies that the Lopatinski determinant for the
transmission problem (3.143) is nonvanishing for medium frequencies. In fact, for ζ 6= 0 the
latter determinant, which is given by (2.54)

det(E−(q, ζ) × E+(q, ζ), ker Γ),(3.145)

is equal to the Evans determinant D(q, ζ). Here Γ : CN+s × CN+s is given by

Γ(U−, U+) = U+ − U−.(3.146)

The argument that accomplishes the reduction to (3.144) is just as in the high frequency
case; recall (3.11).

Note that the problem (3.143) is singular at ζ = 0. Indeed, when q = (p, 0, 0) for p ∈ C,
the derivative of the shock profile, ∂zW0(z, p), is a nontrivial solution for f = 0 that decays
exponentially fast as z → ±∞. Thus, a more subtle choice of good unknown is needed in
order to reduce to a nonsingular partially linearized problem for low frequencies. We define
the new unknown using the next lemma.

Recall that in the low and medium frequency regions we define q = (p, u′, h′), where
p ∈ C and (u′, h′) ∈ RN × Rd as in (2.24).

Lemma 3.33 ([GMWZ3], Lemma 3.14). Let p ∈ C and set q = (p, 0, 0) and take ζ = 0.

There is a neighborhood Ω of (q, 0) and C∞ functions R±(z, q, ζ) = (R±
1 , R

±
2 ) on {±z ≥

0} × Ω, respectively, such that

L(z, q, ζ, ∂z)R
± = cK±(z, q, ζ) on ± z ≥ 0

ℓ(q) ·R±
2 (0, q, ζ) = −a(ζ), R±(z, q, 0) = 0.

(3.147)

Moreover, R± and all their derivatives are exponentially decaying as z → ±∞.
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For (u, ψ) as in (3.141) define the good unknown

µ± = u± − ψR±.(3.148)

Then (u, ψ) satisfies (3.141) if and only if µ satisfies the transmission problem:

Lµ = f

[µ] = −ψ[R], [∂zµ2] = −ψ[∂zR2], ℓ(q) · µ+
2 = 0 on z = 0.

(3.149)

Observe that by (3.147), ℓ(q) · µ+
2 (0) = 0 ⇔ ℓ(q) · µ−2 (0) = 0.

The next step is to eliminate the front and obtain nonsingular boundary conditions for
µ alone. Since R±(z, q, 0) = 0 we can use polar coordinates to write

R±(z, q, ζ) = ρR̂±(z, q, ζ̂, ρ).(3.150)

Setting φ := ρψ we can rewrite the transmission conditions in (3.149) as

[µ] = −φ[R̂], [∂zµ2] = −φ[∂zR̂2], ℓ(q) · µ+
2 = 0 on z = 0.(3.151)

Define the CN+s-valued function

R(z, q, ζ̂, ρ) = (R̂, ∂zR̂2).(3.152)

The following Proposition is a consequence of uniform stability of the shock profile W0(z, p).

Proposition 3.34 ([GMWZ3], Proposition 3.15). There is a neighborhood ω of q = (p, 0, 0)

and ρ0 > 0 such that [R] does not vanish on ω×Sd+× [0, ρ0]. Here S
d
+ = {ζ : |ζ| = 1, γ ≥ 0}.

Thus, we may define a smooth orthogonal projector π(q, ζ̂, ρ) : CN+s → CN+s onto
[R(0, q, ζ̂, ρ)]⊥. Applying π to the jump condition in (3.151) we obtain a transmission
problem for µ with new transmission conditions:

L(z, q, ζ, ∂z)µ = f

π(q, ζ̂, ρ)

(
[µ]

[∂zµ2]

)
= 0, ℓ(q) · µ+

2 = 0 on z = 0.
(3.153)

We claim that the Lopatinski determinant for this problem, Dπ(q, ζ̂, ρ), is bounded away
from 0 uniformly for ρ small. To define Dπ let U = (U1, U2, U3) ∈ CN+s with U1 ∈ CN−s,
U3 ∈ Cs and define Γπ(q, ζ̂, ρ) : CN+s × CN+s → CN+s × C by

Γπ(U
−, U+) = (π(q, ζ̂, ρ)(U+ − U−), ℓ(q) · U+

2 )).(3.154)

Then for 0 < ρ ≤ ρ0 the Lopatinski determinant for the transmission problem (3.153) is

Dπ(q, ζ̂, ρ) := det(E−(q, ζ̂, ρ) × E+(q, ζ̂, ρ), ker Γπ(q, ζ̂, ρ)).(3.155)

Lemma 2.19 implies that the dimensions of E± sum to N + s and dim ker Γπ = N + s, so
the determinant makes sense.

In fact the argument of [MZ2], Theorem 3.3 shows that E±(q, ζ̂, ρ), which are C∞ vector

bundles on ω×Sd+ × (0,∞) by Lemma 2.19, extend continuously to ω×Sd+ × [0,∞). Thus,

Dπ extends continuously to ω × S
d
+ × [0, ρ0]. The uniform stability of the shock profile

W0(z, p) implies, by the argument of [GMWZ3], Propositions 3.15 and 3.16:
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Proposition 3.35. There is a neighborhood ω of q = (p, 0, 0) and positive constants ρ0, c
such that

|Dπ(q, ζ̂, ρ)| ≥ c on ω × S
d
+ × [0, ρ0].(3.156)

This should be contrasted with the first-order vanishing of the Evans function D(q, ζ)
at ζ = 0. Thus, the choice of the unknown µ and the extra boundary condition in (3.141)
has allowed us to remove the translational degeneracy. Once the conjugations described
in the next subsection are performed, one can proceed to construct symmetrizers for the
transmission problem (3.153) and derive the estimate

λ2‖µ‖ + λ‖∂zµ2‖ + λ|µ(0)| + λ|∂zµ2(0)| ≤ C‖f1, f2‖,(3.157)

where λ(ζ) = (γ + |ζ|2)1/2.
Remark 3.36. To prove (3.156) it suffices, by continuity, to prove

Dπ(q, ζ̂, 0) 6= 0 for ζ̂ ∈ Sd+.(3.158)

The first-order vanishing of the Evans function D(q, ζ̂, ρ) at ρ = 0 as assumed in (H9)
implies

(
E−(q, ζ̂, 0) × E+(q, ζ̂, 0)

)
∩ ker Γ =

span
{(
∂zW (0, q), ∂2

zW2(0, q)
)
,
(
∂zW (0, q), ∂2

zW2(0, q)
)}
.

(3.159)

We have ℓ(q) ·∂zW2(0, q) 6= 0, so no nontrivial element (U−, U+) of E−(q, ζ̂, 0)×E+(q, ζ̂, 0)

satisfying ℓ(q) ·U+
2 = 0 can belong to ker Γ. To prove (3.158) one must show that (U−, U+)

does not belong to the larger space ker
(
π(q, ζ̂, 0)Γ

)
; this follows from uniform stability of

the inviscid shock.

The transmission condition (3.151) and nonvanishing of [R] imply

ρ|ψ| ≤ C(|µ(0)| + |∂zµ2(0)|).(3.160)

Using (3.160) and the exponential decay of R± as z → ±∞ respectively, we immediately
derive the low frequency estimate of Proposition 3.2 for the fully linearized transmission
problem (3.141) from the estimate (3.157).

3.3.2 Conjugation to a limiting constant coefficient problem

We’ve seen that the partially linearized transmission problem (3.143) can be written in first
order form as

∂zU −G(z, q, ζ)U = J f, ΓU = [U ] = 0(3.161)

for G as in (3.35) and J as in (3.33). Recalling that for q = (p, u′, h′) and W (z, q) =
W0(z, p) + u′ we have

lim
z→±∞

W (z, q) = u± + u′,(3.162)
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so we can define the limiting matrices

G±(q, ζ) := lim
z→±∞

G(z, q, ζ).(3.163)

A key step in the construction of symmetrizers for bounded frequencies is the local conju-
gation of (3.163) to a problem defined by G± provided by the following Lemma.

Lemma 3.37 ([MZ1], Lemma 2.6). Let Q = C × O as in (2.52). For each q ∈ Q and

ζ ∈ R
d+1
+ there is a neighborhood Ω of (q, ζ) in Q×R

d+1
+ and there are matrices W± defined

and C∞ on {±z ≥ 0} × Ω satisfying:
a) W± and (W±)−1 are uniformly bounded and there is a δ0 > 0 such that for (q, ζ) ∈ Ω

and all α,

|∂αz,q,ζ(W±(z, q, ζ) − Id)| . e−δ0|z| on ± z ≥ 0.

(b) On ±z ≥ 0 we have, respectively

∂zW±(z, q, ζ) = G(z, q, ζ)W±(z, q, ζ) −W±(z, q, ζ)G±(q, ζ).(3.164)

An immediate corollary is that U satisfies (3.161) if and only if V± := (W±)−1U satisfies

∂zV± = G±V± + (W±)−1J f on ± z ≥ 0

ΓwV := W+V+ −W−V− = 0 on z = 0.
(3.165)

3.3.3 Spectral properties of G±(q, ζ)

The entries of G±(q, ζ) are given by the same formulas as the Gij(z, q, ζ) (3.36), except that
now E = 0, Aj = Ãj , and matrix coefficients are evaluated at (z, q) = (±∞, q), respectively.

Notation 3.38. We’ll sometimes write (Aj)±(q) = Aj(±∞, q) and use similar notation
for the Ãj, Bj,k, etc..

In place of L(z, q, τ − iγ, ξ) = A−1
0 L as in (3.16) we have now in the limit as z → ±∞,

L±(q, τ − iγ, ξ) = (iτ + γ)I + iA±(q, ξ) +B±(q, ξ),(3.166)

where ξ = (η, ξd).

Lemma 3.39 (The case ζ 6= 0). Assume (H2), (H5), (H8). Let H be the number of

positive eigenvalues of A
11
d (z, q). For q ∈ Q and ζ ∈ R

d+1
+ \ 0 the matrices G±(q, ζ) have no

eigenvalues on the imaginary axis. G+(q, ζ) has s+H eigenvalues counted with multiplicity
in ℜµ < 0, and G−(q, ζ) has N −H eigenvalues counted with multiplicity in ℜµ > 0.

Proof. 1. To see that G+(q, ζ) has no eigenvalue on the imaginary axis, note that µ is an
eigenvalue of G+(q, ζ) if and only if −(iτ + γ) is an eigenvalue of iA+(q, ξ) +B+(q, ξ) with
ξ = (η,−iµ). Now γ ≥ 0, so if µ is purely imaginary, strict dissipativity (H5) implies γ = 0
and ξ = 0, and thus ζ must be 0.

2. From above we conclude that the number of eigenvalues of G+ in ℜµ < 0 is

independent of ζ ∈ R
d+1
+ \ 0. To count them it is easiest to consider ζ = (0, γ, 0) with γ

49



large [Z1]. Again writing U = (U1, U2, U3), the eigenvalue problem (µI − G+(q, ζ))U = 0
can for such ζ be rewritten using L+ as

(
µA

11
d + γI µA

12
d

µA
21
d + γI µA

22
d − µ2B

22
d,d + γI

)

+

(
U1

U2

)
=

(
0
0

)
.(3.167)

We look first for µ = µ̃(γ)γ where µ̃(γ) ∼ 1. A perturbation argument yields N −s such
solutions close to solutions µ∗ of the problem

(
µ∗A

11
d + I µ∗A

12
d

0 −µ2
∗B

22
d,d

)

+

(
U1

U2

)
=

(
0
0

)
,(3.168)

that is, close to µ∗ such that −µ−1
∗ ∈ spec(A

11
d ). This gives H eigenvalues of G+ in ℜµ < 0.

Next, looking for solutions µ = µ̃(γ)γ1/2 with µ̃(γ) ∼ 1, we similarly obtain 2s solutions
close to solutions µ∗ of the problem

(
I 0

I −µ2
∗B

22
d,d + I

)(
U1

U2

)
=

(
0
0

)
,(3.169)

that is, close to µ∗ such that µ−2
∗ ∈ specB

22
d,d. This gives s additional eigenvalues of G+ in

ℜµ < 0, for a total of s+H.
The same argument for G− yields (N − s−H) + s = N −H eigenvalues in ℜµ > 0.

An application of the previous two Lemmas is:

Proof of Lemma 2.19. For ζ ∈ R
d+1 \ 0 let F±(q, ζ) denote, respectively, the generalized

eigenspace of G±(q, ζ) associated to eigenvalues in {±ℜµ < 0}. By Lemma 3.39 we have

dim F+(q, ζ) = s+H, dim F−(q, ζ) = N −H.(3.170)

Using the properties of W±(0, q, ζ) in Lemma 3.37 and in particular (3.165), we see

E±(q, ζ) = W±(0, q, ζ)F±(q, ζ),(3.171)

so Lemma 2.19 follows with K = s+H.

Lemma 3.40 (The case ζ = 0). Assume (H2), (H5), and (H8). For q ∈ Q each of
G±(q, 0) has 0 as a semisimple eigenvalue of multiplicity N and s eigenvalues, counted with
multiplicities, in ℜµ 6= 0.

Proof. Inspection of the formulas for the Gij (3.36) shows that

G+(q, 0) =




0 0 ∗
0 0 I
0 0 P0




+

,(3.172)

where

P+
0 (q) = (B̃22

d,d)
−1
(
Ã22
d − Ã21

d (Ã11
d )−1Ã12

d

)

+
.(3.173)
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P+
0 is nonsingular because B̃22

d,d, Ãd, and Ã11
d are, so we observe from (3.172) that 0 is a

semisimple eigenvalue of G+(q, 0) of multiplicity N .
On the other hand, if µ is a purely imaginary eigenvalue of G+(q, 0), then 0 is an

eigenvalue of iA+(q, ξ) + B+(q, ξ) with ξ = (0,−iµ). By strict dissipativity (H5) this
requires that ξ = 0, and thus µ = 0. So the nonvanishing eigenvalues of G+(q, 0), which are
the eigenvalues of P+

0 (q), do not lie on the imaginary axis.
The argument for G−(q, 0) is the same.

3.3.4 Conjugation to block form

Another essential step in the construction of symmetrizers is the conjugation of G± to
appropriate block forms. We’ll derive such conjugations in the medium and low frequency
regions as consequences of Lemmas 3.39 and 3.40. This is quite easy for medium frequencies.

Proposition 3.41 (Medium frequency). For q ∈ Q and ζ ∈ R
d+1
+ \0 there is a neighborhood

Ω of (q, ζ) and a C∞ invertible matrix V+(q, ζ) on Ω such that

V−1
+ G+V+ =

(
G+
p 0

0 G+
n

)
on Ω,(3.174)

where

ℜG+
p > 0, ℜG+

n < 0.(3.175)

The same result holds with + replaced by −.

Proof. The spectral separation demonstrated in Lemma 3.39 implies the existence of a
smooth V such that (3.174) holds with matrices G+

p , G+
n whose eigenvalues µ all satisfy,

respectively, ℜµ > 0, ℜµ < 0. Modifying V if necessary (e.g., as in [CP], Chapter 6, Lemma
5.5) we obtain (3.175).

Remark 3.42 (Medium frequency estimate). Given (3.174), the construction of symmetriz-
ers for the constant coefficient problem (3.165) in the medium frequency region proceeds just
as in the treatment of the parabolic block in section 3.2. Note that the properties of the con-
jugators W± imply that the Lopatinski determinant for (3.165) is nonvanishing since the
determinant (3.145) is. The properties of W± allow the estimate (3.144) for the prob-
lem (3.143) to be deduced immediately from the same estimate for the conjugated problem
(3.165).

In preparation for the next Proposition we rewrite L(q, τ − iγ, ξ) in (3.166) as

L(q, τ − iγ, ξ) =
(
Bd,d(q)ξ

2
d + A(q, ζ)iξd + M(q, ζ)

)
± ,(3.176)

where ξ = (η, ξd) and

A±(q, ζ) =


Ad −

d−1∑

j=1

iηj(Bj,d +Bd,j)




±

M±(q, ζ) =


(iτ + γ)I +

d−1∑

j=1

iηjAj +
d−1∑

j,k=1

ηjηkBj,k




±

.

(3.177)
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The system L(q, ζ,Dz)u = f reads, with U = (u, ∂zu2):

Gd∂zU −MU =

(
f
0

)
:= F, Gd(q, ζ) =

(
−A Bd(q)
J 0

)
, M =

(
M 0N×s

0s×N Is×s

)
,(3.178)

where

Bd(q) =

(
0(N−s)×s
B

22
d,d(q)

)
, J =

(
0s×(N−s) Is×s

)
.(3.179)

Observe that invertibility of Gd follows from that of A
11
d and B

22
d,d. Thus, the system

(3.178) can be rewritten

∂zU −G−1
d MU = G−1

d F.(3.180)

It is perhaps not immediately obvious that the matrices (G−1
d M)± coincide with G±(q, ζ)

as in (3.163), but a short computation confirms this:

(G−1
d M)±(q, ζ) = G±(q, ζ).(3.181)

Proposition 3.43 (Low frequency). Let q ∈ Q. There is a C∞ invertible matrix V+(q, ζ)
defined on a neighborhood Ω of (q, 0) such that

V−1
+ G+V+ =

(
H+ 0
0 P+

)
:= GB,+ on Ω,(3.182)

with H+(q, ζ) of dimension N ×N and P+(q, ζ) of dimension s× s. In fact we have:
(a) P+(q, ζ) = P+

0 (q)+O(|ζ|) for P+
0 as in (3.173); in particular, the eigenvalues of P+

satisfy |ℜµ| ≥ c > 0 on Ω.
(b) H+(q, ζ) = H+

0 (q, ζ) +O(|ζ|2), where

H+
0 (q, ζ) = −(Ad)

−1
+


(iτ + γ)I +

d−1∑

j=1

iηjAj(q)




+

.(3.183)

(c) At ζ = 0 V+ has the triangular form

V+(q, 0) =

(
IN×N V +

0 Is×s

)
.(3.184)

The same result holds with + replaced by −.

Proof. 1. The spectral separation described in Lemma 3.40 and the fact that 0 is a
semisimple eigenvalue of multiplicity N imply that there is a smooth matrix V+ defined on
a neighborhood of (q, 0) such that (3.182) holds with H+(q, 0) = 0 and P+(q, 0) invertible
with no eigenvalue on the imaginary axis.

The span of the first N columns of V+, span(V+,I), is an invariant subspace for G+, and
at ζ = 0 this space is

kerG+(q, 0) = CN × {0}s.(3.185)
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Thus, performing a smooth change of basis in span(V+,I), we can arrange so that the first
N columns of V+ have the form

V+,I(q, ζ) =

(
IN×N

W+(q, ζ)

)
,(3.186)

with W+ of size s×N and vanishing at ζ = 0.
The span of the last s columns of V+, span(V+,II), is also an invariant subspace for G+.

At ζ = 0 we must have

V+,II(q, 0) =

(
Va
Vb

)
(3.187)

where the columns of the s × s matrix Vb span Cs. Thus, performing a smooth change of
basis in span(V+,II), we can arrange to have

V+,II(q, 0) =

(
V +

Is×s

)
.(3.188)

This proves (3.184).
2. Writing G+V+ = V+GB,+ at ζ = 0 using (3.172) and (3.184), we find that the lower

right block of GB,+ at ζ = 0 is P+
0 (q) as in (3.173).

3. Here we use the notation (3.177)-(3.179) and suppress + subscripts. By (3.182)
GVI = VIH, hence MVI = GdVIH and equating components gives

M = −AH +BdWH.(3.189)

Taking the first order term in (3.189) at ζ = 0 gives (3.183).
4. The argument for G− is the same.

Remark 3.44. One can just as easily read off an explicit second order term for H from
(3.189), but we shall not need that here.

Corollary 3.45. Let s± be the number of eigenvalues µ of P±
0 (q) (3.173) with ∓ℜµ > 0,

respectively. For N± as in (H6) we have

s+ + s− − s = N+ +N− −N.(3.190)

Proof. Using (3.182), (3.183) and taking ζ = (0, γ, 0) with γ > 0 small, we see that the
number of eigenvalues of G+ in ℜµ < 0 is s+ + (N −N+). By Lemma 3.39

s+ + (N −N+) = s+H.(3.191)

Similarly, s− + (N −N−) = N −H. These equations imply (3.190).

Remark 3.46. The above proof and properties of W±, V± imply that for F±(q, ζ) (3.170)
and E±(q, ζ) (3.171), we have

dim E±(q, ζ) = dim F±(q, ζ) = s± + (N −N±).(3.192)
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3.3.5 Generalized block structure, low frequency symmetrizers, estimates

From this point on arguments from earlier papers go through with no essential changes to
prove the frozen coefficient, low frequency estimate (3.157).

One first performs another conjugation of GB,± as in (3.182) to generalized block struc-
ture using the argument of [MZ1], Appendix A.1. The hypothesis (H4) of hyperbolicity
with constant multiplicity is used here. Next, the construction of [MZ1], Appendix A.3,
yields symmetrizers for the modified low frequency problem (3.153). Finally, the argument
of [GMWZ3], Appendix A.1 shows how those symmetrizers imply the estimate (3.157).

4 Variable coefficient L
2 estimates

4.1 Regularity assumptions and results

In this section we prove estimates for the variable coefficient transmission problem corre-
sponding to (3.3):

L(z, q, ζ, ∂z)u− ψK(z, q, ζ) = f

[u] = 0, [∂zu2] = 0, a(ζ)ψ + ℓ(q) · u+
2 (0) = 0 on z = 0,

(4.1)

where L has been modified in accordance with Remark 3.32. Our effort in the first few
subsections will concern the case where u and f are supported near the front.

Setting D = 1
i ∂ we consider

1

ǫ
L(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)u− 1

ǫ2
K(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)ψ = f

[u] = 0, [∂xu2] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(qǫ) · u+
2 = 0 on x = 0,

(4.2)

where

qǫ(t, y, x) = (p(t, y), u′ǫ(t, y, x, ǫ), h
′
ǫ(t, y), rǫ(t, y, x)) with

p(t, y) = (u0
+(t, y, 0), u0

−(t, y, 0), dψ0(t, y)) ∈ C,
(4.3)

u′ǫ, h
′
ǫ represent perturbations of u0

± and dψ0 respectively, and rǫ is a perturbation of A21
d

which we turns out to non-negligible only in the high frequency estimate. When (p, u′ǫ, h
′
ǫ)

is constant and rǫ ≡ 0, the transmission problem (4.2) is the same as (2.57), (2.59). The
principal part of the linearized operator that we use in the nonlinear iteration scheme turns
out to have precisely the form of the operator in (4.2).

For the purposes of the L2 estimate we make the following regularity assumptions, all
of which are satisfied in the later application to the nonlinear iteration scheme. Set

W k,∞(Rd) = {v(t, y) : ∂αt,yv ∈ L∞ for |α| ≤ k}(4.4)

and define W k,∞(Rd+1
± ) similarly.

Assumption 4.1 (H10).
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(a) p(t, y) ∈ C; the functions u0
±(t, y, x) are C2 up to the boundary, take values in a

compact subset of U , and belong to W 2,∞(Rd+1
± ); ψ0 ∈W 3,∞(Rd).

There exists an ǫ0 > 0 such that for ǫ ∈ (0, ǫ0]:
(b) The families {u′±ǫ }, {∇t,y,xu

′±
ǫ }, {ǫ∂2

xu
′±
ǫ ,∇t,y(∇t,y,xu

′±
ǫ )} are bounded in L∞(Rd+1

± ).
(c) The traces u′±ǫ |x=0 are O(ǫ) in W 1,∞(Rd) and satisfy u′+ǫ |x=0 = u′−ǫ |x=0.

(d) The family {h′ǫǫ } is bounded in W 2,∞(Rd).

(e) The families { rǫǫ ,∇t,y(
rǫ
ǫ ),∇2

t,y(
rǫ
ǫ )} are bounded in L∞(Rd+1

± ).

(f) For all (t, y, x) ∈ Rd+1 and qǫ as in (4.3), we have W (xǫ , q
ǫ) ∈ U∗. There exists

Z > 0 such that for |xǫ | > Z, W (xǫ , q
ǫ) ∈ U .

The main step in the proof of Theorem 1.1 is a weighted L2 estimate. Define weights

Λǫ(ζ) = Λ(ǫζ) = (1 + (ǫτ)2 + (ǫγ)2 + |ǫη|4) 1

4 ,(4.5)

λǫ(ζ) =

{
(γ + ǫ|ζ|2) 1

2 , when |ǫζ| ≤ 1,
1√
ǫ
, when ǫ|ζ| ≥ 1

,(4.6)

and

µǫ(ζ) =

{
|ζ|λǫ, when |ǫζ| ≤ 1

(Λ
ǫ )

3

2 , when |ǫζ| ≥ 1
.(4.7)

Observe that the expressions defining λǫ in the two frequency regimes are of the same
order when |ǫζ| ≈ 1, and similarly for µǫ. Moreover, on any set of frequencies such that
0 ≤ |ǫζ| ≤ R, we have 1 ≤ Λǫ ≤ CR.

Given a weight function φ(ζ) we use the notation

|u|φ =

(∫

Rd

φ(τ, γ, η)2|û(τ, η)|2dτdη
) 1

2

.(4.8)

When u± also depends on x, we set

‖u±‖φ =

(∫

±x≥0
|u±(·, x)|2φdx

) 1

2

,

‖u‖φ = ‖u+‖φ + ‖u−‖φ.
(4.9)

When φ = 1 we write |u| or ‖u‖.

Theorem 4.2 (L2 estimate). Assume (H0)-(H10) and fix κ0 > 0. Suppose (u±, ψ) is a
solution of the transmission problem (4.2), where u±, f± are C∞ with compact support on

R
d+1
± ∩ {|x| ≤ 2κ0} and ψ ∈ C∞

0 (Rd). For κ0 small enough, there exist positive constants
C, γ0, and ǫ0 independent of (u, ψ), such that for γ and ǫ satisfying

γ ≥ γ0, ǫ ∈ (0, ǫ0](4.10)
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there holds

‖u1‖λ2
ǫ
+ ‖u2‖λ2

ǫΛǫ
+
√
ǫ‖∂xu2‖λǫ + |u1(0)|λǫ + |u2(0)|

λǫΛ
1
2
ǫ

+ ǫ|∂xu2(0)|
λǫΛ

− 1
2

ǫ

+ |ψ|µǫΛǫ ≤

C(‖f1‖ + ‖f2‖Λ−1
ǫ

).

(4.11)

The proof of Theorem 4.2 will occupy most of section 4. First we make an easy reduction
by introducing a cutoff supported near the front. For any κ0 > 0 choose κ ∈ C∞

0 ((−κ0, κ0))
and equal to one for |x| ≤ κ0

2 . Since all the coefficients of K involve at least one derivative
in z of W , they are exponentially decaying in x

ǫ . Thus, we have

1

ǫ2
(1 − κ(x))K(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)ψ :=

(
kǫ1
kǫ2

)
with

‖kǫ1‖ + ‖kǫ2‖Λ−1
ǫ

≤ CLǫ
L|∇γψ|

(4.12)

for any L > 0. Here

∇γψ = ((∂t + γ)ψ, ∂1ψ, . . . , ∂d−1ψ)(4.13)

and we have used the fact that only kǫ2 involves two derivatives of ψ. (4.12) implies that
the estimate of Theorem 4.2 follows immediately from the same estimate for the modified
transmission problem:

1

ǫ
L(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)u− 1

ǫ2
κ(x)K(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)ψ = f

[u] = 0, [∂xu2] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(qǫ) · u+
2 = 0 on x = 0,

(4.14)

Theorem 4.3 (Estimate near the front). Assume (H0)-(H10) and fix κ0 > 0. Assume u±,

f± are C∞ with compact support on R
d+1
± ∩ {|x| ≤ 2κ0}, ψ ∈ C∞

0 (Rd), and (u, ψ) satisfies
(4.14). Then for κ0 small enough, there exist γ0, ǫ0 such that the estimate (4.11) holds for
γ ≥ γ0, 0 < ǫ ≤ ǫ0.

Theorem 4.3 is a direct corollary of the next Theorem. For positive constants ρ0 < R
to be chosen, let χL(ζ), χM (ζ), χH(ζ) be low, medium, and high frequency cutoffs in
C∞(Rd+1) such that

χL + χM + χH = 1 on Rd+1

supp χL ⊂ {|ζ| ≤ ρ0}, supp χH ⊂ {|ζ| ≥ R},
(4.15)

and define the semiclassical multiplier

T ǫ,γχL
u =

∫
eitτ+iyηχL(ǫζ)û(τ, η, x)dτdη(4.16)

(usually we’ll suppress the superscripts ǫ, γ on TχL). For δ > 0 as in Lemma 3.14, let
βi(ζ) ∈ Γ0, i = 1, 2 be chosen so that

supp β1 ⊂ {0 ≤ γ ≤ 3δ

4
|ζ|, |ζ| ≥ 1}, supp β2 ⊂ {δ

2
|ζ| ≤ γ, |ζ| ≥ 1}

β1 = 1 on {0 ≤ γ ≤ δ

2
|ζ|, |ζ| ≥ 2}, β2 = 1 on {3δ

4
|ζ| ≤ γ, |ζ| ≥ 2},

β1 + β2 = 1 on |ζ| ≥ 2.

(4.17)
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Thus, in particular we have

β1χH + β2χH = χH for all ζ.(4.18)

Theorem 4.4 (Estimates near the front by frequency size). Assume (H0)-(H10). Suppose
(u±, ψ) is a solution of the transmission problem (4.14), where u±, f± are C∞ with compact

support on R
d+1
± ∩ {|x| ≤ 2κ0}, and ψ ∈ C∞

0 (Rd). If κ0 is small enough, then provided ρ0

(resp. R) in (4.15) is small (resp. large) enough, there exist positive constants C and ǫ0
independent of (u, ψ) such that for γ ≥ 1 and ǫ ∈ (0, ǫ0] there holds:

‖TχLu‖λ2
ǫ
+

√
ǫ‖∂xTχLu2‖λǫ + |TχLu(0)|λǫ + ǫ|∂xTχLu2(0)|λǫ + |TχLψ||ζ|λǫ

≤
C(‖f1‖ + ‖f2‖ + a.t.),

(4.19)

1

ǫ
‖TχMu‖ + ‖∂xTχMu2‖ +

1√
ǫ
|TχMu(0)| + √

ǫ|∂xTχMu2(0)| + 1

ǫ3/2
|TχMψ| ≤

C(‖f1‖ + ‖f2‖ + a.t.),

(4.20)

(
1

ǫ
+ γ)‖Tβ1χH

u1‖ +
1

ǫ
‖Tβ1χH

u2‖Λǫ + ‖∂xTβ1χH
u2‖+

(
1

ǫ
+ γ)

1

2 |Tβ1χH
u1(0)| + 1√

ǫ
|Tβ1χH

u2(0)|
Λ

1
2
ǫ

+
√
ǫ|∂xTβ1χH

u2(0)|
Λ
− 1

2
ǫ

+
1

ǫ3/2
|Tβ1χH

ψ|
Λ

5/2
ǫ

≤

C(‖f1‖ + ‖f2‖Λ−1
ǫ

+ ‖u1‖ + ‖u2‖ + ǫ‖∂xu2‖ + |ψ||ζ| + a.t.),

(4.21)

‖Tβ2χH
u1‖|ζ| +

1

ǫ
‖Tβ2χH

u2‖Λǫ + ‖∂xTβ2χH
u2‖+

|Tβ2χH
u1(0)||ζ|1/2 +

1√
ǫ
|Tβ2χH

u2(0)|
Λ

1
2
ǫ

+
√
ǫ|∂xTβ2χH

u2(0)|
Λ
− 1

2
ǫ

+
1

ǫ3/2
|Tβ2χH

ψ|
Λ

5/2
ǫ

≤

C(‖f1‖ + ‖f2‖Λ−1
ǫ

+ a.t.).

(4.22)

Here a.t. stands for a finite sum of “absorbable terms”, terms that can be absorbed by the
sum of the left sides of (4.19)-(4.22) by taking γ large and ǫ small. Four such terms are
written out in (4.21).

The low frequency estimate does not use (H3); the medium frequency estimate does not
use (H3),(H4); and the high frequency estimate does not use (H4),(H9).

Proof of Theorem 4.3 assuming Theorem 4.4. 1. Add the low (LF), medium (MF), and
high frequency (HF) estimates and absorb a.t. terms by taking γ0 large enough and ǫ0
small enough to show that the sum of the left sides of (4.19)-(4.22) is ≤

C(‖f1‖ + ‖f2‖Λ−1
ǫ

).(4.23)
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2. Use (4.15), (4.18), and the fact that

λǫ ≈
1√
ǫ

on MF, HF,

Λǫ ≈ 1 on LF, MF

(4.24)

to see that the left side of (4.11) is ≤ C(‖f1‖ + ‖f2‖Λ−1
ǫ

).

Remark 4.5. We have stated the estimates (4.19)-(4.22) for the transmission problem
(4.14) with homogeneous transmission conditions, but the proofs automatically handle the
nonhomogeneous case as well. Suppose that in (4.14) we take

[u] =

(
k1

k2

)
, [∂xu2] = k3, (∂t + γ)u− ǫ△yu+ ℓ(qǫ) · u = k4 on x = 0.(4.25)

Then in the estimates (4.19)-(4.22) we just need to include boundary norms of the ki on the
right. In each estimate the weight on k1 is the same as the one that appears on the left side
on |u1(0)|, the weight on k2 is the one on |u2(0)|, the weight on k3 is the one on |∂xu2(0)|,
and the weight on k4 is the one on |u2(0)|. The same comment applies to the composite
estimate (4.11). For example, the version of (4.11) with k4 6= 0 has the term

|k4|λǫΛ
1/2
ǫ

(4.26)

on the right.

4.1.1 First order system

Set U = (u1, u2, ǫ∂xu2) = (u1, u2, u3). With J as in (3.33) and G(z, q, ζ) as in (3.34), we
may rewrite (4.14) as a first order system:

∂xU − 1

ǫ
G(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)U = J (

x

ǫ
, qǫ)(f +

1

ǫ2
κ(x)K(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)ψ)

[U ] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(qǫ) · u2 = 0 on x = 0.
(4.27)

Here

1

ǫ2
κKψ =

1

ǫ
mǫ(t, y, x, ǫDt, ǫγ, ǫDy)∇γψ, where

mǫ∇γψ = mǫ
0(t, y, x)(∂t + γ)ψ +

d−1∑

j=1

mǫ
j(t, y, x, ǫDt, ǫγ, ǫDy)∂jψ, and

(4.28)

mǫ
0(t, y, x) := κm̃0(

x

ǫ
, qǫ), m̃0(z, q) := ∂zf0(W (z, q)),

mǫ
j(t, y, x, ζ) := κm̃j(

x

ǫ
, qǫ), m̃j(z, q) :=

(
∂zfj − ∂z

(
(B̃j,d + B̃d,j)∂zW

)
−

d−1∑

k=1

Bj,k∂zWiηk

)

(4.29)
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(recall B̃j,d = B̃j,d(W (z, q), ν(h+ h′)). Observe that

K(z, q, ζ) = m̃0(z, q)(iτ + γ) +
d−1∑

j=1

m̃j(z, q, ζ)iηj .(4.30)

Similarly, we set

jǫ(t, y, x) = J (
x

ǫ
, qǫ)

gǫ(t, y, x, ζ) = G(
x

ǫ
, qǫ, ζ)

gij(t, y, x, ζ) = Gij(
x

ǫ
, qǫ, ζ),

(4.31)

where the Gij are the entries of G (3.36).
Thus (4.27) becomes

∂xU − 1

ǫ
gǫU = jǫ(f +

1

ǫ
mǫ∇γψ)

[U ] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(qǫ) · u2 = 0 on x = 0.
(4.32)

Remark 4.6. Depending on the context, we use expressions like gǫ or mǫ sometimes to
denote a symbol, and sometimes to denote the associated semiclassical operator.

Using the definition of J (3.33), we define hi and nǫi , i = 1, 2, by

jǫf =



h1

0
h2


 , jǫmǫ =



nǫ1
0
nǫ2


(4.33)

and rewrite the system (4.32) as

∂xU − 1

ǫ
gǫU =



h1

0
h2


+

1

ǫ



nǫ1∇γψ

0
nǫ2∇γψ




[U ] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(qǫ) · u2 = 0 on x = 0.

(4.34)

Remark 4.7. 1. To prove Theorem 4.4 it clearly suffices to prove the estimates (4.19)-
(4.22) for the system (4.34), with (h1, h2) in place of (f1, f2). Note that the coefficients of
nǫi are exponentially decreasing in x

ǫ . Also, nǫ1 is of order zero, while nǫ2 is of order one with
∂yk

derivatives only.
2. A partition of unity allows us to assume that the support of (U,ψ) is as close as we

like to any prescribed basepoint (t, y, 0). It is easy to check that smooth cutoffs φ(t, y, x)
introduce only absorbable errors (a.t. terms in the sense of Theorem 4.4).
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4.2 Semiclassical paradifferential calculi

We collect here the facts about the paradifferential calculi that we’ll use in the variable
coefficient estimates. We refer to Appendix B of [MZ1] for detailed proofs. We shall use
both homogeneous and parabolic calculi. With each calculus there is associated a scale of
Sobolev spaces on which the operators naturally act.

First, we introduce homogeneous and parabolic weights. With ζ = (τ, γ, η) as before
and α = (ατ , αη) ∈ N × Nd−1 a multi-index, set Rd+1

+ = {ζ : γ ≥ 0} and

〈ζ〉 = (1 + |ζ|2)1/2

Λ(ζ) = (1 + τ2 + γ2 + |η|4)1/4
|α| = ατ + |αη|, ‖α‖ = 2ατ + |αη|.

(4.35)

Definition 4.8 (Symbols).
1. Let µ ∈ R. The space of homogeneous symbols Γµ0 is the set of locally L∞ functions

a(t, y, x, ζ) on Rd+1 × Rd+1
+ which are C∞ in ζ and satisfy:

|∂ατ,ηa| ≤ Cα〈ζ〉µ−|α|, for all (t, y, x, ζ) and α.(4.36)

2. For k = 0, 1, 2, . . . , Γµk denotes the space of symbols a ∈ Γµ0 such that ∂αt,ya ∈ Γµ0 for
|α| ≤ k.

3. The spaces of parabolic symbols PΓµ0 and PΓµk are defined in the same way, using
Λ(ζ) in place of 〈ζ〉 and ‖α‖ in place of |α|.

We keep the same notation for the spaces of symbols defined just for ±x ≥ 0. Observe
that symbols in Γµk which are independent of x constitute a subspace of Γµk , and similarly
for the spaces PΓµk .

The spaces Γµk are equipped with the natural seminorms

|a|µ,k,N := sup
|α|≤N

sup
|β|≤k

sup
(t,y,x,ζ)

〈ζ〉|α|−µ|∂βt,y∂αζ a(t, y, x, ζ)|.(4.37)

The seminorms on the spaces PΓµk are defined in the same way by the substitutions described
earlier.

We consider a semiclassical quantization of symbols. When a ∈ Γµ0 is independent of
(t, y) the associated homogeneous paradifferential operator acts in (t, y) and is defined by
the Fourier multiplier a(x, ǫζ):

T ǫ,γa u(t, y, x) =
1

(2π)d

∫
eitτ+iyηa(x, ǫζ)û(x, τ, η)dτdη.(4.38)

For a ∈ PΓµ0 the associated parabolic operator P ǫ,γa is defined by the same formula. When
the symbols depend on (t, y), the corresponding operators are defined by formulas similar
to (4.38), except that the symbols are first smoothed in (t, y) using an idea of Bony [B].
The smoothing process in the homogeneous case differs from that in the parabolic case (see
[MZ1], Proposition B.7). When a(t, y, x, ζ) and u are continuous up to x = 0, we have

(T ǫ,γa u)|x=0 = T ǫ,γa|x=0
u|x=0(4.39)

and similarly for parabolic operators. We use superscripts ± on a and u to indicate limits
at x = 0 taken in ±x ≥ 0. We shall often drop the superscripts ǫ, γ and write the operator
defined by (4.38) simply as Ta.
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4.2.1 Sobolev spaces

For s ∈ R let Hs denote the space of functions u(t, y) such that

|u|s,ǫ,γ :=

(∫

Rd

〈ǫζ〉2s|û(τ, η)|2dτdη
)1/2

<∞,(4.40)

and let Hs be the space of functions u(t, y, x) such that

‖u‖s,ǫ,γ =

(∫
|u(·, x)|2s,ǫ,γdx

)1/2

<∞.(4.41)

Similarly define spaces PHs and PHs by substituting the weight Λ(ǫζ) for 〈ǫζ〉 in (4.40)
and (4.41), respectively. We’ll use the same notation ‖u‖s,ǫ,γ for norms in Hs and PHs. It
should be clear from the context which weights are being used.

4.2.2 Action on Sobolev spaces, symbolic calculus

Proposition 4.9 (Action). For any a ∈ Γµ0 and s ∈ R there is a C such that for ǫ ∈ (0, 1],
γ ≥ 1 and u ∈ Hs:

‖T ǫ,γa u‖s−µ,ǫ,γ ≤ C‖u‖s,ǫ,γ .(4.42)

The constant C is bounded when a remains in a bounded subset of Γµ0 .
For a ∈ PΓµ0 the operators P ǫ,γa have the same mapping property on the spaces PHs.

Proposition 4.10 (Compositions). Consider a ∈ Γµ1 and b ∈ Γν1. Then ab ∈ Γµ+ν
1 and

there is a C such that for ǫ ∈ (0, 1], γ ≥ 1 and u ∈ Hs:

‖(T ǫ,γa ◦ T ǫ,γb − T ǫ,γab )u‖s−µ−ν+1,ǫ,γ ≤ Cǫ‖u‖s,ǫ,γ .(4.43)

The constant C is bounded when a and b remain in bounded subsets of Γµ1 and Γν1 respectively.
Moreover, if b is independent of (t, y) then T ǫ,γa ◦ T ǫ,γb = T ǫ,γab .
The same inequality holds for compositions of operators P ǫ,γa and P ǫ,γb acting on u ∈

PHs.

Proposition 4.11 (Adjoints). Let a∗ denote the adjoint of the matrix symbol a ∈ Γµ1 and
let (T ǫ,γa )∗ be the adjoint operator of T ǫ,γa . There is a C such that for ǫ ∈ (0, 1], γ ≥ 1 and
u ∈ Hs:

‖((T ǫ,γa )∗ − T ǫ,γa∗ u‖s−µ+1,ǫ,γ ≤ Cǫ‖u‖s,ǫ,γ .(4.44)

The same inequality is true for adjoints of operators P ǫ,γa acting on u ∈ PHs.

Proposition 4.12 (Commutators). For a ∈ Γµ1 and u ∈ Hs we have

[∂, T ǫ,γa ]u = T ǫ,γ∂a u,(4.45)

for ∂ = ∂t or ∂yj . A similar result holds in the parabolic calculus.
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Proposition 4.13 (G̊arding inequalities). Consider symbols a ∈ Γµ1 and w ∈ Γ0
1. Suppose

that there is χ ∈ Γ0
1 and c > 0 such that χ ≥ 0, χw = w and

χ2(t, y, x, ζ)ℜa(t, y, x, ζ) ≥ cχ2(t, y, x, ζ)〈ζ〉µ for all (t, y, x, ζ).(4.46)

Then there is C such that for all ǫ ∈ (0, 1], γ ≥ 1 and u ∈ Hµ/2:

c

2
‖T ǫ,γw u‖2

µ
2
,ǫ,γ ≤ ℜ(T ǫ,γa T ǫ,γw u, T ǫ,γw u)L2 + Cǫ2‖u‖2

µ
2
−1,ǫ,γ .(4.47)

The same inequality holds for operators P ǫ,γa acting on u ∈ PHµ/2.

4.2.3 Paraproducts

Paraproducts are paradifferential operators associated to symbols independent of ζ. The
following two Propositions are used to estimate the errors introduced in the passage from
differential operators to their paradifferential counterparts. They can also be used to esti-
mate errors caused by passage from one calculus to the other.

Definition 4.14. For k ∈ N, let Wk denote the space of functions a(t, y, x) on Rd+1 such

that ∂βt,ya ∈ L∞(Rd+1) for |β| ≤ k. We use the same notation for functions defined just on
±x ≥ 0.

Observe that

Wk ⊂ Γ0
k ∩ PΓ0

k.(4.48)

Proposition 4.15 (Homogeneous paraproducts). For any a ∈ W1 there is a constant C
such that for all ǫ ∈ (0, 1], γ ≥ 1 and u ∈ H1:

‖au− T ǫ,γa u‖1,ǫ,γ ≤ Cǫ‖u‖0,ǫ,γ ,

γ‖au− T ǫ,γa u‖0,ǫ,γ + ‖a∂u− T ǫ,γa ∂u‖0,ǫ,γ ≤ C‖u‖0,ǫ,γ , for ∂ = ∂t or ∂yj .
(4.49)

Proposition 4.16 (Parabolic paraproducts). For any a ∈ W1 there is a constant C such
that for all ǫ ∈ (0, 1], γ ≥ 1 and u ∈ PH1:

‖au− P ǫ,γa u‖1,ǫ,γ ≤ Cǫ‖u‖0,ǫ,γ ,

‖a∂yju− P ǫ,γa ∂yju‖0,ǫ,γ ≤ C‖u‖0,ǫ,γ ,

γ‖au− P ǫ,γa u‖0,ǫ,γ + ‖a∂tu− P ǫ,γa ∂tu‖0,ǫ,γ +
∑

|α|=2

ǫ‖a∂αy u− P ǫ,γa ∂αy u‖0,ǫ,γ ≤ C‖u‖1,ǫ,γ .

(4.50)

Remark 4.17. The difference between the above two Propositions is due to the fact that the
symbol iτ + γ is of order two in the parabolic calculus, but of order one in the homogeneous
calculus.
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4.3 High frequency estimate

4.3.1 Paralinearization

The first step is to replace the problem (4.34) by its counterpart in terms of homogeneous
paradifferential operators. We’ll continue to write gij for the entries of G, suppressing the
ǫ-dependence. The regularity hypothesis, Assumption 4.1, and Remark 4.7 imply

Lemma 4.18. The families of symbols g11, g12, g31, g33, and nǫ2 are bounded in Γ1
2. The

families g13 and nǫ1 are bounded in Γ0
2, while g32 is bounded in Γ2

2.

Thus, Proposition 4.15 gives (suppressing superscripts ǫ, γ on T )

1

ǫ
‖(gij − Tgij )uj‖ ≤ C‖uj‖, except for the case g32,

1

ǫ
|(nǫj − Tnǫ

j
)∇γψ| ≤ C|ψ||ζ|, for j = 1, 2.

(4.51)

To handle g32 we write

g32(t, y, x, ζ) = g32
a (t, y, x, ζ) +

d−1∑

j,k=1

aij(t, y, x)ηiηj ,(4.52)

where g32
a is bounded in Γ1

1 and the aij are bounded in W2 (4.14). For the g32
a we have an

estimate like (4.51). To estimate the second term on the right in (4.52), we use the next
Lemma.

Lemma 4.19. Let a(t, y, x) ∈ W2. Then for u ∈ H2 we have

ǫ‖(a− Ta)∂yj∂yk
u‖Λ−1

ǫ
≤ C‖u‖.(4.53)

Proof. Let Λǫ(D) denote operator given by the Fourier multiplier Λǫ(ζ). From Proposition
4.12 we have

ǫ‖(a− Ta)∂yj∂yk
u‖Λ−1

ǫ
≤

ǫ‖Λ−1
ǫ (D)∂j(a− Ta)∂ku‖ + ǫ‖Λ−1

ǫ (D)(∂ja− T∂ja)∂ku‖.
(4.54)

The second term is ≤ Cǫ‖u‖ by Proposition 4.15. Since |ǫηj |Λ−1
ǫ (ζ) ≤ 1, Proposition 4.15

implies the first term is ≤ C‖u‖.

Remark 4.20. The lemma implies

1

ǫ
‖(g32 − Tg32)u2‖Λ−1

ǫ
≤ C‖u2‖.(4.55)

In addition ℓǫ := ℓ(qǫ(t, y, 0)) is bounded in W1, so by Proposition 4.16

|ℓǫ · u2 − Pℓǫu2|Λǫ ≤ Cǫ|u2|.(4.56)
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From (4.55), (4.56), and (4.51) we conclude that if (U,ψ) satisfies the problem (4.34), then
it satisfies

∂xU − 1

ǫ
TgǫU =



h′1
0
h′2


+

1

ǫ



Tnǫ

1
∇γψ

0
Tnǫ

2
∇γψ




[U ] = 0, (∂t + γ)ψ − ǫ△yψ + Pℓǫu2 = e on x = 0,

(4.57)

where

‖h′1‖ + ‖h′2‖Λ−1
ǫ

≤ C(‖h1‖ + ‖h2‖Λ−1
ǫ

+ ‖(u1, u2, u3)‖ + |ψ||ζ|),
|e|Λǫ ≤ Cǫ|u2|.

(4.58)

In particular it suffices to prove the high frequency estimates (4.21), (4.22) for (U,ψ) satis-
fying (4.57) with (h′1, h

′
2) in place of (f1, f2).

For cutoffs β = β1 or β2 and χH as in (4.21),(4.22), to find the problem satisfied by
(TβχH

U, TβχH
ψ) we apply TβχH

to (4.57) and use Proposition 4.10 to estimate commutator
errors. We find

∂xTβχH
U − 1

ǫ
TgǫTβχH

U =



h′1
0
h′2


+

1

ǫ



Tnǫ

1
∇γTβχH

ψ

0
Tnǫ

2
∇γTβχH

ψ




[TβχH
U ] = 0, (∂t + γ − ǫ△y)PβχH

ψ + PℓǫPβχH
u2 = e on x = 0,

(4.59)

for a new (h′1, h
′
2) and e satisfying the estimates (4.58); note TβχH

= PβχH
since the symbol

depends on ζ alone. The commutator involving Tg32 again requires special treatment; it is
handled by an argument similar to the proof of Lemma 4.19.

4.3.2 Reduction to the partially linearized case

We begin by rewriting the identity (3.137) in first-order form:

(∂z −G)

(
Wz

∂2
zW2

)
= J

(
K − ∂zP +

(
0

r∂2
zW1

))
,(4.60)

for J (z, q) as in (3.33). Setting



N1(z, q, ζ)

0
N2(z, q, ζ)


 = JK, N ǫ

i := κ(x)Ni(
x

ǫ
, qǫ, ζ), and θ :=

1

ǫ
TβχH

ψ,(4.61)

we may rewrite the front term in (4.59)

1

ǫ



Tnǫ

1
∇γTβχH

ψ

0
Tnǫ

2
∇γTβχH

ψ


 =

1

ǫ



TN ǫ

1
θ

0
TN ǫ

2
θ


 .(4.62)
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Introduce symbols


e1(z, q, ζ)

0
e2(z, q, ζ)


 = J (−∂zP +

(
0

r∂2
zW1

)
)

eǫi = ǫ−1κ(x)ei(
x

ǫ
, qǫ)

sǫ = (sǫ1, s
ǫ
2) := κ(x)∂zW (

x

ǫ
, qǫ).

(4.63)

Lemma 4.21. (a) The families eǫ1, e
ǫ
2, s

ǫ, and ǫ∂xs
ǫ
2 are bounded in Γ0

1; N ǫ
1 is bounded in

Γ1
1 and N ǫ

2 is bounded in Γ2
1.

(b) The families

ẽǫ1 := ∂xs
ǫ
1 −

1

ǫ
g11sǫ1 −

1

ǫ
g12sǫ2 − g13∂xs

ǫ
2 −

1

ǫ
N ǫ

1

ẽǫ2 := ǫ∂2
xs
ǫ
2 −

1

ǫ
g31sǫ1 −

1

ǫ
g32sǫ2 − g33∂xs

ǫ
2 −

1

ǫ
N ǫ

2

(4.64)

are bounded in Γ0
1 and Γ1

1, respectively. Moreover, sǫ is C∞ in x across x = 0.

Proof. The statement for sǫ and ǫ∂xs
ǫ is clear from the definition of qǫ (4.3) and the regu-

larity assumption (H10); for N ǫ
i recall Remark 4.7. To see the boundedness of the eǫi , recall

that W (z, q) = W0(z, p) + u′, so when u′ = 0 and h′ = 0, W is an exact solution of the
profile equation P(z, q) = 0. Thus

J ∂zP(z, q) = u′Wa(z, q) + h′Wb(z, q),(4.65)

where Wa, Wb are smooth with exponential decay in z. The h′ǫWb contribution to eǫi is
bounded by part (d) of (H10). We have

u′ǫ(t, y, x) = u′ǫ|x=0 + xvǫ(t, y, x)(4.66)

so boundedness of the u′ǫWa contribution follows from parts (b) and (c) of (H10) and the
boundedness of x

ǫWa(
x
ǫ , q

ǫ). The rǫ∂
2
zW1 term is bounded by part (e) of (H10).

The identity (4.60) implies

ẽǫ1 = eǫ1 + (∂xκ∂zW1 + κ∂2
zqW1∂xq

ǫ + g13∂xκ∂zW2 + g13κ∂2
zqW2∂xq

ǫ).(4.67)

where the sum in parentheses is bounded in Γ0
1 by the regularity assumption (H10) and the

fact that g13 is of order zero. The term ẽǫ2 is treated similarly, but recall that g33 is of order
one.

The regularity of sǫ in x follows from ∂zW (z, q) = ∂zW0(z, p).

Next we make a change of unknown corresponding to u# = u − ψ∂zW (3.10) in the
frozen coefficient argument. Again with β = β1 or β2 and θ = 1

ǫTβχH
ψ set

V =



v1
v2
v3


 := TβχH

U − TSǫθ, Sǫ =

(
sǫ

ǫ∂xs
ǫ
2

)
,(4.68)
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and introduce the bounded family in PΓ2
1

cǫ(t, y, ζ) = iτ + γ + |η|2 + ℓǫ · ∂zW2(0, q
ǫ(t, y, 0)).(4.69)

Proposition 4.22. V and θ satisfy

(a) ∂xV − 1

ǫ
TgǫV =



h′′1
0
h′′2


 , [V ] = 0,

(b) Pcǫθ + Pℓǫv2(0) = e′,

(4.70)

where (in place of (4.58))

‖h′′1‖ + ‖h′′2‖Λ−1
ǫ

≤ C(‖h1‖ + ‖h2‖Λ−1
ǫ

+ ‖(u1, u2, u3)‖ + |TβχH
ψ||ζ|),

|e′|Λǫ ≤ Cǫ|u2(0)| + |TβχH
ψ|.

(4.71)

Proof. Using (4.59) we compute

∂xV − 1

ǫ
TgǫV =



h′1
0
h′2


+

1

ǫ



TN ǫ

1
θ

0
TN ǫ

2
θ


− (∂x −

1

ǫ
Tgǫ)TSǫθ =



h′1
0
h′2


+



Tẽǫ

1

0
Tẽǫ

2


 θ +



E1

0
E2


 θ :=



h′′1
0
h′′2


 ,

(4.72)

where by Lemma 4.21

‖Tẽǫ
1
θ‖ ≤ C|θ| ≤ C|TβχH

ψ|/ǫ ≤ C|TβχH
ψ||ζ|

‖Tẽǫ
2
θ‖Λ−1

ǫ
≤ C‖Tẽǫ

2
θ‖ ≤ C|θ|〈ǫζ〉 ≤ C|TβχH

ψ||ζ|,
(4.73)

and ‖E1θ‖ + ‖E2θ‖Λ−1
ǫ

≤ C|θ|. E1 and E2 are sums of composition errors like

1

ǫ
(Tg11Tsǫ

1
− Tg11sǫ

1
) and

1

ǫ
(Tg32Tsǫ

2
− Tg32sǫ

2
)(4.74)

respectively. The second term in (4.74) is again handled by an argument like the proof of
Lemma 4.19.

The smoothness of sǫ in x and [TβχH
U ] = 0 implies [V ] = 0.

Finally, since PβχH
= TβχH

, we may write

Pcǫθ + Pℓǫv2 =

(Piτ+γ+|η|2θ + PℓǫPβχH
u2) + (Pℓǫsǫ

2
− PℓǫPsǫ

2
)θ + Pℓǫ(Psǫ

2
− Tsǫ

2
)θ = e+ E′ + E′′,

(4.75)

for e as in (4.59) and

|E′|Λǫ ≤ Cǫ|θ| (by Proposition 4.10),

|E′′|Λǫ ≤ Cǫ|θ| (by Propositions 4.15 and 4.16).
(4.76)
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The next Proposition, an estimate for the partially linearized problem (4.70)(a), is the
main step in the proof of the high frequency estimate of Theorem 4.4. The proof is given
in the next section.

Proposition 4.23. Under the assumptions of Theorem 4.4, consider V = (v1, v2, v3) as
defined in (4.68) and satisfying (4.70)(a). There exists ǫ0 such that for γ ≥ 1 and 0 < ǫ ≤ ǫ0
the following estimates hold. When β = β1,

(
1

ǫ
+ γ)‖v1‖ +

1

ǫ
‖v2‖Λǫ +

1

ǫ
‖v3‖ + (

1

ǫ
+ γ)

1

2 |v1(0)| + 1√
ǫ
|v2(0)|

Λ
1
2
ǫ

+
1√
ǫ
|v3(0)|

Λ
− 1

2
ǫ

≤

C(‖h′′1‖ + ‖h′′2‖Λ−1
ǫ

+ a.t.),

(4.77)

When β = β2,

1

ǫ
‖v1‖〈ǫζ〉 +

1

ǫ
‖v2‖Λǫ +

1

ǫ
‖v3‖ +

1√
ǫ
|v1(0)|〈ǫζ〉1/2 +

1√
ǫ
|v2(0)|

Λ
1
2
ǫ

+
1√
ǫ
|v3(0)|

Λ
− 1

2
ǫ

≤

C(‖h′′1‖ + ‖h′′2‖Λ−1
ǫ

+ a.t.).

(4.78)

Here, as in Theorem 4.4, “a.t.” stands for a finite sum of terms that can be absorbed by the
sum of the left sides of (4.19)-(4.22) by taking γ large and ǫ small.

Next we show how to use the extra boundary condition (4.70)(b) to estimate θ in terms
of the trace of v2.

Proposition 4.24. Under the assumptions of Proposition 4.23, for β = β1 or β2 and ǫ
small enough there holds

1

ǫ3/2
|TβχH

ψ|
Λ

5/2
ǫ

=
1

ǫ1/2
|θ|

Λ
5/2
ǫ

≤ C(
1

ǫ1/2
|v2(0)|

Λ
1/2
ǫ

+ a.t.).(4.79)

Proof. The choice of ℓ(q) (2.60) and (H10) imply that for ǫ small

ℓ(qǫ) · ∂zW2(0, q
ǫ) & 1,

and hence
1 + |τ | + γ + |η|2 . |cǫ|.

Thus, cǫ is elliptic and 1/cǫ ∈ PΓ−2
1 . Applying P1/cǫ to (4.70)(b) and using the parabolic

calculus we obtain

|P1/cǫPcǫθ − θ|
Λ

5/2
ǫ

. ǫ|θ|
Λ

3/2
ǫ

|θ|
Λ

5/2
ǫ

. |P1/cǫe
′|

Λ
5/2
ǫ

+ |P1/cǫPℓǫv2(0)|
Λ

5/2
ǫ

+ ǫ|θ|
Λ

3/2
ǫ
.

(4.80)

Thus,

1

ǫ1/2
|θ|

Λ
5/2
ǫ

.
1

ǫ1/2
|v2(0)|

Λ
1/2
ǫ

+
1

ǫ1/2
|TβχH

ψ|
Λ

3/2
ǫ

+
1

ǫ1/2
|e′|

Λ
1/2
ǫ
,(4.81)

from which the result follows by (4.71).
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We conclude this section by showing how Propositions 4.23 and 4.24 imply the high
frequency estimates of Theorem 4.4.

Proof of estimates (4.21) and (4.22) assuming Proposition 4.23.
The case β = β2. Adding the estimates (4.78) and (4.79) and recalling (4.71), we

deduce

1

ǫ
‖v1‖〈ǫζ〉 +

1

ǫ
‖v2‖Λǫ +

1

ǫ
‖v3‖ +

1√
ǫ
|v1(0)|〈ǫζ〉1/2 +

1√
ǫ
|v2(0)|

Λ
1
2
ǫ

+
1√
ǫ
|v3(0)|

Λ
− 1

2
ǫ

+

1

ǫ3/2
|TβχH

ψ|
Λ

5/2
ǫ

≤ C(‖f1‖ + ‖f2‖Λ−1
ǫ

+ a.t.).

(4.82)

Note first that

Λǫ
ǫ

.
〈ǫζ〉
ǫ

.
Λ2
ǫ

ǫ
.(4.83)

Write Tβ2χH
U = V + TSǫθ and use the exponential decay of Sǫ in x

ǫ to see that for each
x

1

ǫ
|TSǫθ(x)|〈ǫζ〉 .

1

ǫ
e−δ|x|/ǫ|θ|〈ǫζ〉(4.84)

Taking the L2 norm in x gives

1

ǫ
‖TSǫθ‖〈ǫζ〉 .

1√
ǫ
|θ|〈ǫζ〉 .

1

ǫ3/2
|TβχH

ψ|〈ǫζ〉 .
1

ǫ3/2
|TβχH

ψ|Λ2
ǫ
.(4.85)

For the trace at x = 0 we have

1√
ǫ
|TSǫθ|〈ǫζ〉1/2 .

1√
ǫ
|θ|〈ǫζ〉1/2 =

1

ǫ3/2
|TβχH

ψ|〈ǫζ〉1/2 .
1

ǫ3/2
|TβχH

ψ|Λǫ .(4.86)

Together with (4.83) and (4.82), the last two estimates imply estimate (4.22) of Theorem
4.4.

The case β = β1. We have 1
ǫ 〈ǫζ〉 & γ + 1

ǫ , so the above estimates imply (4.21) as well.

4.3.3 Estimate for the partially linearized problem

In this section we complete the proof of the high frequency estimates by proving Proposition
4.23. We’ll do this by quantizing the arguments of section 3.2.7; in particular, we must show
that the errors introduced by use of the paradifferential calculus are always absorbable. We
begin with the more difficult case.

1. The case β = β1: decoupling. We use the conjugator W(z, q, ζ) (3.47), which is
initially defined only for |ζ| ≥ R, 0 ≤ γ ≤ δ|ζ| and q = (p, u′, h′, r) with |u′, h′, r| small.
Extend W 21

a and W 21
b to all (q, ζ) as elements of Γ0 which vanish for |ζ| ≤ 1 (here R >> 1).

Then

Wǫ(t, y, x, ζ) := W(
x

ǫ
, qǫ, ζ) ∈ Γ0

1.(4.87)
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We’ll often drop the superscript ǫ in this section and, for example, write simply W 21
a |ζ|−1

and W 21
b for the (2,1) and (3,1) components of Wǫ. We have then

W 21
a |ζ|−1 ∈ Γ−1

1 , W 21
b ∈ Γ0

1.(4.88)

The special structure of W immediately implies the following convenient identities:

TWTW−1 = TW−1TW = I;(4.89)

there is no composition error in this case.

Remark 4.25. The regularity assumption (H10) implies that |h′ǫ, rǫ| is small for ǫ small,
while |u′ǫ| is small for ǫ and |x| small. Recall that in Theorem 4.4 we assume u± and f±

are supported near x = 0.

It will be useful to have a notation for error operators.

Notation 4.26. An operator rǫ,γµ on the homogeneous scale of Sobolev spaces Hs is said to
be of order µ if for any s ∈ R there is a C such that for γ ≥ 1 and ǫ ∈ (0, 1] the following
estimate holds for u ∈ Hs:

‖rǫ,γµ u‖s−µ,ǫ,γ ≤ C‖u‖s,ǫ,γ .(4.90)

The same notation is used for operators of order µ on functions u(t, y) ∈ Hs.
We’ll usually drop the superscripts ǫ, γ, and the identity of operators denoted rµ may

change from term to term, line to line, etc.. We’ll use the same notation (when the context
is clear) for analogously defined operators of order µ on the parabolic spaces PHs.

For V as in (4.70) we define V = (v1, v2, v3) by V = TWV and with (4.89) obtain, parallel
to (3.93),

∂xV − 1

ǫ
TW−1TgTWV = TW−1



h′′1
0
h′′2


− TW−1T∂xWV.(4.91)

Setting gǫ0 = G0(
x
ǫ , q

ǫ, ζ) for G0 as in (3.48), we have

1

ǫ
TW−1TgTW =

1

ǫ
Tg0+

1

ǫ




0 0 0
TW 21

b −W 21
a |ζ|−1g11 0 0

Tg31+g32W 21
a |ζ|−1+g33W 21

b −W 21
b g11 0 0


+



r−1 0 0
r−1 r−1 r−2

r0 r0 r−1


 =

1

ǫ
Tg0 + E1 + E2.

(4.92)

Remark 4.27. 1. Note that errors of size |ψ|
ǫ are too large to be “a.t.” terms because

of the contribution from the low frequency regime. We avoid such errors below by setting
χmh := χM + χH and observing

Tβ1χH

ψ

ǫ
= Tβ1χH

Tχmh

ψ

ǫ
.(4.93)
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With ψmh := Tχmh
ψ, we have |ψmh|

ǫ is an a.t. term.
2. Tracing back the definition of v1, we can now write

v1 = v1 = Tβ1χH
u1 − Tsǫ

1
β1χH

ψmh
ǫ
.(4.94)

By (3.42) and Remark 4.25, the symbols defining the entries of the first error matrix E1

vanish for ǫ+ |x| small and ζ ∈ supp(β1χH). The homogeneous calculus therefore gives for
ǫ small

E21
1 v1 = r−1u1 + r−1

ψmh
ǫ

; E31
1 v1 = r0u1 + r0

ψmh
ǫ
,(4.95)

where the error operators in the terms involving ψ have compact support in the parameter
x by (4.63). The second error matrix E2 contains all the composition errors. For example,

ǫE21
2 = −TW 21

a |ζ|−1Tg11 − TW 21
a |ζ|−1Tg12TW 21

a |ζ|−1 − TW 21
a |ζ|−1Tg13TW 21

b
−

T(−W 21
a |ζ|−1g11−W 21

a |ζ|−1g12W 21
a |ζ|−1−W 21

a |ζ|−1g13W 21
b ) = ǫr−1.

(4.96)

We have TW−1T∂xW = TW−1∂xW with again no composition error, so a short computation
shows the right side of (4.91) is




h′′1
r−1h

′′
1

r0h
′′
1 + h′′2


+

1

ǫ




0
r−1v1

r0v1


 .(4.97)

Putting all this together we may rewrite (4.91) parallel to (3.93) as:

∂xV − 1

ǫ
Tg0V = E1V + E2V + TW−1



h′′1
0
h′′2


− TW−1T∂xWV =




0

r−1u1 + r−1
ψmh
ǫ

r0u1 + r0
ψmh
ǫ


+




r−1v1

r−1v1 + r−1v2 + r−2v3

r0v1 + r0v2 + r−1v3


+




h′′1
r−1h

′′
1

r0h
′′
1 + h′′2


+

1

ǫ




0
r−1v1

r0v1


 .

(4.98)

Next, for Ĝ11 as in (3.52) and M22
in as in (3.38), we set

ĝ11 = Ĝ11(
x

ǫ
, qǫ, ζ) and gp = M22

in (
x

ǫ
, qǫ, ζ)(4.99)

and consider the block diagonal symbol

gb =

(
ĝ11 0
0 gp

)
.(4.100)

Denoting the right side of (4.98) by F and recalling the form of G0 (3.48), we can rewrite
(4.98) as a problem in terms of Tgb

parallel to (3.96):

∂xV − 1

ǫ
Tgb

V = F +
1

ǫ




Tg12v2 + r0v3

r−1v1 + r0v2 + r−1v3

r0v1 + T−W 21
b g12v2 + r0v3


 := H =



H1

H2

H3


 , [V] = 0.(4.101)
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As in the frozen coefficient case, it is now easy to check that the desired estimate (4.77) of
Proposition 4.23 is implied by the following estimates for V = (v1, v2, v3) satisfying (4.101):

(
1

ǫ
+ γ)‖v1‖ + (

1

ǫ
+ γ)

1

2 |v1(0)| . ‖H1‖ + a.t.

1

ǫ
‖v2‖Λǫ +

1

ǫ
‖v3‖ +

1√
ǫ
|v2(0)|

Λ
1
2
ǫ

+
1√
ǫ
|v3(0)|

Λ
− 1

2
ǫ

. ‖H2‖ + ‖H3‖Λ−1
ǫ

+ a.t.,
(4.102)

where “a.t.” has the same meaning as in Proposition 4.23. In reducing to (4.102) we have
used the special structure of g12, which yields (since |η|Λ−1(ζ) ≤ 1)

1

ǫ
‖Tg12v2‖ .

1

ǫ
‖v2‖ + ‖∂yv2‖ .

1

ǫ
‖v2‖Λǫ

1

ǫ
‖T−W 21

b g12v2‖Λ−1
ǫ

.
1

ǫ
‖v2‖.

(4.103)

Thus, we have reduced the proof of Proposition 4.23 in the case β = β1 to proving the
following Proposition.

Proposition 4.28 (The case β = β1). Under the assumptions of Theorem 4.4, consider
V = TW−1V = (v1, v2, v3) satisfying (4.101). If R is large enough, there exists ǫ0 such that
for γ ≥ 1 and 0 < ǫ ≤ ǫ0 the estimates (4.102) hold.

2. The hyperbolic block. Consider the problem given by the (1,1) block of (4.101):

∂xv1 −
1

ǫ
Tĝ11v1 = H1, [v1] = 0.(4.104)

We’ll perform another conjugation using the matrix V(z, q, ζ) as in (3.56):

V−1Ĝ11V = Λ = diag(µkIsk
+Rk)|k=1,...,k0 ,(4.105)

where V is chosen so that (3.59) also holds.
The functions V and Rk are, initially, smoothly defined and satisfy (4.105) for z ∈ R

and for

0 ≤ γ ≤ δ|ζ|, |ζ| ≥ R, and q = (p, u′, h′, r) with |u′, h′, r| small and (p, ζ)

in a conic neighborhood of (p, ζ̂),
(4.106)

where ζ̂ ∈ S
d
+ ∩ {0 ≤ γ̂ ≤ δ} and p is a fixed but arbitrary point of C (recall Remark 3.21).

So first we extend these symbols to all (z, q, ζ) as elements of Γ0, Γ1, and Γ0 respectively
so that V−1 ∈ Γ0; the equality (4.105) still holds just for (z, q, ζ) satisfying (4.106). Set
Vǫ = V(xǫ , q

ǫ, ζ) ∈ Γ0
1 and define the symbols µǫk ∈ Γ1

1 and Rǫk ∈ Γ0
1 similarly.

Define w = TV−1v1 and observe that the homogeneous calculus gives

v1 = TVw + ǫr−1v1.(4.107)
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A short computation using (4.107), the equation (4.104), and the homogeneous calculus
shows w satisfies the following problem:

∂xw =
1

ǫ
TV−1Tĝ11TVw + TV−1H1 + T∂xV−1TVw + r0v1

=
1

ǫ
TV−1ĝ11V w + T(∂xV−1)V w + TV−1H1 + r0w + r0v1.

(4.108)

Let us use e0 to denote a symbol in Γ0
1, whose precise identity may change from term

to term, such that for θ > 0 as in (2.42):

e0 = e0(
x

ǫ
, t, y, x, ζ) with |∂βt,y∂αζ e0| . e−θ

|x|
ǫ 〈ζ〉−|α| for |β| ≤ 1.(4.109)

Then we have

T(∂xV−1)V =
1

ǫ
Te0 + r0.(4.110)

By (4.105), (4.106), and Remark 4.25,

V−1ĝ11V = Λǫ for ǫ+ |x| small, ζ ∈ supp(β1χH), and p(t, y) near p.(4.111)

Remark 4.29 (Another reduction). As noted in Remark 4.7, we can suppose U and ψ are
supported in a small neighborhood of a basepoint (t, y, 0) such that p(t, y) = p. Let φ(t, y, x)
be a smooth cutoff supported near (t, y, 0) such that

φU = U and φ(κψ) = κψ(4.112)

for κ(x) as in (4.14). Use of the calculus and the paraproduct estimate of Proposition 4.15
shows the estimates (4.102) follow from the same estimates when V is replaced by TφV; only
absorbable errors are introduced by commuting Tφ through (4.101). Indeed, we have

[Tφ, ∂x]V = r0V,
1

ǫ
[Tφ, Tgb

]V =




r0v1

0
1
ǫ [Tφ, Tg32 ]v2 + r0v3


 ,(4.113)

where, because g32 has the structure (4.52),

1

ǫ
‖[Tφ, Tg32 ]v2‖Λ−1

ǫ
. ‖v2‖.(4.114)

Thus, the components of H in (4.101) are modified only by absorbable terms.
Recalling the definition of V and using φU = U , we also have

‖TφV − V‖Λǫ . ‖TφV − V‖〈ǫζ〉 . ǫ‖U‖ + |ψmh|(4.115)

for 〈ǫζ〉 as in (4.40), so estimates for TφV imply estimates for V. Similarly, a partition of
unity in ζ allows us to replace TφV by Tφχ̃V, where χ̃ is supported in a conic neighborhood of

a basepoint ζ̂ as in (4.106). In the remainder of the proof of Proposition 4.28 we therefore
suppose that V is replaced by Tφχ̃V in (4.101) and (4.102), and we write the components of
the latter again as vi. That is,

(v1, v2, v3) = Tφχ̃TW−1V = Tφχ̃TW−1

(
Tβ1χH

U − TSǫβ1χH

ψmh
ǫ

)
.(4.116)
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In view of (4.111) and this Remark, an application of the calculus gives in place of
(4.108):

∂xw =
1

ǫ
(TΛ + Te0)w + TV−1H1 + r0u1 + r0

ψmh
ǫ
.(4.117)

With R±∞
k = (limz→±∞Rk(z, q, ζ))|q=qǫ we have Rǫk± −R±∞

k = e0,k±. Thus, setting

w = (w1, . . . ,wk0) and TV−1H1 = (h1, . . . , hk0)(4.118)

we can write the problem satisfied by w1 as

∂xw1 =
1

ǫ
(Tµ1

+ TR±∞
1

+ Te0,1±)w1 + h1 +
1

ǫ

k0∑

k=2

Te0±wk + r0u1 + r0
ψmh
ǫ
,(4.119)

parallel to (3.102). Now e0,1± depends on both R1 and (V,Vz), while the e0± on the right
depend just on (V,Vz).

Consider the case −sgn(β) = 1, where β is any eigenvalue of A
11
d . Letting w± = w|±x≥0

we first estimate w+. As in the frozen coefficient analysis (3.104), we need to introduce
exponential weights. For a uniformly bounded weight function φ(z) to be chosen, set

ω = (ω1, . . . , ωk0) := eφ(x
ǫ
)w+ = eφ(w+

1 , . . . ,w
+
k0

).(4.120)

From (4.119) we have

∂xω1 =
1

ǫ
(Tµ1

+ TR+∞
1

+ Te0,1 + φ′)ω1 + eφh1 +
1

ǫ

k0∑

k=2

Te0ωk + r0u1 + r0
ψmh
ǫ
,(4.121)

where φ′ = φz(
x
ǫ ).

Denote the inner product in L2(Rd
t,y) by ( , ). Pairing (4.121) with ω1 and integrating∫∞

0 yields

|ω1(0)|2 +
2

ǫ
ℜ
∫ ∞

0

(
(Tµ1

+ TR+∞
1

)ω1, ω1

)
+

2

ǫ
ℜ
∫ ∞

0

(
(Te0,1 + φ′)ω1, ω1

)
=

− 2ℜ
∫ ∞

0
(eφh1, ω1) −

2

ǫ
ℜ
∫ ∞

0

k0∑

k=2

(Te0ωk, ω1) − 2ℜ
∫ ∞

0
(r0u1 + r0

ψmh
ǫ
, ω1).

(4.122)

Now the rule for adjoints gives for each x

1

ǫ
(Te0ωk, ω1) =

1

ǫ
(ωk, Te∗

0
ω1) + (ωk, r−1ω1) ≤

α

ǫ
|ωk|2 +

Cα
ǫ
|Te∗

0
ω1|2 + C|ω|2.(4.123)

The right side of (4.122) is thus easily estimated by RHS ≤

δ1(γ +
1

ǫ
)‖ω1‖2 +

Cφ

γ + 1
ǫ

(‖h1‖2 + ‖u1‖2 + |ψmh/ǫ|2) +
2α

ǫ
‖ω‖2 +

Cα
ǫ
‖Te∗

0
ω1‖2 + C‖ω‖2.

(4.124)
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From Proposition 3.22 and (3.59) we have for ǫ small, 0 ≤ γ ≤ δ|ζ|, |ζ| ≥ R, and
(t, y, x, ζ) in a conic neighborhood of (t, y, 0, ζ̂) (ζ̂ as in (4.106))

ℜµǫ1(t, y, x, ζ) = γµ̃1 for µ̃1 ∈ Γ0
1 such that µ̃1 ≥ c > 0,

ℜR∞
1 ≥ c > 0.

(4.125)

Let b(t, y, x, ζ) ∈ Γ0
1 be a cutoff supported in the region where (4.125) holds with

b(t, y, x, ζ) = 1 on supp(φ) × supp(χ̃β1χH).(4.126)

for φ, χ̃ as in (4.116). Let (( , )) denote the inner product on L2(R
d+1
+ ). Then, since

Tγµ̃1
= ǫγTµ̃1

and ω1 = Tbω1 + T1−bω1, the calculus gives

‖ω1‖ ≤ ‖Tbω1‖ + C

(
ǫ‖u1‖−1,ǫ,γ + ǫ

|ψmh|−1,ǫ,γ

ǫ

)
,

γℜ((Tµ̃1
Tbω1, Tbω1)) ≤

1

ǫ
ℜ((Tγµ̃1

ω1, ω1)) + γ

(
δ1‖ω1‖2 + Cδ1

(
ǫ2‖u1‖2

−1,ǫ,γ + ǫ2
|ψmh|2−1,ǫ,γ

ǫ2

))
,

1

ǫ
ℜ((TR+∞

1

Tbω1, Tbω1)) ≤
1

ǫ
ℜ((TR∞

1
ω1, ω1)) +

1

ǫ

(
δ1‖ω1‖2 + Cδ1

(
ǫ2‖u1‖2

−1,ǫ,γ + ǫ2
|ψmh|2−1,ǫ,γ

ǫ2

))
.

(4.127)

G̊arding’s inequality and the first inequality of (4.127) imply the lower bounds

γℜ((Tµ̃1
Tbω1, Tbω1)) ≥

cγ

2
‖ω1‖2 − γC(ǫ2‖u1‖2

−1,ǫ,γ + |ψmh|2−1,ǫ,γ)

1

ǫ
ℜ((TR+∞

1

Tbω1, Tbω1)) ≥
c

2ǫ
‖ω1‖2 − C

(
ǫ‖u1‖2

−1,ǫ,γ +
|ψmh|2−1,ǫ,γ

ǫ

)
(4.128)

Next we must deal with the Cα
ǫ ‖Te∗

0
ω1‖2 term on the right in (4.124). The calculus gives

Cα
ǫ
‖Te∗

0
ω1‖2 ≤ Cα

ǫ
ℜ((Te0e∗0ω1, ω1)) + Cα‖ω1‖2.(4.129)

Note that e0e
∗
0 decays like e−2θx/ǫ. Anticipating the analogues of (4.122) and (4.129) for

the other ωk and noting that α (small) and Cα can be fixed independently of k ahead of
time, we now choose φ(z) uniformly bounded on [0,∞) such that

ℜ
(
2(e0,k + φ′) − Cαe0e

∗
0

)
≥ e−θx/ǫ for all k.(4.130)

Now Tφ′ω1 = φ′ω1 so an application of G̊arding’s inequality gives

1

ǫ
ℜ(( (2(Te0,1 + φ′) − CαTe0e∗0)ω1, ω1)) ≥

1

2ǫ

∫ ∞

0
e−θx/ǫ|ω1|2dx− Cǫ‖ω1‖2.(4.131)
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Combining the estimates (4.124), (4.127), (4.128), and (4.131) we obtain from (4.122)
by taking δ1 small:

(γ +
1

ǫ
)‖ω1‖2 + |ω1(0)|2 ≤

Cδ1
γ + 1

ǫ

(‖h1‖2 + ‖u1‖2 + |ψmh/ǫ|2) + (
C∗α
ǫ

+ Cα)‖ω‖2 + C(γ +
1

ǫ
)(ǫ2‖u1‖2

−1,ǫ,γ + |ψmh|2−1,ǫ,γ),

(4.132)

where C∗ depends on c in (4.128). Adding (4.132) to similar estimates for the other com-
ponents ωk of ω and using the boundedness of φ, we obtain for ǫ small and provided α was
fixed small enough:

(
1

ǫ
+ γ)‖w+‖ + (

1

ǫ
+ γ)

1

2 |w+(0)| ≤ C

(
‖H+

1 ‖ + ‖u1‖ +
|ψmh|
ǫ

)
.(4.133)

A similar argument on x ≤ 0 yields

(
1

ǫ
+ γ)‖w−‖ ≤ C

(
‖H−

1 ‖ + (
1

ǫ
+ γ)

1

2 |w−(0)| + ‖u1‖ +
|ψmh|
ǫ

)
.(4.134)

Combining the estimates (4.133) and (4.134) using w+(0) = w−(0) and recalling v1 =
TVw + ǫr−1v1, we finally obtain the first estimate of (4.102) in the case −sgn(β) = 1. The
other case is done the same way.

3. The parabolic block. We now complete the proof of Proposition 4.28 by prov-
ing the second of the estimates (4.102) for v

′ := (v2, v3) as modified in Remark 4.29 and
satisfying:

∂xv
′ =

1

ǫ
Tgpv

′ +
(
H2

H3

)
, [v′] = 0.(4.135)

To get optimal estimates we need to switch now to the parabolic calculus. Since

1

ǫ
‖(Tg32 − g32)v2‖Λ−1

ǫ
+

1

ǫ
‖(Tg33 − g33)v3‖Λ−1

ǫ
. ‖v2‖ + ‖v3‖(4.136)

by Lemma 4.19 and Proposition 4.15, and

1

ǫ
‖(Pg32 − g32)v2‖Λ−1

ǫ
+

1

ǫ
‖(Pg33 − g33)v3‖Λ−1

ǫ
. ‖v2‖Λǫ + ‖v3‖(4.137)

by Proposition 4.16, we see that v
′ satisfies (4.135) if and only if it satisfies

∂xv
′ − 1

ǫ
Pgpv

′ =

(
H2

H3

)
+

(
0
h3

)
:=

(
H ′

2

H ′
3

)
, [v′] = 0.(4.138)

with

‖h3‖Λ−1
ǫ

. ‖v2‖Λǫ + ‖v3‖.(4.139)
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Next set v
′′ = PΛ−1v

′ and commute PΛ−1 through (4.138) using the parabolic calculus
to see that

∂xv
′′ − 1

ǫ
Pgpv

′′ = PΛ−1

(
H ′

2

H ′
3

)
+

(
0

r0v
′
2 + r−1v

′
3

)
:=

(
H ′′

2

H ′′
3

)
,(4.140)

where r0 and r−1 have orders 0 and −1 on the PHs spaces now.
Let p = p(t, y) be a basepoint such that for z ∈ R, |ζ| large, and q near q = (p, 0, 0, 0)

we have a conjugator V as in (3.115) and symmetrizers S± as in (3.117). As before we can
suppose that U and ψ are supported near (t, y, 0) and we let φ be a cutoff as in (4.112).
Choose smooth cutoffs φ′(t, y, x) and χ′(ζ) supported, respectively, near (t, y, 0) and in
|ζ| ≥ R, such that

φ′φ = φ, χ′χH = χH .(4.141)

If we set v
′′′ = Pφ′χ′v

′′, then we can apply the high frequency estimate of [MZ1], Propo-
sition 4.6, to conclude for large enough R that

1

ǫ
‖v′′′2 ‖Λ2

ǫ
+

1

ǫ
‖v′′′3 ‖Λǫ +

1√
ǫ
|v′′′2 (0)|

Λ
3
2
ǫ

+
1√
ǫ
|v′′′3 (0)|

Λ
1
2
ǫ

.

‖H ′′
2 ‖Λǫ + ‖H ′′

3 ‖ + ‖v′′2‖Λǫ + ‖v′′3‖ + |v′′2(0)|Λǫ + |v′′3(0)|.
(4.142)

We remark that the Proposition cited here is a quantized version of the frozen coefficient
estimate given for the parabolic block in section 3.2.

Using (4.140) and the definition of v
′ (4.116), we see that the right side of (4.142) is .

‖H ′
2‖ + ‖H ′

3‖Λ−1
ǫ

+ ‖u1, u2, u3‖ + |u1(0), u2(0), u3(0)| + |ψmh/ǫ|.(4.143)

Finally, we need to estimate the error v
′′′ − v

′′. Some care is needed because operators
from both the homogeneous and parabolic calculi enter into the definition of v

′′′. We have

‖v′′ − v
′′′‖Λ2

ǫ/ǫ
= ‖P1−φ′χ′v

′′‖Λ2
ǫ/ǫ

. ‖PΛ−1P1−φ′χ′v
′‖Λ2

ǫ/ǫ
+ ‖ǫr−2v

′‖Λ2
ǫ/ǫ

≤
‖PΛ−1(P1−φ′χ′ − T1−φ′χ′)v′‖Λ2

ǫ/ǫ
+ ‖PΛ−1T1−φ′χ′v

′‖Λ2
ǫ/ǫ

+ ‖v′‖ = A+B + ‖v′‖.
(4.144)

The paraproduct estimates of Propositions 4.15 and 4.16 give A . ‖v′‖. Recalling (4.116),
(4.141) and using the homogeneous calculus, we get

B . ‖T1−φ′χ′v
′‖Λǫ/ǫ . ‖T1−φ′χ′v

′‖〈ǫζ〉/ǫ . ‖U‖ + ‖ψmh/ǫ|,(4.145)

where 〈ǫζ〉 is the homogeneous weight as in (4.40).
Combining this and similar estimates of v

′′′ − v
′′ in terms of the other norms appearing

on the left in (4.142) with (4.143), we find

1

ǫ
‖v′′2‖Λ2

ǫ
+

1

ǫ
‖v′′3‖Λǫ +

1√
ǫ
|v′′2(0)|

Λ
3
2
ǫ

+
1√
ǫ
|v′′3(0)|

Λ
1
2
ǫ

.

‖H ′
2‖ + ‖H ′

3‖Λ−1
ǫ

+ a.t..

(4.146)

This is equivalent to the desired estimate for v
′ = PΛv

′′.
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This concludes the proof of Proposition 4.28 and thus also the proof of Proposition 4.23
in the case β = β1.

4. The case β = β2. Finally, we prove Proposition 4.23 in the case β = β2, where β2 is
supported in γ ≥ δ|ζ|

2 (recall (4.17)). Let g11
h be the principal part, homogeneous of degree

one, of g11. Then we can rewrite the problem (4.70)(a) equivalently as

∂xv1 −
1

ǫ
Tg11h

v1 = h′′1 +
1

ǫ

(
r0v1 + Tg12v2 + Tg13v3

)
:= H1, [v1] = 0

∂x

(
v2
v3

)
− 1

ǫ
Tgp

(
v2
v3

)
=

(
0

h′′2 + 1
ǫTg31v1

)
:= H3, [v2] = 0, [v3] = 0.

(4.147)

We have the estimates

1

ǫ

(
‖r0v1‖ + ‖Tg12v2‖ + ‖Tg13v3‖

)
.

1

ǫ
(‖v1‖ + ‖v2‖Λǫ + ‖v3‖)

1

ǫ
Tg31v1‖Λ−1

ǫ
=

1

ǫ
‖T〈ǫζ〉r0v1‖Λ−1

ǫ
.

1

ǫ
‖v1‖〈ǫζ〉1/2 ,

(4.148)

since Λǫ ≥
√

〈ǫζ〉. Thus, estimate (4.78) of Proposition 4.23 is implied directly by the
following estimates for (4.147):

1

ǫ
‖v1‖〈ǫζ〉 +

1√
ǫ
|v1(0)|〈ǫζ〉1/2 . ‖H1‖ + a.t.

1

ǫ
‖v2‖Λǫ +

1

ǫ
‖v3‖ +

1√
ǫ
|v2(0)|

Λ
1/2
ǫ

+
1√
ǫ
|v3(0)|

Λ
−1/2
ǫ

. ‖H3‖Λ−1
ǫ

+ a.t..

(4.149)

Let φ(t, y, x) be a smooth cutoff supported near (t, y, 0) with p(t, y) = p, a fixed but
arbitrary point of C. Choose also a smooth cutoff χ(ζ) supported in |ζ| ≥ R with χχH = χH .
As long as

φU = U and φκ(x)ψ = κ(x)ψ,(4.150)

we can again make the reduction of Remark 4.29 and replace V by TφχV .
The second estimate in (4.149) is proved exactly like the earlier estimate for the parabolic

block (4.135).
For the estimate of v1 we use symmetrizers associated to symbols constructed from

S±(z, q, ζ̂) as in (3.132). The symbols S± are defined for q near q = (p, 0, 0, 0), so we choose
cutoffs φ1(t, y, x) and χ1(ζ) supported, respectively, near (t, y, 0) and in |ζ| ≥ R/2 such that

φ1φ = φ, χ1χ = χ,(4.151)

and define self-adjoint symbols σǫ±(t, y, x, ζ) ∈ Γ1
1 by

σǫ = φ1(t, y, x)χ1(ζ)〈ζ〉S±(
x

ǫ
, qǫ, ζ̂).(4.152)

We have for U± ∈ CN−s and (t, y, x, ζ) ∈ supp(φ) × supp(χ):

ℜ(σǫ±g
11
h U

±, U±) ≥ 〈ζ〉2|U |2

(σǫ+U
+, U+) − (σǫ−U

−, U−) + C〈ζ〉|Γ(U+, U−)|2 ≥ C〈ζ〉|U |2 on x = 0.
(4.153)
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Taking as Kreiss symmetrizers the self-adjoint operators

S± = ℜTσǫ
±

=
1

2

(
Tσǫ

±
+ (Tσǫ

±
)∗
)
,(4.154)

we can now repeat the proof of Proposition 4.6 of [MZ1], which uses properties (4.153) and
G̊arding’s inequality, to obtain the first estimate of (4.149). This argument is a quantized
version of the frozen coefficient argument given in section 3.2.

This concludes the proof of Proposition 4.23 and therefore also the proof of the variable
coefficient, high frequency estimates of Theorem 4.4.

4.4 Low and medium frequency estimates

In section 3.3 we have discussed the low and medium frequency estimates (3.6), (3.7) for
the frozen coefficient linearized problem, assuming that the r component of q = (p, u′, h′, r)
is zero (recall Remark 3.32). The corresponding variable coefficient estimates near the
front, (4.19) and (4.20), can be proved by quantizing the arguments in the frozen case with
semiclassical paradifferential operators, provided we show that the perturbation rǫ∂xv

1 is
negligible in the proof of those estimates. For this we need to work with the paradifferential
form of the problem (4.57):

∂xU − 1

ǫ
TgǫU =



h′1
0
h′2


+

1

ǫ



Tnǫ

1
∇γφ

0
Tnǫ

2
∇γφ




[U ] = 0, (∂t + γ)ψ − ǫ△yφ+ ℓ(qǫ) · v2 = e on x = 0,

(4.155)

where U = (u1, u2, ǫ∂xu2). We define r̃ǫ ∈ Γ1
2 and gǫ0 and by

Tgǫ = Tgǫ
0
+




0 0 0
0 0 0

Tbdrǫg11 Tbdrǫg12 Tbdrǫg13


 = Tgǫ

0
+ Tr̃ǫ ,(4.156)

where bd := (B̃22
d,d)

−1(xǫ , q
ǫ). For low and medium frequency cutoffs χL(ζ), χM (ζ) as in

(4.15), set χlm = χL + χM , apply Tχlm
to (4.155) and then shift

1

ǫ
Tχlm

Tr̃ǫU(4.157)

to the right as a new forcing term. Since 1
ǫχlmr̃ǫ is bounded in Γ0

2, the term (4.157) can be
absorbed by the left side of the composite estimate (4.11); thus, it is an “a.t.” term.

It remains to prove the estimates (4.19), (4.20) for the problem (4.155) with gǫ0 in place
of gǫ. This part of the analysis is essentially identical to arguments in [GMWZ3]. We refer
to [GMWZ3], Appendix A.2 for the low frequency estimate and to [GMWZ3], section 5.4
or [MZ1], section 4.4 for the medium frequency estimate.

Remark 4.30. 1. If the perturbation rǫ∂xv
1 were not negligible in the low and medium

frequency regimes, we would have to incorporate it into the main operator; but then it would,
for example, destroy hyperbolicity (H4), which is needed for the low frequency analysis.
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2. Note that rǫ∂xv
1 is not negligible in the proof of the high frequency estimate. The

weight Λ−1
ǫ on ‖f2‖Λ−1

ǫ
in (4.21) can be used to absorb the contributions from Tbdrǫg12 and

Tbdrǫg13 in (4.156), but it only “absorbs half” of the t derivative in the contribution from
Tbdrǫg11. Fortunately, (H4) is not used in the high frequency estimate.

4.5 Estimates away from the front

Theorem 4.31 (Estimate away from the front). Assume (H0)-(H7) and (H10), and let

κ0 > 0 be as in Theorem 4.3. Assume u±, f± are C∞ with compact support on R
d+1
± ∩{|x| ≥

κ0}, ψ ∈ C∞
0 (Rd), and (u, ψ) satisfies (4.2). Then ψ = 0 and there exist γ0, ǫ0 such that

for γ ≥ γ0, 0 < ǫ ≤ ǫ0 we have:

γ‖u‖ +
√
γǫ‖∂x,yu2‖ ≤ C‖f‖.(4.158)

Remark 4.32. 1. The extra boundary condition in the transmission problem (4.2) and the
fact that u vanishes near x = 0 imply ψ = 0. Thus, we just need to consider u with support
as above and satisfying

1

ǫ
L(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)u = f.(4.159)

2. Observe that away from the front, the u′ǫ component of qǫ as in (4.3) is no longer
necessarily small. On the other hand we do assume W (xǫ , q

ǫ) ∈ U∗ and W (xǫ , q
ǫ) ∈ U for

|xǫ | large ((H10), part (f)).

The proof of Theorem 4.31 has much in common with the proof of Theorem 4.3, but
is much simpler since there are no boundary conditions, no glancing modes, and formerly
singular terms like 1

ǫE(xǫ , q
ǫ)u are now negligible. The Evans hypothesis (H9) is now irrel-

evant, there is no need to write the problem as a first order system, and the only part of
section 3.2 that is needed is subsection 3.2.2.

The proof of the estimate away from the boundary in [MZ1], section 5.3 for the fully
parabolic case can be used here almost verbatim, but there are a couple of new points in
the symmetrizer construction for the partially parabolic case that we now discuss.

The symmetrizers are given by matrix symbols sǫ(t, y, x, η, ξd). Set ξ = (η, ξd). The low,
medium, and large frequency regimes are defined by

|ǫξ| ≤ ρ0, ρ0 ≤ |ǫξ| ≤ R, R ≤ |ǫξ|(4.160)

respectively.
In the low and medium frequency regimes, our strict dissipativity condition (H5) is

equivalent to the condition in the strictly parabolic case where the right side of (2.16) is
replaced by c|ξ|2. Thus, the symmetrizer construction of [MZ1], Proposition 5.6 applies
without change for bounded frequencies, provided we check that the perturbation rǫ∂xv

1,
which is present now but not in [MZ1], is negligible for bounded frequencies. Indeed, ǫξd is
bounded so ‖rǫ∂xu1‖ can be absorbed by the left side of (4.158).

The main new point is in the high frequency regime where one should first conjugate to
block form as in (3.20). The symmetrizer for the B̂22 block may now be constructed just
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as in the high frequency argument of [MZ1], Proposition 5.6. After another conjugation of
the Â11 block as in (3.28), with blocks C11

k satisfying (3.29), a symmetrizer s11 = diag(s11k )
for the (11) block is easily constructed satisfying

s11k = (s11k )∗, s11k ≥ Irk

ℜ(s11k C
11
k ) ≥ Irk .

(4.161)

With these symmetrizers the estimate (4.158) follows in the usual way.

Remark 4.33. The argument we have given in the high frequency regime uses the obser-
vation made in Remark 3.13 that the conjugations of subsection 3.2.2 are valid for profiles
W (z, q) satisfying only conditions (a),(b) of Definition 2.16. The parameter q is also allowed
to have a nonzero r component in subsection 3.2.2.

5 Approximate solutions

In this section we adapt the construction of high order approximate solutions in [GW,
GMWZ3] for the case of positive viscosity to the partially parabolic case considered in
this paper. A precise statement of the properties of the approximate solutions is given in
Proposition 5.7.

We seek an approximate solution (uaǫ , ψ
a
ǫ ) to the N ×N system (1.1)

d∑

j=0

∂jfj(u) − ǫ
d∑

j,k=1

∂j(Bj,k(u)∂ku) = 0,(5.1)

given a shock solution (u0, ψ0) to the associated hyperbolic system.
As before we introduce the unknown front x = ψǫ(t, y), change variables x̃ = x−ψǫ(t, y),

drop tildes and epsilons, and rewrite (5.1) in our usual notation (2.20)

d−1∑

j=0

Aj(u)∂ju+ Ãd(u, dψ)∂du− ǫ

d∑

j,k=1

∂j(B̃j,k(u, dψ)∂ku) = 0.(5.2)

We are also given a leading profile U0(t, y, x, z), which in the new coordinates is given
in ±x ≥ 0 by

U0(t, y, x,
x

ǫ
) = W0(

x

ǫ
, p(t, y)) + u0(t, y, x+ ψ0(t, y)) − u0(t, y, ψ0(t, y)).(5.3)

In particular we have

U0(t, y, 0, z) = W0(z, p(t, y)), U0 = (U0,1,U0,2).(5.4)

Recall that we view (5.2) as representing two problems for (u, ψ), one on x ≥ 0 and one
on x ≤ 0 with transmission boundary conditions

[u] = 0, [∂xu2] = 0 on x = 0.(5.5)
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We add the extra boundary condition on {x = 0}:

∂tψ − ǫ△yψ + ℓ(t, y) · u2|x=0 = ∂tψ
0 − ǫ△yψ

0 + ℓ(t, y) · U0,2(t, y, 0, 0)(5.6)

where ℓ(t, y) has been chosen so that

ℓ(t, y) · ∂zU0,2(t, y, 0, 0) > 0.(5.7)

We seek an approximate solution (uaǫ , ψ
a
ǫ ) of the form (dropping epsilons)

ψa = ψ0(t, y) + ǫψ1(t, y) + · · · + ǫMψM (t, y),(5.8)

ua =
(
U0(t, y, x, z) + ǫU1(t, y, x, z) + · · · + ǫMUM (t, y, x, z)

)
|z=x

ǫ
,(5.9)

where
U j(t, y, x, z) = U j(t, y, x) + V j(t, y, z),

U0
±(t, y, x) = u0(t, y, x + ψ0(t, y))|±x≥0, and the V j

±(t, y, z) are boundary layer profiles ex-
ponentially decreasing to 0 as z → ±∞.

5.0.1 Interior profile equations

We substitute (5.9) into (5.2) and write the result as

M∑

−1

ǫjF j(t, y, x, z)|z=x
ǫ

+ ǫMRǫ,M (t, y, x),(5.10)

where

F j(x, z) = F j(x) +Gj(x′, z),(5.11)

and the Gj decrease exponentially to 0 as z → ±∞.
In writing out the F j , Gj we use the following notation.

Notation 5.1.
1. f̃d(u, dφ) ≡ fd(u) −

∑d−1
0 fj(u)∂jφ.

2. H(U0, dψ0)∂ ≡∑d−1
0 Aj(U

0)∂j + Ãd(U
0, dψ0)∂d.

3. duÃd(U0, dψ0)(v, w) ≡ ∑N
1 vi∂uiÃd(U0, dψ0)w = ∂uÃd(U0, dψ0)(w, v), by symmetry

of hessians.
4. B(u)dφ ≡ −∑d−1

0 Aj(u)∂jφ.

5. B(u)dφ ≡ −∑d−1
0 fj(u)∂jφ.

6. [h(u)] ≡ h(u+) − h(u−) on x = 0, where u± denote the limits from the right/left at
xd = 0.

Next we recall our notation for viscosity matrices:
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Notation 5.2.
1. Let ν = (ν0, ν1, . . . , νd) = (−∂0ψ, . . . ,−∂d−1ψ, 1), ν0 = (−∂0ψ

0, . . . ,−∂d−1ψ
0, 1), and

ν1 = (−∂0ψ
1, . . . ,−∂d−1ψ

1, 1).
2. B̃j,k(u) = Bj,k(u), if j < d, k < d.

3. B̃j,d(u, ν) =
∑d

k=1Bj,k(u)νk if j < d; B̃d,k(u) =
∑d

j=1Bj,k(u)νj if k < d.

4. B̃d,d(u, ν) =
∑d

j,k=1Bj,k(u)νjνk.

5. B̃0
j,k is defined just like B̃j,k, except that (U0, ν0) is substituted for (u, ν).

6. dB̃0
d,d(v, w) =

∑N
1 vi∂uiB̃

0
d,dw.

The interior profile equations are obtained by setting the F j , Gj equal to zero. In
the following expressions for Gj(t, y, z), the functions U j(t, y, x) and their derivatives are
evaluated at (t, y, 0). We have

F−1(t, y, x) = 0

G−1(t, y, z) = −∂z(B̃0
d,d∂zU0) + ∂z f̃d(U0, dψ0),

(5.12)

F 0(t, y, x) = H(U0, dψ0)∂U0,

G0(t, y, z) = −∂z(B̃0
d,d∂zV

1)+

∂z

(
Ãd(U0, dψ0)(U1 + V 1) − dB̃0

d,d(U
1 + V 1, ∂zV

0) + B(U0)dψ1
)

+

Q0(U0, V 0, dψ0, dψ1),

(5.13)

where Q0 = Q0(t, y, z) (for short) is exponentially decaying in z. In fact

Q0 =
d−1∑

0

Aj(U0)∂jV
0+

d−1∑

1

(Aj(U0) −Aj(U
0))∂jU

0 + (Ãd(U0, dψ0) − Ãd(U
0, dψ0))∂dU

0−

{
d−1∑

j=1

∂j(B̃
0
j,d∂zV

0) +

d−1∑

k=1

∂z(B̃
0
d,k∂kU0)+

d∑

j,k=1

ν0
j ν

0
k∂uB

0
j,k(∂zV

0, ∂dU
0) +

d∑

j,k=1

ν0
j ν

0
k∂uB

0
j,k(∂dU

0, ∂zV
0)+

d∑

j,k=1

B0
j,k(ν

0
j ν

1
k + ν0

kν
1
j )∂

2
zV

0 +

d∑

j,k=1

(ν0
j ν

1
k + ν0

kν
1
j )∂uB

0
j,k(∂zV

0, ∂zV
0)}.

(5.14)
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For j ≥ 1

F j(t, y, x) = H(U0, dψ0)∂U j − P j−1(x)

Gj(t, y, z) = −∂z(B̃0
d,d∂zV

j+1)+

∂z

(
Ãd(U0, dψ0)(U j+1 + V j+1) − dB̃0

d,d(U
j+1 + V j+1, ∂zV

0) + B(U0)dψj+1
)

+

Qj(t, y, z),

(5.15)

where P j , Qj depend only on (Uk, dψk), (Uk, dψk, dψk+1) respectively, and their derivatives,
for k ≤ j.

Remark 5.3. 1. Recall that a term like (Aj(U0) − Aj(U
0))∂jU

0 in (5.14) is evaluated at
(t, y, x, z) = (t, y, 0, z). This introduces a fast decaying error which can be incorporated into
G1(t, y, z) in view of the fact that x = ǫxǫ . This kind of observation is applied to all such
errors.

2. Define Q0(t, y, z) for z ≥ 0 by
∫ z
+∞Q0(t, y, s)ds and for z ≤ 0 by

∫ z
−∞Q0(t, y, s)ds.

As we’ll see shortly, it is essential that the terms involving ψ1 do not contribute to the jump
of Q0 at z = 0. These terms come from the last line in (5.14), which can be expressed as

∂z(

d∑

j,k=1

(ν0
j ν

1
k + ν0

kν
1
j )B

0
j,k∂zV

0) ≡ h(t, y, z).

Since this derivative is smooth at z = 0 and
∫ +∞
−∞ h(t, y, z)dz = 0, the desired conclusion

follows. The same remark applies to the terms involving ψj+1 in the jump of Qj at z = 0.

5.0.2 Boundary profile equations

In the boundary profile equations (t, y, x, z) is evaluated at (t, y, 0, 0). These equations are
obtained by substituting the expansions into (5.5) and (5.6) and setting coefficients of the
different powers of epsilon equal to 0. Here U0

± or V 0
± denote limits as x (resp. z) approaches

0±.
From (5.5) and (5.6) we obtain the conditions:

(a)ǫ0 : U0,1
+ + V 0,1

+ = U0,1
− + V 0,1

−

(b)ǫ0 : U0,2
+ + V 0,2

+ = U0,2
− + V 0,2

−

(c)ǫ−1 : ∂zV
0,2
+ = ∂zV

0,2
− ,

(d)ǫ0 : ∂tψ
0 − ℓ(t, y) · U0,2 = ∂tψ

0 − ℓ(t, y) · U0,2,

(5.16)

(a)ǫ1 : U1,1
+ + V 1,1

+ = U1,1
− + V 1,1

−

(b)ǫ1 : U1,2
+ + V 1,2

+ = U1,2
− + V 1,2

−

(c)ǫ0 : ∂xU
0,2
+ + ∂zV

1,2
+ = ∂xU

0,2
− + ∂zV

1,2
− ,

(d)ǫ1 : ∂tψ
1 −△yψ

0 + ℓ · U1,2 = −△yψ
0.

(5.17)
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and for j ≥ 2,

(a)ǫj : U j,1+ + V j,1
+ = U j,1− + V j,1

−

(b)ǫj : U j,2+ + V j,2
+ = U j,2− + V j,2

−

(c)ǫj−1 : ∂xU
j−1,2
+ + ∂zV

j,2
+ = ∂xU

j−1,2
− + ∂zV

j,2
− ,

(d)ǫj : ∂tψ
j −△yψ

j−1 + ℓ · U j,2 = 0.

(5.18)

5.0.3 Solution of the profile equations

Notation 5.4. 1. Set Bν := B̃0
d,d = B̃d,d(U0, ν0), an N × N matrix, and Br := B22

ν , an
s× s matrix (the reduced normal viscosity matrix).

2. Set Aν := Ãd(U0, ν0), an N × N matrix, and A = −(A11
ν )−1A12

ν , an (N − s) × s
matrix.

We’ll postpone a careful discussion of regularity of solutions until Proposition 5.7. Here
we note simply that we need to assume

U0 ∈ Hs0([−T0, T0] × R
d
±), ψ0 ∈ Hs0+1([−T0, T0] × Rd)(5.19)

for some large enough s0 depending on M .
1. Note that F 0 = 0 already by our assumption that (U0, dψ0) is a shock.

2. V0 and the reduced profile equation. Recall that G−1 = 0 represents equations
on ±z ≥ 0. Define

G−j(t, y, z) =

{∫ z
+∞G−j(t, y, s)ds for z ≥ 0∫ z
−∞G−j(t, y, s)ds for z ≤ 0

.

The equations G−1 = 0 are now

0 = f̃1
d (U0, dψ0) − f̃1

d (U
0, dψ0)

Br∂zU0,2 = f̃2
d (U0, dψ0) − f̃2

d (U
0, dψ0).

(5.20)

We are given the lead profile and inviscid shock, so we may simply take V 0(t, y, z) =
U0(t, y, 0, z) − U0(t, y, 0).

To establish notation used later, we solve for U0,1 in terms of U0,2, U0,1 = w(U0,2), and
obtain the reduced profile equation for U0,2

Br∂zU0,2 = f̃2
d (w(U0,2),U0,2, dψ0) − f̃2

d (w(U0,2), U0,2, dψ0),(5.21)

where Br is the reduced normal viscosity matrix defined above. Observe

∂zU0,1 = A∂zU0,2; ∂U0,2w = A.(5.22)
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3. Compatibility condition for V 1. With Q0 as in Remark 5.3, the equations G0 = 0
can be written

(a)0 = A11
ν (U1,1 + V 1,1) +A12

ν (U1,2 + V 1,2) + (B(U0)dψ1)1

− (Ãd(U
0, dψ0)U1 + B(U0)dψ1)1 + Q0,1.

(b)B22
ν ∂zV

1,2 = A21
ν (U1,1 + V 1,1) +A22

ν (U1,2 + V 1,2) − dB22
ν (U1 + V 1, ∂zV

0,2)

+ (B(U0)dψ1)2 −
(
Ãd(U

0, dψ0)U1 + B(U0)dψ1
)2

+ Q0,2 ≡ D(t, y, z).

(5.23)

U0 clearly satisfies the boundary condition (5.16). Suppose for a moment that [U1,2] =
[U1,2 + V 1,2] = 0. Then (5.23) shows that [U1,1] = 0 if and only if

[Ãd(U
0, dψ0)U1 + B(U0)dψ1]1 = [Q0,1].(5.24)

We seek a condition on [Ãd(U
0, dψ0)U1 +B(U0)dψ1]2 that will imply (5.17)(c) assuming

that (5.23) and (5.17)(a)(b) hold. Using (5.23)(b) and

[U0] = 0, [∂zV
0] = 0, [U1 + V 1] = 0,(5.25)

we compute

[Br∂zV
1,2] = [D] = −[Ãd(U

0, dψ0)U1 + B(U0)dψ1]2 + [Q0]2.(5.26)

Thus, (5.17)(c) holds if and only if [Br∂zV
1,2] = −[Br∂xU

0,2], that is, if and only if

[Ãd(U
0, dψ0)U1 + B(U0)dψ1]2 = [Q0]2 + [Br∂NU

0,2].(5.27)

The equations (5.24) and (5.27) give us the boundary conditions for the problem satisfied
by (U1, dψ1).

For later reference note that we can use (5.23)(a) to express

U1,1 + V 1,1 = A(U1,2 + V 1,2) +H(t, y, z), where(5.28)

H(t, y, z) = −(A11
ν )−1K(t, y, z), with K(t, y, z) =

(B(U0)dψ1)1 − (Ãd(U
0, dψ0)U1 + B(U0)dψ1)1 + Q0,1.

(5.29)

4. Solve for (U1, dψ1). These are determined by solving

H(U0)∂U1 = P 0(x),

[B(U0)dψ1 +AN (U0, dψ0)U1]1 = [Q0,1],

[B(U0)dψ1 +AN (U0, dψ0)U1]2 = [Q0]2 + [B21
ν (A11

ν )−1Q0,1] + [Br∂NU
0,2]).

(5.30)

The right sides in the boundary and interior equations of (5.30) are initially defined for
t ∈ [−T0, T0]. We can modify them to be zero in t ≤ −T0 + δ, say. We thereby obtain a
problem for (U1, dψ1) that is forward well-posed in the sense of Majda [M2], since (U0, dψ0)
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is uniformly stable and ψ1 does not appear on the right side of the boundary equation (Re-
mark 5.3). Thus, we obtain a solution to (5.30) on [−T0

2 , T0].

5. Stable and unstable manifolds Let W s
0 (t, y) ⊂ Rr and W u

0 (t, y) ⊂ Rr denote
the stable and unstable manifolds of the reduced profile equation (5.21) for the rest points
U0,2
± (t, y, 0). Our assumptions (Lax shock, Evans condition) imply they intersect transver-

sally in a smooth curve containing U0,2(t, y, 0, 0). With obvious notation let’s rewrite (5.21)
as

Br∂zU0,2 = f2
r (U0,2, dψ0) − f2

r (U
0,2, dψ0).(5.31)

The tangent spaces toW s
0 (t, y) andW u

0 (t, y) at U0,2(t, y, 0, 0), denoted Ws
0(t, y) and Wu

0(t, y),
are the stable and unstable subspaces for the equations

Br∂zV
1,2 = Ar(U0,2, dψ0)V 1,2 − dU0,2Br(V

1,2, ∂zU0,2),(5.32)

where

Ar(U0,2, dψ0) = ∂U0,2fr = (A22
ν −A21

ν (A11
ν )−1A12

ν )(w(U0,2),U0,2, dψ0)(5.33)

and we use U0,1 = w(U0,2) to regard Br as a function of (U0,2, dψ0) now.
6. Solve for V 1 We first obtain V 1,2 exponentially decaying to 0 as z → ±∞ and then

use (5.28) to solve for V 1,1. It is clear from (5.28) that ∂zV
1,1 must decay exponentially to

0, and a closer examination of (5.28) shows the same is true for V 1,1 itself. In fact, (5.29)
implies

H(t, y,+∞) = U1,1(t, y, 0) − (A|z=+∞)U1,2.(5.34)

The equation for V 1,2 is (5.23)(b). Because of the compatibility conditions that have
been arranged by the choice of (U1, ψ1), in order to obtain V 1 satisfying (5.23) and the
boundary conditions (5.17)(a),(b),(c), it suffices now to find an exponentially decaying so-
lution to (5.23)(b) such that (5.17)(b) holds: [U1,2 + V 1,2] = 0.

The solution is based on the observation, which can be verified by direct calculation,
that (5.23)(b) has the form

Br∂zV
1,2 = Ar(U0,2, dψ0)V 1,2 − dU0,2Br(V

1,2, ∂zU0,2) + F(t, y, z),(5.35)

where F is known (expressible in terms of already determined profiles) and exponentially
decreasing to 0 as z → ±∞. Now we can solve (5.35) with the correct initial conditions by
an argument based on transversality.

Let W s
1 (t, y) and W u

1 (t, y) be the linear submanifolds of Rs consisting of initial data at
z = 0 of solutions to (5.35) that decay as z → ±∞. Standard ODE facts [Co] imply that
W s

1 (t, y) and W u
1 (t, y) are translates of Ws

0(t, y) and Wu
0(t, y). The sum of the dimensions

of W s
1 (t, y) and W u

1 (t, y) is s+ 1 and they intersect transversally, so their intersection is a
line in Rs with direction ∂zU0,2(t, y, 0, 0).

Thus, we should choose initial data

(V 1,2
+ (t, y, 0), V 1,2

− (t, y, 0)) ∈ (W s
1 (t, y) ×W u

1 (t, y))∩
{(v1, v2) ∈ R2s : v1 − v2 = U1,2

− (t, y, 0) − U1,2
+ (t, y, 0)}.

(5.36)
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The above paragraph implies this is a transversal intersection of linear submanifolds of R2s

of dimensions s+1 and s respectively. Call this intersection (which is necessarily nonempty)

L1(t, y), the line of connection initial data for V 1,2
± (t, y, z).(5.37)

For a given (t, y), any point on this line gives a choice of initial data for (5.35) corresponding
to a decaying solution that satisfies (5.17)(b). In view of the above discussion we now have
V 1 satisfying (5.23) and (5.17)(a),(b),(c).

To arrange (5.17)(d) as well, note that L1(t, y) has direction

U0,2(t, y, 0) ≡ (∂zU0,2(t, y, 0, 0), ∂zU0,2(t, y, 0, 0)).

So

L1(t, y) = {K(t, y) + sU0,2(t, y, 0), s ∈ R},(5.38)

for some initial point K(t, y). The boundary condition (5.17)(d) holds provided

∂tψ
0(t, y) + ℓ(t, y) · (U1,2

+ (t, y, 0) + V 1,2
+ (t, y, 0)) = 0.(5.39)

Since ℓ(t, y) · ∂zU0,2(t, y, 0, 0) 6= 0, there is a unique smooth choice of s(t, y) that gives V 1,2
+

satisfying (5.39). We now have exponentially decaying V 1
± satisfying (5.23) and (5.17).

7. (Continue) The solution of the remaining profile equations follows the same pattern:

(U1, ψ1) → V 1 → (U2, ψ2) → V 2...(5.40)

The boundary condition for the problem satisfied by (U j , ψj) is always the compatibility
condition for V j . In view of Remark 5.3 the boundary problems for the (U j , ψj) are all
Majda well-posed, linearized shock problems. The line Lj(t, y) of connection initial data
for V j

± always has direction U0,2(t, y, 0).
Provided the index of regularity s0 in (5.19) is large enough, this process yields arbitrarily

high order approximate solutions with the properties summarized below.

5.0.4 Summary

Let E(u, ψ) be the operator in the left side of (5.2). Our approximate solution (ua, ψa) as
in (5.8), (5.9) satisfies

E(ua, ψa) = ǫMRǫ,M (t, y, x) on [−T0

2
, T0] × R

d
±

[ua] = 0; [∂xu
a
2] = ǫMrM (t, y) on x = 0

∂tψ
a−ǫ△yψ

a + ℓ(t, y) · ua2
= ∂tψ

0 − ǫ△yψ
0 + ℓ(t, y) · U0,2(t, y, 0, 0) on x = 0,

(5.41)

with remainders ǫMRM and ǫMrM as described in the next step. We can make [∂xu
a
2] = 0

without changing the other conditions in (5.41) by adding −xρ(x)ǫMrM (t, y) to ua2,+, where
ρ is a smooth cutoff equal to one near x = 0.
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Remark 5.5. 1. The construction does not require the full strength of the uniform stability
assumption on the profile W0(z, p(t, y)). We need only the properties that follow from this
assumption by the Zumbrun-Serre theorem, Theorem 7.2, in the low frequency limit; namely,
transversality of the connection and uniform stability of the inviscid shock (U0, ψ0).

2. Observe that with the extra boundary condition, the higher profiles are uniquely
determined by this construction once the leading profile U0(t, y, 0, z) and inviscid shock
(U0(t, y, x), ψ0(t, y)) are fixed.

In the next Proposition we use the following spaces:

Definition 5.6. 1. Let Hs be the set of functions U(t, y, x) on [−T0, T0]×Rd such that the

restrictions U± belong to Hs([−T0, T0] × R
d
±).

2. Let H̃s be the set of functions V (t, y, z) on [−T0, T0] × Rd−1 × R such that the
restrictions V± belong to C∞(R±,Hs(t, y)) and satisfy

|∂kzV (t, y, z)|Hs(t,y) ≤ Ck,se
−δ|z| for all k(5.42)

for some δ > 0.

Proposition 5.7 (Approximate solutions). For given integers m ≥ 0 and M ≥ 1 let

s0 > m+
7

2
+ 2M +

d+ 1

2
.(5.43)

Suppose the given inviscid shock (U0, ψ0) is uniformly stable in the sense of Majda and
satisfies U0 ∈ Hs0, U0

±(t, y, 0) ∈ Hs0(t, y), and ψ0(t, y) ∈ Hs0+1(t, y). Suppose also that the
connection given by W0(z, p(t, y)) is transversal. Then one can construct (ua, ψa) as above,

ψa = ψ0(t, y) + ǫψ1(t, y) + · · · + ǫMψM (t, y),(5.44)

ua =
(
U0(t, y, x, z) + ǫU1(t, y, x, z) + · · · + ǫMUM (t, y, x, z)

)
|z=x

ǫ
,(5.45)

where now UM,2
+ (t, y, x) is replaced by UM,2

+ (t, y, x)−xρ(x)rM (t, y) for rM as in (5.41). The
approximate solution (ua, ψa) satisfies

E(ua, ψa) = ǫMRM (t, y, x) on [−T0

2
, T0] × R

d
±

[ua] = 0; [∂xu
a
2] = 0 on x = 0

∂tψ
a−ǫ△yψ

a + ℓ(t, y) · ua2
= ∂tψ

0 − ǫ△yψ
0 + ℓ(t, y) · U0,2(t, y, 0, 0) on x = 0.

(5.46)

We have

U j(t, y, x) ∈ Hs0−2j , ψj(t, y) ∈ Hs0−2j+1(t, y)

V j(t, y, z) ∈ H̃s0−2j

rM (t, y) ∈ Hs0−2M− 3

2 (t, y),

(5.47)
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and RM (t, y, x) satisfies

(a) |(∂t, ∂y, ǫ∂x)αRM |L2(t,y,x) ≤ Cα for |α| ≤ m+
d+ 1

2

(b) |(∂t, ∂y, ǫ∂x)αRM |L∞(t,y,x) ≤ Cα for |α| ≤ m.
(5.48)

Definition 5.8. We’ll refer to (ua, ψa) as in Proposition 5.7 as an approximate solution
of order M .

Proof of Proposition 5.7. It just remains to check (5.47) and (5.48). (U0, ψ0) has the given
regularity by assumption and V 0 by construction since U0|x=0 belongs to Hs0 .

In the linearized shock problem (5.30) satisfied by (U1, ψ1), the interior forcing term
P 0(t, y, x) involves terms in which U0 is differentiated twice, and so belongs to Hs0−2.
Similarly, the boundary data lies in Hs0−2(t, y). Thus, Majda’s estimates for (5.30) imply
U1 ∈ Hs0−2, U1|x=0 ∈ Hs0−2, and ψ1 ∈ Hs0−1.

V 1,2(t, y, z) satisfies an ODE in z, (5.23)(b), in which the coefficients and boundary data
at z = 0 depend on (U1, ψ1); so V 1 ∈ H̃s0−2. Following this pattern establishes the stated
regularity of (U j , ψj) and V j for any j.

From the boundary profile equation (5.18) we obtain

rM (t, y) = ∂xU
M,2
+ − ∂xU

M,2
− .(5.49)

Since UM (t, y, x) ∈ Hs0−2M , we have rM ∈ Hs0−2M− 3

2 (t, y). This finishes (5.47).

Finally, since xρ(x)rM (t, y) ∈ Hs0−2M− 3

2 and the least regular terms in RM involve two
derivatives of xρ(x)rM (t, y), we obtain (5.48). Observe that we do not deduce (5.48)(b)
from (5.48)(a). (5.48)(b) is verified separately using (5.47) and the Sobolev embedding
theorem.

Remark 5.9. 1. Let m and M be given nonnegative integers, and set

u±0 = U0
±(t, y, x)

u′±ǫ = (U0
±(t, y, x) − U0

±(t, y, 0))+

ǫU1
±(t, y, x,

x

ǫ
) + · · · + ǫMUM± (t, y, x,

x

ǫ
)

h′ǫ = ǫdψ1 + · · · + ǫMdψM ,

(5.50)

where the terms on the right in (5.50) are as in Proposition 5.7. It is now easy to check,
using (5.47) and the Sobolev embedding theorem, that u±0 , ψ0, u′±ǫ , and h′ǫ have the regularity
stated in Assumption 4.1 when m in (5.43) is taken to be 0. These functions are defined by
our construction just on the time interval [−T0, T0], but they can easily be extended to all
time with the extensions satisfying Assumption 4.1.
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6 Nonlinear stability

6.1 Error problem, iteration scheme, and L
2 estimate

We seek an exact solution of the transmission problem

(a) E(u, ψ) :=

d−1∑

j=0

Aj(u)∂ju+ Ãd(u, dψ)∂du− ǫ

d∑

j,k=1

Dj(Bj,k(u)Dku) = 0

(b) [u] = 0, [∂xu2] = 0 on x = 0,

∂tψ − ǫ△yψ + ℓ(t, y) · u2|x=0 = ∂tψ
0 − ǫ△yψ

0 + ℓ(t, y) · U0,2(t, y, 0, 0) on x = 0

(6.1)

that is close to an approximate solution (ua, ψa) of order M as constructed earlier and
satisfying (5.46). Here as in (1.10)

Dj = ∂j − (∂jψ)∂x for 1 ≤ j < d, Dd = ∂x.(6.2)

We noted in Remark 2.8 that (6.1)(a) is the same as (2.20).
Looking for an exact solution of the form

u = ua + ǫLv, ψ = ψa + ǫLφ,(6.3)

we obtain by subtracting (5.46) from (6.1) the following error problem for (v, φ):

(a) ǫ−L
(
E(ua + ǫLv, ψa + ǫLφ) − E(ua, ψa)

)
= −ǫM−LRM

(b) [v] = 0, [∂xv2] = 0, ∂tφ− ǫ△yφ+ ℓ(t, y) · v2|x=0 = on x = 0.
(6.4)

The interior equation (6.4)(a) can be solved, at least formally, by the following iteration
scheme, which we shall call scheme I:

d−1∑

j=0

Aj(u
a + ǫLvn)∂jvn+1 + Ãd(u

a + ǫLvn, d(ψ
a + ǫLφn))∂dvn+1+

d−1∑

j=0

(vn+1 ·
∫ 1

0
duAj(u

a + sǫLvn)ds)∂ju
a+

(vn+1 ·
∫ 1

0
duÃd(u

a + sǫLvn, d(ψ
a + ǫLφn))ds)∂du

a

− ǫ
d∑

j,k=1

(∂j − ∂j(ψ
a + ǫLφn)∂d)

(
Bjk(u

a + ǫLvn)(∂k − ∂k(ψ
a + ǫLφn)∂d)vn+1

)

− ǫ
d∑

j,k=1

(∂j − ∂jψ
a∂d)

(
(vn+1 ·

∫ 1

0
duBjk(u

a + sǫLvn)ds)(∂k − ∂k(ψ
a + ǫLφn)∂d)u

a)

)

−
d−1∑

j=0

∂jφn+1 Aj(u
a)∂du

a + ǫ
d∑

j,k=1

∂jφn+1∂d
(
Bjk(u

a + ǫLvn)(∂k − ∂k(ψ
a + ǫLφn)∂d)u

a
)

+ ǫ
d∑

j,k=1

(∂j − ∂jψ
a∂d) (Bjk(u

a)∂kφn+1∂du
a) = −ǫM−LRM .

(6.5)
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On the boundary we require

[vn+1] = 0, [∂xv
2
n+1] = 0, ∂tφn+1 − ǫ△yφn+1 + ℓ(t, y) · v2

n+1|x=0 = on x = 0.(6.6)

Remark 6.1. 1. If all the subscripts n and n + 1 are removed in (6.5), we have exactly
(6.4)(a).

2. If (vn, φn) is set equal to zero in (6.5), the resulting linear operator appearing on the
left in (6.5) and acting on (vn+1, φn+1) is identical to the linearized operator used in the
nonlinear stability argument of [GMWZ3].

3. Note that many other schemes are possible; for example, one could switch a certain
n with n+ 1 in some of the terms of (6.5). It turns out that scheme I leads to a difficulty
with higher derivative estimates (see Remark 6.3), so we replace it in the next section by a
new scheme.

We can rewrite (6.5)

Lu(ua + ǫLvn, ψ
a + ǫLφn)vn+1 + Lψ(ua + ǫLvn, ψ

a + ǫLφn)φn+1 = −ǫM−LRM ,(6.7)

thereby defining Lu and Lψ. The nonlinear error problem (6.4) can now be written

Lu(ua + ǫLv, ψa + ǫLφ)v + Lψ(ua + ǫLv, ψa + ǫLφ)φ = −ǫM−LRM on [0, T0] × Rd

[v] = 0, [∂xv2] = 0, ∂tφ− ǫ△yφ+ ℓ(t, y) · v2|x=0 = on x = 0.
(6.8)

The problem (6.8) needs some initial conditions in order to be well-posed. Choose a C∞
0

cutoff function θ(t) such that

θ(t) =

{
1 for t ≥ −T0

4

0 for t ≤ −T0

3

,(6.9)

and for an arbitrarily large fixed K > 0, let χK(x) be a C∞
0 cutoff such that χK = 1 on

|x| ≤ K. We will solve the following forward error problem:

(a) Lu(ua + ǫLv, ψa + ǫLφ)v + χKLψ(ua + ǫLv, ψa + ǫLφ)φ =

− ǫM−Lθ(t)RM on [−T0, T0] × Rd

(b) [v] = 0, [∂xv2] = 0, ∂tφ− ǫ△yφ+ ℓ(t, y) · v2|x=0 = on x = 0

(c) v = 0, φ = 0 in t <
−T0

3
.

(6.10)

A solution (v, φ) to (6.10) is then a solution to (6.8) on [0, T0] × Rd−1
y × {|x| ≤ K}.

Remark 6.2. The cutoff χK is introduced in order to allow us to treat front terms φn on
an equal footing with interior terms in the Moser estimates below. With these cutoffs we
can always assume that φn or φn+1 has been replaced by χ(x)φn or χ(x)φn+1, where χ(x)
is any smooth cutoff such that χχK = χK . We’ll usually suppress the χ attached to fronts
in writing the estimates.
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6.1.1 New iteration scheme: scheme II

Consider again scheme I (6.5), where now a cutoff χK is always inserted as in 6.10(a). We’ll
describe scheme II by prescribing a simple rule for obtaining it from scheme I.

Corresponding to the splitting (v1, v2), there is a “first equation” and a “second equa-
tion”. Changes are made only in the second equation of (6.5). Let ∂s denote one of the
spatial derivatives ∂x, ∂y. Consider the following products, which always occur with matrix
coefficients and powers of ǫL attached:

∂sv
1
n∂sv

2
n+1, ∂sv

1
n∂sφn+1, ∂sv

1
nvn+1

∂2
sφn∂sv

2
n+1, ∂

2
sφn∂sφn+1, ∂

2
sφnvn+1.

(6.11)

The rule is: whenever such a product occurs in (6.5), switch the n and n + 1; keep the
boundary scheme (6.6) as before. This rule defines a new iteration scheme which converges,
formally at least, to the problem (6.10)(a)-(b).

Remark 6.3. 1. When we refer to “products” ∂sv
1
n∂sv

2
n+1, for example, we mean, of

course, vectors whose entries are products of scalar components of the given factors. Such
products appear in the fourth line of (6.5) after the differentiation ∂d

(
(Bj,k(u

a + ǫLvn)
)

is
performed.

2. The products in (6.11) do not present any difficulty in the proof of the L2 estimate
for the linearized problem corresponding to scheme I. This is because the size of the terms
with subscript n is controlled by Assumption 4.1. The difficulty occurs only in the higher
derivative estimates.

Let ∂ = (∂t, ∂y). To estimate ∂kv1
n+1, for example, we would apply the L2 estimate

to the problem obtained by differentiating scheme I k times. A product like ∂sv
1
n∂sv

2
n+1 in

scheme I gives rise, after ∂k is applied, to a commutator term involving the product

(∂k∂sv
1
n)(∂sv

2
n+1).(6.12)

Since k+1 derivatives fall on v1
n and we are trying to estimate ∂kv1

n+1, such a commutator
is an unacceptable forcing term in the induction argument. The L2 estimate gives better
control over v2

n than v1
n, so the switch resolves this problem. In the case of positive viscosity

the control over both components is equally good, so switches are not needed and scheme I
is adequate.

We can write the new scheme more explicitly as follows. With Lu and Lψ as in (6.10)
define

L̃uvn+1 = Lu(ua + ǫLvn, ψ
a + ǫLφn)vn+1 + ǫLB1∂sv

2
n+1 + ǫLB2vn+1 + ǫLA1∂sv

1
n+1

L̃ψφn+1 = Lψ(ua + ǫLvn, ψ
a + ǫLφn)φn+1 + ǫLB3∂sφn+1 + ǫLA2∂

2
sφn+1.

(6.13)

Here the matrices Bj are of varying sizes, have vanishing first row, and depend smoothly
on their arguments

Bj = Bj(ua, dψa, ǫ∂xua, ∂yua, vn, ∂sφn, ∂sv1
n, ∂

2
sφn, ǫ)(6.14)

for ǫ ∈ [0, 1]. The matrices Aj also have vanishing first row and depend smoothly on their
arguments:

Aj = Aj(u
a, dψa, ǫ∂xu

a, ∂yu
a, vn, ∂sφn, ∂sv

2
n, ǫ)(6.15)
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Remark 6.4. Each switch prescibed by the above rule corresponds to making two changes
in the original scheme. A bad term of one of the types listed in (6.11) is subtracted, and a
corresponding switched term is added. The Bj terms in (6.13) are the subtracted bad terms,
and the Aj terms are the added switched terms.

We’ll obtain the solution to (6.10) as a limit of solutions (vn+1, φn+1) to problems:

(a) L̃uvn+1 + χKL̃ψφn+1 = −ǫM−Lθ(t)RM on [−T0, T0] × Rd

(b) [vn+1] = 0, [∂xv
2
n+1] = 0, ∂tφn+1 − ǫ△yφn+1 + ℓ(t, y) · v2

n+1 = 0 on x = 0

(c) vn+1 = 0, φn+1 = 0 in t <
−T0

3
,

(6.16)

where the coefficients depend on (vn, φn) and other known arguments as described in (6.13)-
(6.15). We take the first iterate (v0, φ0) = 0.

6.1.2 L2 estimate for scheme II

It is not yet clear that scheme II (or even the simpler scheme I for that matter) satisfies the
L2 estimate (4.11) of Theorem 4.2:

‖u1‖λ2
ǫ
+ ‖u2‖λ2

ǫΛǫ
+
√
ǫ‖∂xu2‖λǫ + |u1(0)|λǫ + |u2(0)|

λǫΛ
1
2
ǫ

+ ǫ|∂xu2(0)|
λǫΛ

− 1
2

ǫ

+ |ψ|µǫΛǫ ≤

C(‖f1‖ + ‖f2‖Λ−1
ǫ

).

(6.17)

To see that it does, we need to relate the interior operator in (6.16) to the operator in the
problem (4.2) for which we have proved (6.17).

For L̃u, L̃ψ as in (6.16)(a) with coefficients depending on (ua, ψa, vn, φn, ǫ), define

L̃(u, ψ) := L̃uu+ χKL̃ψψ
L̃γ = e−γtL̃eγt

(6.18)

and consider the following transmission problem on Rd+1:

L̃γ(u, ψ) = f

[u] = 0, [∂xu
2] = 0, (∂t + γ)ψ − ǫ△yψ + ℓ(t, y) · u2 = k4 on x = 0

(c) u = 0, ψ = 0 in t <
−T0

3
,

(6.19)

where we suppose now that (vn, φn) has been extended to Rd+1. Observe that when

(u, ψ) := e−γt(vn+1, φn+1), f := e−γt(−ǫM−Lθ(t)RM ),(6.20)

then (6.19) is equivalent to (6.16) on [−T0, T0] × Rd.

Notation 6.5. 1. Let D = (∂t, ∂y, ∂x), ∂s = (∂y, ∂x), ∂ = (∂t, ∂y). Sometimes, we use D,
∂s, or ∂ to denote just one component of the corresponding vector operator.

2. Let ∂k denote the collection of operators ∂α0
x0
. . . ∂

αd−1
xd−1

such that α0 + · · ·+ αd−1 = k.
Sometimes ∂k is used to denote a particular member of this collection of operators. We
treat Dk and ∂ks similarly.
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Proposition 6.6. Fix M ≥ L ≥ 1 and let s0 be the index measuring Sobolev regularity of
the inviscid shock (as in Proposition 5.7). Suppose f ∈ L2,

s0 >
7

2
+ 2M +

d+ 1

2
.(6.21)

and that there exists ǫ0 > 0 such that for ǫ ∈ (0, ǫ0] :

‖vn, φn‖∗∗ := |vn, Dvn, D2v2
n, ∂∂xv

1
n, ǫ∂

2
xv

1
n, ∂

2
y∂xv

2
n, ∂

2
x∂yv

2
n, φn, ∂φn, ∂

2φn, ∂
3φn|L∞ ≤ 1.

(6.22)

There exist positive constants γ0 and ǫ0 such that for γ ≥ γ0 and 0 < ǫ ≤ ǫ0, the a priori
estimates of Theorems 4.2 and 4.31 for smooth data supported, respectively, near and away
from the front, hold for the transmission problem (6.19). In the estimate near the front
(6.17), an extra term C|k4|λǫΛ

1/2
ǫ

should be included on the right.

Remark 6.7. 1. With notation as in Proposition 5.7, observe that if we now take

u±0 = U0
±(t, y, x)

u′±ǫ = (U0
±(t, y, x) − U0

±(t, y, 0))+

ǫU1
±(t, y, x,

x

ǫ
) + · · · + ǫMUM± (t, y, x,

x

ǫ
) + ǫLv±n

h′ǫ = ǫdψ1 + · · · + ǫMdψM + ǫLdφn,

(6.23)

then Proposition 5.7 and (6.21) imply that (u0, u
′
ǫ, h

′
ǫ) satisfies the requirements of Assump-

tion 4.1. For rǫ to be determined (6.47), let us now set

qǫ(t, y, x) = (p(t, y), u′ǫ(t, y, x, ǫ), h
′
ǫ(t, y), rǫ(t, y, x)) with

p(t, y) = (u0
+(t, y, 0), u0

−(t, y, 0), dψ0(t, y)) ∈ C,
(6.24)

for (u0
±, u

′
ǫ, h

′
ǫ) as in (6.23).

2. We need to allow k4 6= 0 in order to carry out the higher derivative estimates below.

Proof of Proposition 6.6.
First we concentrate on the estimate near the front.

1. Principal parts. We shall write L̃γ(u, ψ) as the sum of a principal part and a
negligible part

L̃γ(u, ψ) = L̃γp(u, ψ) + L̃γn(u, ψ),(6.25)

where L̃γn(u, ψ) = (h1, h2) is negligible in the sense that ‖h1‖ + ‖h2‖Λ−1
ǫ

can be absorbed
by the left side of the estimate (6.17) by taking γ large and ǫ small. It then suffices to
prove the estimate for the operator L̃γp in place of L̃γ . We will specify L̃γp by showing how
it relates to the operator Lγp := e−γtLpeγt, where Lp gives the principal part of scheme I
(6.5). Writing

L̃γp(u, ψ) = L̃γu,pu+ χKL̃γψ,pψ
Lγp(u, ψ) = Lγu,pu+ χKLγψ,pψ,

(6.26)

we’ll derive explicit expressions for the four operators on the right in (6.26) after providing
some notation.
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Notation 6.8. Given (d + 1)-tuples νa, νb defined in terms of fronts ψa, ψb by νa =
ν(dψa) = (−∂tψa,−∂1ψ

a, . . . ,−∂d−1ψ
a, 1), we set:

1. B̃j,k(u, ν
a, νb) = Bj,k(u), if j < d, k < d.

2. B̃j,d(u, ν
a, νb) =

∑d
k=1Bj,k(u)ν

b
k if j < d; B̃d,k(u, ν

a, νb) =
∑d

j=1Bj,k(u)ν
a
j if k < d.

3. B̃d,d(u, ν
a, νb) =

∑d
j,k=1Bj,k(u)ν

a
j ν

b
k.

4. B̃j,k(u, ν
a) = B̃j,k(u

a, νa, νa).
5. Let (ua, ψa) be the approximate solution and set

ub = ua + ǫLvn

ψb = ψa + ǫLφn

us = ua + sǫLvn for s ∈ [0, 1].

(6.27)

We first rewrite the total operator for scheme I,

Lγ(v, φ) = Lγuv + χKLγψφ(6.28)

in a form that makes it easier to compare with the operator in (4.2). Here

Lγuv := At
0(∂t + γ)v +

d∑

j=1

At
j∂jv − ǫ

d∑

j,k=1

B̃j,k(u
b, νb)∂2

jkv +
1

ǫ
Etv,(6.29)

where, with superscript “t” for total and Ãj(u, ν) := Aj(u) for j < d,

At
0 = A0(u

b),

At
j∂jv = Ãj(u

b, νb)∂jv−

ǫ

d∑

k=1

(∂k(B̃kj(u
b, νb))∂jv − ǫ

d∑

k=1

(
∂jv ·

∫ 1

0
duB̃j,k(u

s, νa, νb)ds

)
∂ku

a, j = 1, . . . , d,

Etv = ǫ
d∑

j=0

(
v ·
∫ 1

0
duÃj(u

s, νb)ds

)
∂ju

a − ǫ2
d∑

j,k=1

(
v ·
∫ 1

0
duB̃j,k(u

s, νa, νb)ds

)
∂2
jku

a

− ǫ2
d∑

j,k=1

(
v · ∂j

∫ 1

0
duB̃j,k(u

s, νa, νb)ds

)
∂ku

a.

(6.30)

The front term in (6.28) is

Lγψφ = −∂xf0(u
a)(∂t + γ)φ−

d−1∑

j=1

(
∂xfj(u

a) −
d∑

k=1

ǫ∂x(B̃j,k(u
b, νb)∂ku

a) −
d∑

k=1

ǫ∂k(B̃k,j(u
a, νa)∂xu

a)

)
∂jφ+

ǫ
d−1∑

j,k=1

Bj,k(u
a)∂xu

a∂2
jkφ.

(6.31)
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To derive the principal parts, we note that

ua(t, y, x) = W (z, q̃(t, y, x))|z=x
ǫ

for q̃ǫ(t, y, x) = (p(t, y), ũ′ǫ, h̃
′
ǫ, 0)(6.32)

with ũ′ǫ, h̃
′
ǫ given by (5.50). For rǫ to be determined and u′ǫ, h

′
ǫ as in (6.23), set

qǫ = (p(t, y), u′ǫ, h
′
ǫ, rǫ)(6.33)

and, recalling W (z, q) := W0(z, p) + u′, observe

∂xu
a =

(
1

ǫ
∂zW + ∂qW · ∂xq̃ǫ

)
|z=x

ǫ
,q=q̃ǫ =

(
1

ǫ
∂zW + ∂qW · ∂xq̃ǫ

)
|z=x

ǫ
,q=qǫ .(6.34)

Thus, in the expressions below, it makes no difference whether derivatives ofW are evaluated
at (xǫ , q̃ǫ) or (xǫ , qǫ); we choose the latter option.

We also use the fact that differences like

(∂jv · duB̃j,d(ub, νb))∂zW − (∂jv ·
∫ 1

0
duB̃j,d(u

s, νa, νb)ds)∂zW, j < d(6.35)

are negligible. To see this for terms involving ∂jv
1, use the weight Λ−1

ǫ on the right in
(6.17).

We have for the principal part of Lγu:

Lγu,pv = A0(u
b)(∂t + γ)v +

d∑

j=1

Aj∂jv − ǫ
d∑

j,k=1

B̃j,k(u
b, νb)∂2

jkv +
1

ǫ
Ev,(6.36)

where for 1 ≤ j < d,

Aj∂jv = Ãj(u
b, νb)∂jv − (∂zW · duB̃d,j(ub, νb))∂jv − (∂jv · duB̃j,d(ub, νb))∂zW,

Ev = (v · duÃd(ub, νb))∂zW − (v · duB̃d,d(ub, νb))∂2
zW − d2

uB̃d,d(u
b, νb)(v, ∂zW )∂zW,

(6.37)

and

Ad∂dv = Ãd(u
b, νb)∂dv − (∂zW · ∂uB̃d,d(ub, νb))∂dv − (∂dv · duB̃d,d(ub, νb))∂zW + ǫC∂dv1,

(6.38)

where

ǫC∂dv1 = −ǫ
(
∂dv

1 ·
∫ 1

0
∂u1B̃d,d(u

s, νa, νb)ds

)
∂qW∂xq̃

− ǫ

(
∂dv

1 ·
d−1∑

k=1

∫ 1

0
∂u1B̃d,k(u

s, νa, νb)ds

)
∂ku

a

+

(
∂dv

1 ·
(
∂u1B̃d,d(u

b, νb) −
∫ 1

0
∂u1B̃d,d(u

s, νa, νb)ds

))
∂zW.

(6.39)
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Similarly, the principal part of Lγψ is

Lγψ,pφ = −1

ǫ
∂zf0(W )(∂t + γ)φ− 1

ǫ

d−1∑

j=1

∂zfj(W )∂jφ

+
1

ǫ

d−1∑

j=1

∂z

((
B̃j,d(W, ν

b) + B̃d,j(W, ν
b)
)
∂zW

)
∂jφ+

d−1∑

j,k=1

Bj,k(W )∂zW∂2
jkφ, .

(6.40)

where W (z, q) is evaluated at z = x
ǫ , q = qǫ.

Since

ub = W (
x

ǫ
, qǫ), νb = ν(dψ0 + h′ǫ),(6.41)

by inspection of (6.36) and (6.40) we may conclude

Lγu,pv + χKLγψ,pφ =

1

ǫ
L0(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)v −

1

ǫ2
χKK0(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)φ+ ǫC∂xv1,

(6.42)

where L0 and K0 coincide with the operators appearing in (4.2) when the entry rǫ of qǫ is
set equal to zero, and

C =

(
0
C21

)
(6.43)

is given by (6.39).
Returning to (6.13) we see that all the terms involving matrices Aj or Bj there are

negligible (in the sense defined below (6.25)) except for ǫLA1∂xv
1
n+1. This implies for

scheme II:

L̃γu,pv + χKL̃γψ,pφ =

1

ǫ
L0(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)v −

1

ǫ2
χKK0(

x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy)φ+ ǫA∂xv1,

(6.44)

where

ǫA∂xv1 := ǫC∂xv1 + ǫLA1∂xv
1 = ǫ

(
0

A21

)
∂xv

1,(6.45)

and A21 is a smooth function of its arguments

A21 = A21(ua, dψa, ǫ∂xu
a, ∂yu

a, vn, ∂sφn, ∂sv
2
n, ∂xũ

′
ǫ, ǫ).(6.46)

2. Definition of rǫ. For A21 as in (6.46) set

rǫ(t, y, x) = ǫA21(ua, dψa, ǫ∂xu
a, ∂yu

a, vn, ∂sφn, ∂sv
2
n, ∂xũ

′
ǫ, ǫ)(6.47)

and note that rǫ satisfies the requirements of Assumption 4.1. With this definition of rǫ,
the transmission problem defined by the operator on the right side of (6.44) together with
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transmission conditions (6.19) has exactly the form of the problem (4.2) for which the L2

estimate of Theorem 4.2 holds. We may allow a nonhomogeneous transmission condition in
view of Remark 4.5.

3. Estimate away from the front. A similar but much simpler argument shows
that away from the front, the principal part of the operator L̃γ in (6.19) is precisely the
operator

1

ǫ
L(
x

ǫ
, qǫ, ǫDt, ǫγ, ǫDy, ǫ∂x)u(6.48)

in (4.159) for which the estimate of Theorem 4.31 was shown to hold.

6.2 Induction step and higher derivative estimates

6.2.1 Preliminaries.

The fractional weights in the estimate (6.17) are not convenient for the nonlinear stability
argument, because they lead to difficulties with Moser estimates. So we extract a weaker
estimate involving only integral weights on interior norms that is still good enough for the
nonlinear stability argument.

Consider again a linear transmission problem like (6.16) on Ω := [−T0, T0] × Rd

(a) L̃uu+ χKL̃ψψ = f on Ω

(b) [u] = 0, [∂xu
2] = 0, ∂tψ − ǫ△yψ + ℓ(t, y) · u2 = k4 on x = 0

(c) u = 0, ψn+1 = 0 in t <
−T0

3
,

(6.49)

where now we allow a nonhomogeneous transmission condition.
We continue to use Notation 6.5.

Proposition 6.9. We make the same hypotheses as in Proposition 6.6, but take all norms
on Ω now. There exist γ0, ǫ0 such that for γ ≥ γ0 and ǫ ≤ ǫ0 with ǫγ ≤ 1, the problem
(6.49) has a unique solution (u, ψ) satisfying:

γ‖e−γtu‖ +
√
γ‖e−γt(√ǫ∂x,yu2)‖ +

√
γ|e−γtu(0)| + √

γ|e−γt(γφ, ∂φ)|

≤ C(‖e−γtf‖ + |e−γt( 1√
ǫ
k4, γk4, ∂k4)|).

(6.50)

Proof. 1. Estimate. The weights in (6.50) are derived directly from those in the estimates
(6.17) and (4.158) of Proposition 6.6 after recalling the definitions of Λǫ (4.5), λǫ (4.6), and
µǫ (4.7). For example, the weight µǫΛǫ on ψ in (6.17) satisfies:

µǫΛǫ &
√
γ|ζ|.(6.51)

This is immediate for |ǫζ| ≤ 1. For |ǫζ| ≥ 1, we have

µǫΛǫ ∼
Λ

5/2
ǫ

ǫ3/2
∼ 1

ǫ3/2
+

|τ |5/4
ǫ1/4

+
|γ|5/4
ǫ1/4

+ ǫ|η|5/2.(6.52)
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The inequality a2 + b2 ≥ a2/5b8/5 implies µǫΛǫ &
√
γ|τ, γ|, while a2 + b2 ≥ a6/5b4/5 implies

µǫΛǫ &
√
γ|η|. Similarly,

|k4|λǫΛ
1/2
ǫ

.
1√
ǫ

+ |ζ|1/2 .
1√
ǫ

+ |τ, η|(6.53)

for γ ≤ 1
ǫ .

2. Existence, uniqueness, causality. A standard density argument ([MZ1], section
5.1) using the a priori estimate (6.50) gives uniqueness. For existence, observe that for a
fixed ǫ the (nonstandard) linear transmission problem (6.19) can be solved by the following
scheme:

L̃γu,pun+1 = f − χKL̃γψ,pψn
[un+1] = 0, [∂xu

2
n+1] = 0 on x = 0

un+1 = 0 in t <
−T0

3
,

(6.54)

∂tψn+1 − ǫ△yψn+1 = −ℓ · u2
n + k4 on x = 0

ψn+1 = 0 in t <
−T0

3
.

(6.55)

with (u0, ψ0) = 0. We then apply the uniform estimates (6.50) to the solutions of (6.19) so
obtained.

A classical argument ([MZ1], Lemma 5.2) using the estimate (6.50) shows that causality
holds: if the data f and k4 vanish in t < T0 in (6.19), then so does (u, ψ). This allows us
to restrict the norms in (6.50) to Ω.

Definition 6.10. 1. Let µ = γ
ǫ . On Ω set

|u|p,µ,γ =

p∑

j=0

µp−j |e−γt∂ju|L2(Ω)

|u(0)|p,µ,γ =

p∑

j=0

µp−j |e−γt∂ju(0)|L2(t,y),

(6.56)

where we always suppose 0 < ǫ ≤ 1 ≤ γ.
2. Set |u|∗ = |u|L∞(Ω),

‖vn, φn‖∗∗∗ := |vn, Dvn, D2v2
n, ∂∂xv

1
n, ǫ∂

2
xv

1
n, ∂

2
y∂xv

2
n, ∂

2
x∂yv

2
n, φn, ∂φn, ∂

2φn, ∂
3φn|∗,(6.57)

and define ‖vn, φn‖∗∗ by the right side of (6.57) with ǫ∂2
xv

1
n removed.

Observe that

|u|p−1,µ,γ ≤ 1

µ
|u|p,µ,γ ≤ ǫ

γ
|u|p,µ,γ .(6.58)

The following version of the standard Sobolev estimate is easily proved using the Fourier
transform after taking extensions from Ω± to Rd+1

± and observing that e−γt ∼ C(γ) on
[−T0, T0].
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Proposition 6.11 (Sobolev estimate). Let 0 < δ < p− d
2 . Then on Ω we have:

|u|∗ ≤ µ−δC1(γ)(|u|p,µγ + |∂xu|p,µ,γ).(6.59)

Definition 6.12 (Norms for iteration). For nonnegative integers k define

‖v, φ‖k,µ,γ =

|v,√ǫ∇x,yv
2|k,µ,γ + |∂xv1|k−1,µ,γ + |∂2

xv
1|k−2,µ,γ + |∂2

xv
2|k−2,µ,γ + |∂3

xv
2|k−3,µ,γ

+ |v(0), φ, dφ|k,µ,γ
(6.60)

where a norm |u|j,µ,γ is defined to be zero if j < 0.

6.2.2 Induction step

The following Proposition, proved below, is the main higher derivative estimate.

Proposition 6.13. Consider the linear transmission problem defining scheme II (6.16).
Assume L ≥ 2, k ≥ 0, M − L − k ≥ 0, and suppose that s0, the index measuring Sobolev
regularity of the inviscid shock as in Proposition 5.7, satisfies

s0 > k +
7

2
+ 2M +

d+ 1

2
.(6.61)

Suppose also that

‖vn, φn‖∗∗∗ ≤ 1.(6.62)

For γ fixed large enough there exists ǫ0(γ) such that for 0 < ǫ ≤ ǫ0(γ), the unique solution
(vn+1, φn+1) of (6.16) satisfies

‖vn+1, φn+1‖k,µ,γ ≤ C(k)

(
1√
γ

+ ‖vn+1, φn+1‖∗∗
)
‖vn, φn‖k,µ,γ + C(γ)ǫM−L−k.(6.63)

Assuming the above Proposition for the moment, we now prove

Proposition 6.14 (Induction step). Assume L ≥ 2,

d

2
+ 4 < k < M − L,(6.64)

and s0 satisfies (6.61). For C(γ) as in (6.63) assume

(a)‖vn, φn‖∗∗∗ ≤ 1,

(b)‖vn, φn‖k,µ,γ ≤ 2C(γ)ǫM−L−k.
(6.65)

for γ large enough and ǫ(γ) sufficiently small. There exists γ0 such that for fixed γ ≥ γ0

and 0 < ǫ ≤ ǫ0(γ) small enough, the same estimates hold for (vn+1, φn+1). The choices of
γ0 and ǫ0(γ) are independent of n.
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Proof. Recall µ = γ
ǫ and note that by the Sobolev estimate

‖v, φ‖∗∗ ≤ C1(γ)µ
−δ‖v, φ‖k,µ,γ .(6.66)

where 0 < δ < k − 4 − d
2 .

Let an = ‖vn, φn‖k,µ,γ ≤ 2C(γ)ǫM−L−k. The estimates (6.63) and (6.66) imply

an+1 ≤ C(k)

(
1√
γ

+ C1(γ)µ
−δan+1

)
2C(γ)ǫM−L−k + ǫM−L−kC(γ).(6.67)

Choose γ0 and ǫ0(γ) such that for γ ≥ γ0 and 0 < ǫ ≤ ǫ0(γ) we have

2C(k)
1√
γ
≤ 1

3

2C(k)C1(γ)µ
−δC(γ)ǫM−L−k ≤ 1

3
.

(6.68)

Then

an+1 ≤ 2C(γ)ǫM−L−k.(6.69)

Shrinking ǫ0(γ) if necessary and using (6.66), (6.69) we have ‖vn+1, φn+1‖∗∗ ≤ 1. Solving
for ǫ∂2

xv
1
n+1 using the first component of equation (6.16)(a) and shrinking ǫ0(γ) once more,

we obtain ‖vn+1, φn+1‖∗∗∗ ≤ 1.

Proof of Proposition 6.13.
1. Preliminaries. Observe that the case k = 0 follows immediately from Proposition

6.9.
The main extra tool we need for the higher derivative estimates is the following weighted

version of the standard Moser estimate ([G], Lemma 2.1.2).

Lemma 6.15 (Moser estimates). For k ∈ N = {0, 1, 2, . . . } let α1 + · · · + αr ≤ j ≤ k,
αi ∈ N. Then

µk−j |(∂α1w1) · · · (∂αrwr)|0,µ,γ ≤ C
r∑

i=1

|wi|k,µ,γ



∏

j 6=i
|wj |∗


 .(6.70)

2. Tangential higher derivative estimates. The first step in proving (6.63) is to
show

‖vn+1, φn+1‖′k,µ,γ ≤

C

(
1√
γ

+ ‖vn+1, φn+1‖∗∗
)
‖vn, φn‖k,µ,γ +

C√
γ
‖vn+1, φn+1‖k,µ,γ + C(γ)ǫM−L−k,

(6.71)

where

‖v, φ‖′k,µ,γ = |v,√ǫ∇x,yv
2|k,µ,γ + |v(0), φ, ∂φ|k,µ,γ .(6.72)
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To estimate ‖vn+1, φn+1‖′k,µ,γ we apply the L2 estimate (6.9) to the problem satisfied

by µk−j∂j(vn+1, φn+1). Commuting µk−j∂j through (6.16)(a), we obtain forcing that is a
sum of

−ǫM−Lµk−j∂j(θ(t)RM )(6.73)

and commutator terms. In addition there is a nonzero commutator coming from the third
transmission condition in (6.16)(b); this is why we allow k4 6= 0 in (6.49).

Thus, the L2 estimate gives

µk−j |∂jvn+1,
√
ǫ∇x,y∂

jv2
n+1|0,µ,γ + µk−j |∂jv(0), ∂jφ, ∂j∂φ|0,µ,γ

≤ C√
γ

(
µk−j |ǫM−L∂j(θ(t)RM )|0,µ,γ + µk−j |interior commutators|0,µ,γ

)

+
C√
γ

(
µk−j

∣∣∣∣
1√
ǫ
[∂j , ℓ]v2

n+1(0), γ[∂j , ℓ]v2
n+1(0), ∂[∂j , ℓ]v2

n+1(0)

∣∣∣∣
0,µ,γ

)
.

(6.74)

We treat the interior commutators below. The RM term on the right in (6.74) is .

C(γ)ǫM−L−k and the last term is . 1√
γ |v(0)|k,µ,γ ; both estimates are compatible with

(6.71).

Notation 6.16. 1. Let wn = (vn,
√
ǫ∂x,yv

2
n, φn, dφn).

2. Let Ua,ǫ = (ua, dψa, ∂y(u
a, dψa), ǫ∂xu

a,
√
ǫ) and let A denote a smooth function

A = A(Ua,ǫ, ǫL−1wn).(6.75)

Denote by Bn a smooth function

B = B(Ua,ǫ, ǫ∂2
su

a, ∂xu
a, ǫL−1wn),(6.76)

where the second and third arguments only occur linearly in terms where they appear. A

and B may change from term to term.
3. For s ∈ {1, 2, 3, . . . } and a function u with components ui, denote by ∂<s>u the set

of products of the form (∂s1ui1) . . . (∂
sruir) where s1 + · · · + sr = s, si ≥ 1. If s = 0, set

∂<0>u = 1.

For the purpose of tangential higher derivative estimates we can write (6.16)(a) in the
much simpler form

ADwn+1 + Bwn+1 = −ǫM−Lθ(t)RM .(6.77)

This is because the L2 estimate gives the same interior control over all components of wn+1

(recall Remark 6.2).
Consider the commutator term

µk−j |[AD, ∂j ]wn+1]|0,µ,γ .(6.78)

This leads to a sum of terms of the form

µk−j |A∂〈r〉(Ua,ǫ)∂〈s〉(ǫL−1wn)∂
tDwn+1)|0,µ,γ ≤ µk−jC|∂〈s〉(ǫL−1wn)∂

tDwn+1)|0,µ,γ ,(6.79)
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where r + s+ t = j and t < j.
If s 6= 0 we estimate

µk−j |∂(s−1)∂(ǫL−1wn)∂
tDwn+1|0,µ,γ ,(6.80)

with (s− 1) + t ≤ j − 1. By Moser this is ≤

C(|∂(ǫL−1wn)|k−1,µ,γ |Dwn+1|∗ + |Dwn+1|k−1,µ,γ |∂(ǫL−1wn)|∗)
≤ C(‖(vn, φn)‖k,µ,γ |(vn+1, φn+1|∗∗ + ‖vn+1, φn+1‖k,µ,γ).

(6.81)

If s = 0 we obtain immediately (6.79)≤

C|Dwn+1|k−1,µ,γ ≤ C‖vn+1, φn+1‖k,µ,γ(6.82)

After dividing by
√
γ as allowed by (6.74) we see that the commutator (6.78) gives terms

on the right compatible with the intermediate estimate (6.71).

Next consider

µk−j |[B, ∂j ]wn+1|0,µ,γ ,(6.83)

which yields terms

µk−j |∂〈r〉(ǫ∂2
su

a, ∂xu
a)∂〈s〉(ǫL−1wn)∂

twn+1|0,µ,γ ,(6.84)

where r + s+ t ≤ j, t ≤ j − 1.
If s 6= 0, (6.84) is ≤

µk−jC|∂〈r〉(ǫ∂2
su

a, ∂xu
a)∂(s−1)∂(ǫL−1wn)∂

twn+1|0,µ,γ ≤
C|(ǫ2∂2

su
a, ǫ∂xu

a)|∗
(
|∂(ǫL−2wn)|k−1,µ,γ |wn+1|∗ + |∂(ǫL−2wn)|∗|wn+1|k−1,µ,γ

)
.

(6.85)

If s = 0, (6.84) is ≤

µk−jC|∂〈r〉(ǫ∂2
su

a, ∂xu
a)∂twn+1|0,µ,γ ≤ C|∂〈r〉(ǫ∂2

su
a, ∂xu

a)|∗|wn+1|k−1,µ,γ ≤
C

γ
|∂〈r〉(ǫ2∂2

su
a, ǫ∂xu

a)|∗|wn+1|k,µ,γ .
(6.86)

In both cases the estimate is compatible with the intermediate estimate (6.71).
3. Normal derivative estimates. For the normal derivative estimates it is more

convenient to write (6.16)(a) in the form

∂xv
1
n+1 + AD̃wn+1 + Bwn+1 = ǫM−LARM1

ǫ∂2
xv

2
n+1 + AD∗wn+1 + Bwn+1 = ǫM−LARM2

(6.87)

where

D̃wn+1 = (∂v1
n+1, Dv

2
n+1, Dφn+1)

D∗wn+1 = (Dvn+1, ǫ∂y∂x,yv
2
n+1, Dφn+1, ∂

2
sφn+1).

(6.88)
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One first shows directly from (6.87)(a) that

|∂xv1
n+1|k−1,µ,γ ≤ C

(
‖vn+1, φn+1‖′k,µ,γ + (RHS of (6.71))

)
:= R.(6.89)

Note that we already have

|∂xv2
n+1|k−1,µ,γ ≤ 1

µ
|∂xv2

n+1|k,µ,γ ≤
√
ǫ

γ
‖vn+1, φn+1‖′k,µ,γ .(6.90)

Next show using (6.87)(b) that

|∂2
xv

2
n+1|k−2,µ,γ ≤ C(R + |∂xv1

n+1|k−1,µ,γ).(6.91)

For example, let’s check the term

1

ǫ
|AD∗wn+1|k−2,µ,γ ≤ 1

γ
|AD∗wn+1|k−1,µ,γ ,(6.92)

This leads to terms like

1

γ
µk−1−j |∂〈s〉(ǫL−1wn)∂

tD∗wn+1|0,µ,γ ,(6.93)

with s+ t ≤ j ≤ k − 1. If s = 0 (6.93) is ≤

1

γ
|D∗wn+1|k−1,µ,γ .(6.94)

If s 6= 0 (6.93) is

1

γ
µk−1−j |∂(s−1)∂(ǫL−1wn)∂

tD∗wn+1|0,µ,γ ≤
1

γ

(
|∂(ǫL−1wn)|k−2,µ,γ |D∗wn+1|∗ + |∂(ǫL−1wn)|∗|D∗wn+1|k−2,µ,γ

)
.

(6.95)

In both cases the estimate is compatible with (6.91).
Next we differentiate (6.87)(a) to show

|∂2
xv

1
n+1|k−2,µ,γ ≤ C(R + |∂xv1

n+1|k−1,µ,γ + |∂2
xv

2
n+1|k−2,µ,γ),(6.96)

For example consider the term

|A∂x∂v1
n+1|k−2,µ,γ .(6.97)

This leads to terms like

µk−2−j |∂〈s〉(ǫL−1wn)∂
t∂x∂v

1
n+1|0,µ,γ ,(6.98)

with s+ t ≤ j ≤ k − 2. If s = 0 (6.98) is ≤

C|∂x∂v1
n+1|k−2,µ,γ .(6.99)
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If s 6= 0 (6.98) equals

µk−2−j |∂(s−1)∂(ǫL−1wn)∂
t∂x∂v

1
n+1|0,µ,γ ≤

(
|∂(ǫL−1wn)|k−3,µ,γ |∂x∂v1

n+1|∗ + |∂(ǫL−1wn)|∗|∂x∂v1
n+1|k−3,µ,γ

)
.

(6.100)

In both cases the estimate is compatible with (6.91).
Finally, we differentiate (6.87)(b) to show

|∂3
xv

2
n+1|k−3,µ,γ ≤ C(R + |∂xv1

n+1|k−1,µ,γ + |∂2
xv

2
n+1|k−2,µ,γ + |∂2

xv
1
n+1|k−2,µ,γ).(6.101)

This estimate seems to require a little more care.
Consider for example

1

ǫ
|A∂2

xv
1
n+1|k−3,µ,γ(6.102)

which yields terms

1

ǫ
µk−3−jC|∂〈s〉(ǫL−1wn)∂

t∂2
xv

1
n+1|0,µ,γ ,(6.103)

where s+ t ≤ j ≤ k − 3.
If s = 0, (6.103) is ≤

C

ǫ
|∂2
xv

1
n+1|k−3,µ,γ ≤ C

γ
|∂2
xv

1
n+1|k−2,µ,γ .(6.104)

If s 6= 0 (6.103) equals

µk−3−jC|∂(s−1)∂(ǫL−2wn)∂
t∂2
xv

1
n+1|0,µ,γ ≤

C
(
|∂(ǫL−2wn)|∗|∂2

xv
1
n+1|k−4,µ,γ + |∂(ǫL−2wn)|k−4,µ,γ |∂2

xv
1
n+1|∗

)
.

(6.105)

Now taking the derivative of (6.87)(a) we get

|∂2
xv

1
n+1|∗ ≤

C

(
1

ǫ
|D̃wn+1|∗ + |∂xD̃wn+1|∗ +

1

ǫ2
|wn+1|∗ +

1

ǫ
|∂xwn+1|∗ + ǫM−L−1

)
≤

C(
1

ǫ2
‖vn+1, φn+1‖∗∗ + ǫM−L−1).

(6.106)

Since

|∂(ǫL−2wn)|k−4,µ,γ ≤ ǫ3

γ3
|ǫL−2wn)|k,µ,γ ,(6.107)

we obtain also from (6.105) an estimate compatible with (6.101).
The other terms in the expression for ∂3

xv
2
n+1 are similar but easier to handle, so this

concludes the proof of Proposition 6.13.
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6.2.3 Contraction

Notation 6.17. 1. Recall wn = (vn,
√
ǫ∂x,yv

2
n, φn, dφn) and set ζn+1 = wn+1 − wn.

2. As before let Ua,ǫ = (ua, dψa, ∂y(u
a, dψa), ǫ∂xu

a,
√
ǫ) and let An denote a smooth

function

An = An(U
a,ǫ, ǫL−1wn).(6.108)

Denote by Bn a smooth function

Bn = Bn(U
a,ǫ, ǫ∂2

su
a, ∂xu

a, ǫL−1wn),(6.109)

where the second and third arguments only occur linearly in terms where they appear.
3. Let Dn and En be smooth functions

Dn = Dn(U
a,ǫ, ǫL−1(wn, wn−1))

En = En(U
a,ǫ, ǫ∂2

su
a, ∂xu

a, ǫL−1(wn, wn−1)),
(6.110)

where the second and third arguments of En only occur linearly in terms where they appear.
4. Let

Γ(t, y)wn+1 = ([vn+1], [∂xv
2
n+1], ∂tφn+1 − ǫ△yφn+1 + ℓ(t, y) · vn+1).(6.111)

The transmission problem satisfied by wn+1, (6.16), can be written

Pnwn+1 := AnDwn+1 + Bnwn+1 = −ǫM−Lθ(t)RM ,

Γwn+1 = 0 on x = 0

wn+1 = 0 in t < −T0/3.

(6.112)

Thus, the problem satisfied by ζn+1 = wn+1 − wn is

Pnζn+1 = −(Pn − Pn−1)wn

Γζn+1 = 0 on x = 0

ζn+1 = 0 in t < −T0/3.

(6.113)

The interior equation is

Pnζn+1 = −(An − An−1)Dwn − (Bn − Bn−1)wn =

ǫL−1ζnDnDwn + ǫL−1ζnEnwn := Fn.
(6.114)

The iterates satisfy the uniform estimates (6.65) for a k such that d
2 + 4 < k < M − L.

Let

|‖ζn|‖ = |ζn|0,µ,γ + |vn(0) − vn−1(0)|0,µ,γ .(6.115)

The L2 estimate gives

|‖ζn+1|‖ ≤ C√
γ
|Fn|0,µ,γ ≤ C√

γ
ǫL−2|ζn|0,µ,γ ≤ C√

γ
ǫL−2|‖ζn|‖,(6.116)

106



where L ≥ 2. For γ fixed large enough and 0 < ǫ ≤ ǫ0(γ) small enough, the iterates converge
in the |‖w|‖ norm to some (v,

√
ǫ∂x,yv

2, φ, dφ). In view of the estimates (6.65), a standard
argument using weak convergence and interpolation shows that (v, φ) solves the nonlinear
error problem (6.10) and also satisfies the estimates (6.65).

We summarize the results of this section and the paper in the following theorem:

Theorem 6.18.
1. Assume (H0)-(H9) and (H10)(a). Let (U0, ψ0) be an inviscid shock and (ua, ψa) an

approximate solution of order M as described in Proposition 5.7. Suppose L ≥ 2 and that
the constants k, M satisfy

d

2
+ 4 < k < M − L.(6.117)

Suppose s0, the index measuring Sobolev regularity of the shock, satisfies

s0 > k +
7

2
+ 2M +

d+ 1

2
.(6.118)

Fix K > 0 arbitrarily large. For γ fixed large enough and ǫ0(γ) small enough, the nonlinear
forward error problem (6.10) has a unique solution (v, φ) for 0 < ǫ ≤ ǫ0(γ) satisfying the
estimates

(a)‖v, φ‖∗∗∗ ≤ 1,

(b)‖v, φ‖k,µ,γ ≤ 2C(γ)ǫM−L−k,
(6.119)

with norms as in Definition 6.10.
2. If we take

u = ua + ǫLv, ψ = ψa + ǫLφ,(6.120)

then (u, ψ) is an exact solution of the nonlinear transmission problem (6.1) on [0, T0] ×
Rd−1
y × {|x| ≤ K}.

Remark 6.19. 1. Recalling the form of (ua, ψa) (5.44)-(5.45) and using the estimates
(6.119), we derive Theorem 1.1 of the Introduction as an immediate corollary.

2. It may appear that because of the use of the cutoff θ(t) in the forward error problem
(6.10), we have only proved convergence of parabolic solutions to the inviscid shock on a
time interval that is strictly shorter than the given time of existence of the inviscid shock.
However, a uniformly stable shock on a given time interval [−T0, T0] can always be extended
to a strictly larger time interval by [M2, M3]. If the given inviscid shock is so extended, then
our result gives convergence of parabolic solutions to the shock on the original time interval
[−T0, T0]. Our result does not give convergence near the boundary points of the maximal
time interval of existence of the inviscid shock.
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7 Appendix

7.1 Low frequency expansion of the Evans function

In this section we derive a low frequency expansion of the Evans function D(q, ζ) (2.53),
which implies Proposition 2.23 as an immediate corollary. Earlier versions and proofs of
the result were given in [ZS, Z1, Z2].

We give an expansion that is uniformly valid for ζ̂ ∈ S
d
+ and q = (p, u′, h′) in a neigh-

borhood ω of q = (p, 0, 0), where p = (u+, u−, h) ∈ C. To describe the expansion we need
some preparation.

7.1.1 The Majda uniform stability determinant

The partially linearized, transformed, inviscid shock problem associated to q considered by
Majda [M2] takes the form

∂zv −H0(q, ζ)v = g

ψ


λ[f0] +

d−1∑

j=1

iηj [fj ]


− [Ãdv] = h on z = 0,

(7.1)

where λ = (iτ + γ), H±
0 is given by (3.183), [fj ] := fj(u

+) − fj(u
−), and Ãd is evaluated

at (±∞, q). The transmission condition in (7.1) is the (full) linearization of the Rankine-
Hugoniot condition.

For q ∈ ω and ζ̂ ∈ Sd+ = {ζ̂ = (τ̂ , γ̂, η̂) : |ζ̂| = 1, γ̂ > 0} let FH±
0

(q, ζ̂) denote, respectively,

the generalized eigenspace of H±
0 (q, ζ̂) associated to eigenvalues µ with ∓ℜµ > 0. By

hyperbolicity (H4) these spaces have dimensions independent of ζ̂ with γ̂ > 0, and are C∞

on ω × Sd+. By an argument of [K] (or [CP], Chapter 7, Theorem 3.5) combined with the

block structure result of [Met2], they extend continuously to ω × S
d
+. Set

m(q, ζ̂) = λ̂[f0] +

d−1∑

j=1

iη̂j [fj ].(7.2)

By the proof of Corollary (3.45), FH±
0

(q, ζ̂) have dimensions N − N± respectively, for

a total dimension of N − 1. We write Ã±
d FH±

0

(q, ζ̂) for the images of the spaces under

Ãd(±∞, q).

Definition 7.1. [M2, M3] The Majda determinant associated to q is the N×N determinant

△(q, ζ̂) := det
(
Ã−
d FH−

0

(q, ζ̂), Ã+
d FH+

0

(q, ζ̂),m(q, ζ̂)
)
.(7.3)

The shock p is uniformly stable in the sense of Majda if △(q, ζ̂) 6= 0 for ζ̂ ∈ S
d
+.

Majda showed, for example, that when the planar shock p is uniformly stable, there
exist nearby, piecewise C1, curved inviscid shocks for a finite time.

108



7.1.2 Main result

The following theorem immediately implies Proposition 2.23. Recall

D(q, ζ) = det(E±(q, ζ),E−(q, ζ))(7.4)

and set D(q, ζ̂, ρ) := D(q, ρζ̂) for |ζ| > 0.

Theorem 7.2. Assume (H0)-(H2) and (H4)-(H8). There exists a neighborhood ω of q,

ρ0 > 0, and functions c(q, ζ̂, ρ), Dm(q, ζ̂, ρ) both continuous on ω × S
d
+ × [0, ρ0] and C∞ in

ρ > 0 such that

D(q, ζ̂, ρ) = ρc(q, ζ̂, ρ)Dm(q, ζ̂, ρ).(7.5)

Here c(q, ζ̂, ρ) is nonvanishing on ω × S
d
+ × [0, ρ0] and

Dm(q, ζ̂, 0) = β(q)△(q, ζ̂),(7.6)

where △ is the Majda determinant, and β(q) is C∞ on ω and nonvanishing at q if and only
if the connection W (z, q) is transversal in the sense of Definition 2.12.

7.1.3 Slow modes and fast modes

To compute D(q, ζ) for |ζ| small, we make a special choice of basis. For ζ ∈ R
d+1 \ 0 let

F±(q, ζ) = FH±(q, ζ) ⊕ FP±(q, ζ),(7.7)

where FH± are the generalized eigenspaces of H± (3.182) associated to eigenvalues µ with
∓ℜµ > 0, and FP± are defined similarly. The properties of the conjugators W±(z, q, ζ)
(3.171), V±(q, ζ) (3.182) imply

E±(q, ζ) = W±(0, q, ζ)V±(q, ζ)F±(q, ζ).(7.8)

The spaces FP±(q, ζ) are C∞ for q ∈ ω and |ζ| ≤ ρ0 small. By the analysis of [MZ2] the

spaces FH±(q, ζ̂, ρ) := FH±(q, ρζ̂) are C∞ for ρ ∈ (0, ρ0] and extend continuously to [0, ρ0].
Since

H±(q, ζ̂, ρ) = ρH±
0 (q, ζ̂) +O(ρ2),(7.9)

we have in particular

FH±(q, ζ̂, 0) = FH±
0

(q, ζ̂).(7.10)

We now choose bases {sj±(q, ζ̂, ρ)}j=1,...,N−N± for FH±(q, ζ̂, ρ) with the same regularity as

the spaces, and bases {cj±}j=1,...,s± for FP±(q, 0).

Remark 7.3. Here as in Remark 3.31, after taking ω to be a small ball, for example, we
obtain global bases {sj±(q, ζ̂, ρ)}j=1,...,N−N± with the stated regularity by applying the fact
that contractible base spaces admit only trivial bundles ([St], Corollary 11.6). Indeed,

ω × S
d
+ × [0, ρ0](7.11)

is contractible.
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Next, in ±z ≥ 0 we define N −N± slow modes

U j±(z, q, ζ̂, ρ) := W±(z, q, ζ)V±(q, ζ)

(
ezH±(q,ζ̂,ρ)sj±(q, ζ̂, ρ)

0

)
, j = 1, . . . , N −N±(7.12)

and s± fast modes

U
j
±(z, q, ζ) = W±(z, q, ζ)V±(q, ζ)

(
0

ezP±(q,ζ)π±(q, ζ)cj±

)
, j = 1, . . . , s±,(7.13)

where π±(q, ζ) are projections onto the ∓ generalized eigenspaces of P±(q, ζ). In addition
we may choose c

s±
± so that

U
s±
± (z, q, 0) =

(
∂zW (z, q)

∂2
zW2(z, q)

)
in ± z ≥ 0,(7.14)

where W (z, q) is the shock profile associated to p.
Since W± → I as z → ±∞ and V±(q, 0) has the structure (3.184), we obtain immediately

from (7.12), (7.13):

lim
z→±∞

U j±(z, q, ζ̂, 0) =

(
sj±(q, ζ̂, 0)

0

)
, j = 1, . . . , N −N±

lim
z→±∞

U
j
±(z, q, 0) =

(
0
0

)
, j = 1, . . . , s±.

(7.15)

Proof of Theorem 7.2.
1. We may write D(q, ζ̂, ρ) =

c(q, ζ̂, ρ) det
(
{U j−}1≤j≤N−N− , {Uj

−}1≤j≤s− , {U j+}1≤j≤N−N+
, {Uj

+}1≤j≤s+
)
|z=0

:= c(q, ζ̂, ρ)D1(q, ζ̂, ρ),
(7.16)

for a function c(q, ζ̂, ρ) as described in the theorem.
2. For L(z, q, ζ, ∂z) as in (3.14) we first rewrite the linearized problem Lu = 0 on ±z ≥ 0

in a form that will allow us to use the conservative structure to simplify the determinant.
For q = (p, 0, 0) and with Ãj , B̃j,k as in (3.14), (3.15) set

Aj(W (z, q), ν(h))u := Ãj(z, q)u− (u · duB̃j,d)Wz, j = 1, . . . , d.(7.17)

Then L(z, q, ζ, ∂z)u = 0 can be rewritten:

0 = −(B̃d,duz)z + λA0u+

d−1∑

j=1

iηjAju+ (Adu)z

−
d−1∑

j=1

iηjB̃j,duz −
d−1∑

k=1

iηk(B̃d,ku)z +

d−1∑

j,k=1

B̃j,kηjηku.

(7.18)
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3. Taking ζ = 0 in (7.18) and integrating
∫ z
±∞ in ±z ≥ 0, we find

−B̃d,duz + Adu is constant on ± z ≥ 0.(7.19)

By (7.15) this constant is 0 for fast modes and Ãd(±∞, q)sj±(q, ζ̂, 0) for slow modes. Taking
components and rearranging slightly in (7.19), we find that the jth fast or slow mode
satisfies, on ±z ≥ 0:

(fast) Ã11
d u1 + Ã11

d u2 = 0

− B̃22
d,du2z + Aru2 = 0, where Ar = A22

d −A21
d (Ã11

d )−1Ã12
d

(7.20)

and

(slow) Ã11
d u1 + Ã11

d u2 =
(
Ãd(±∞, q)sj±(q, ζ̂, 0)

)

1

− B̃22
d,du2z + Aru2 =

(
Ãd(±∞, q)sj±(q, ζ̂, 0)

)

2
.

(7.21)

4. The matrix coefficients on the left in (7.20), (7.21) are continuous across z = 0, so
we can use these row operations to simplify the first and third rows of the determinant in
(7.16). Let the slow (resp. fast) columns of the new determinant so obtained be denoted by
V j
± (resp. V

j
±), where V

j
± = (uj±1, u

j
±2, u

j
±3). (7.20) implies that ρ can be smoothly factored

out of the entries of the fast N × (s+ 1) submatrix,


(

u
j
−1

u
j
−3

)

1≤j≤s−

(
u
j
+1

u
j
+3

)

1≤j≤s+


(7.22)

Since every term in the expanded full determinant contains at least one factor given by such
an entry from (7.22), this implies (7.5) with Dm continuous up to ρ = 0.

5. To see how the jump column in Dm(q, ζ̂, 0) arises, we examine the variation in U
s±
±

with respect to ρ near ρ = 0. Suppose u = u+ in (7.18) gives the first two components of
the fast mode U

s+
+ , and on z ≥ 0 set

p+(z, q, ζ̂) := ∂ρu
+(z, q, ζ̂, 0).(7.23)

In (7.18) write (λ, η) = ρ(λ̂, η̂) and apply ∂ρ|ρ=0 to get

0 = −(B̃d,dp
+
z )z + (Adp

+)z + λ̂A0u
+ +

d−1∑

j=1

iη̂jAju
+

−
d−1∑

j=1

iη̂jB̃j,du
+
z −

d−1∑

k=1

iη̂k(B̃d,ku
+)z.

(7.24)

Now recall (7.14) and the definition of Aj (7.17) to see that the right side of (7.24) is a
perfect derivative. Integrate

∫ z
+∞ on z ≥ 0 to find

0 = −B̃d,dp+
z + Adp

+ + λ̂
(
f0(W (z, q)) − f0(u

+)
)
+

d−1∑

j=1

iη̂j

(
fj(W (z, q) − fj(u

+) − B̃j,dWz

)
−

d−1∑

k=1

iη̂kB̃d,kWz.
(7.25)
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With u− being the first two components of U
s−
− , we can obtain a similar equation for

p− = ∂ρ|ρ=0u
−. Setting p := p+ − p and subtracting the equation for p− from (7.25) at

z = 0 we obtain

−B̃d,dpz + Adp = λ̂[f0] +

d−1∑

j=1

iη̂j [fj ] = m(q, ζ̂),(7.26)

or in components

Ã11
d p1 + Ã11

d p2 = m1(q, ζ̂)

− B̃22
d,dp2z + Arp2 = m2(q, ζ̂).

(7.27)

6. We proceed finally to compute the determinantD1(q, ζ̂, 0 forD1 as in (7.16). Subtract
the U

s−
− column from the U

s+
+ column, recall (7.14), and apply the row operations using

(7.20), (7.21), and (7.27), to obtain

D1(q, ζ̂, ρ) = det(Ã11
d )−1 det(−B̃22

d,d)
−1·

det




(Ã−
d s−(q, ζ̂, 0))1 + o(ρ) O(ρ) (Ã+

d s+(q, ζ̂, 0))1 + o(ρ) O(ρ) ρ(m1(q, ζ̂) +O(ρ))

u−,2 u−,2 u+,2 u+,2 ρ(p2(q, ζ̂) +O(ρ))

(Ã−
d s−(q, ζ̂, 0))2 + o(ρ) O(ρ) (Ã+

d s+(q, ζ̂, 0))2 + o(ρ) O(ρ) ρ(m2(q, ζ̂) +O(ρ))


 .

(7.28)

Here, for example, the five submatrices in the second row of the large matrix each contain
s rows and, respectively, N −N−, s−, N −N+, s+ − 1, and 1 column(s). Factoring ρ out
of the last column, we obtain (7.5) at (q, ζ̂, ρ) with c(q, ζ̂, ρ) the same as before. Recalling

(7.10) and computing Dm(q, ζ̂, 0) using (7.28), we get (7.6) after a few switches of rows and
columns, where

β(q) = det(Ã11
d )−1 det(−B̃22

d,d)
−1 det(u−,2 u+,2)(7.29)

up to a sign. The linearized equation (7.18) coincides with the linearized profile equation
at ρ = 0. Thus, recalling (7.14) we see that the last factor on the right in (7.29), an s × s
determinant of fast modes, is nonvanishing at q exactly when the connection W (z, q) is
transversal.
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