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This paper provides a primer in quantum field theory (QFT)edasn Hopf algebra and describes new Hopf
algebraic constructions inspired by QFT concepts. Thedotlg QFT concepts are introduced: chronological
products, S-matrix, Feynman diagrams, connected diagr@meen functions, renormalization. The use of
Hopf algebra for their definition allows for simple recusesiderivations and leads to a correspondence between
Feynman diagrams and semi-standard Young tableaux. Reaify, these concepts are used as models to
derive Hopf algebraic constructions such as a connectegjuatar action or a group structure on the linear
maps fromS(V) to V. In many cases, noncommutative analogues are derived.
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1 Introduction

Although Hopf algebraic concepts were used in quantum fredty (QFT) as early as 1969 [56], the real boom
in the collaboration between Hopf algebra and QFT started thie work of Connes and Kreimer in 1998 [15],
that spurred an enthusiastic activity partly reviewed lyueroa and Gracia-Bondia [27]. In these works, Hopf
algebraic structures were discovered in QFT and used tterpiret some aspects of renormalization theory.

The aim of the present paper is a bit different. As a first psepdt tries to convince the reader that Hopf
algebra is a natural language for QFT. For that purposegi tpf algebraic techniques to express important
concepts of QFT: chronological products, S-matrix, Feymmiagrams, connected diagrams, Green functions,
renormalization. The power of Hopf algebra manifestsfitdebugh the ease and economy with which complete
proofs can be given, with full combinatorial factors.

The second purpose of this paper is to demonstrate that QGepts can help designing new Hopf algebraic
objects. As a first example, the connected Feynman diageadais to the definition of two coproducts8(C)
andT (C) (whereC is a coalgebra$(C) the symmetric algebra ovérand7 (C) the tensor algebra ové). These
two coproducts are in a comodule coalgebra relation andlenahto define “connected” coregular actions on
S(C) andT(C). As a second example, the Bogoliubov approach to renoratalizleads to a group structure
on the linear maps fron§(V') to V and from7 (V') to V, whereV is a vector space. There, the infinitesimal
bialgebraic structure of (V) plays an essential role [41]. As a last example we recallrévadrmalization can
be considered as a functor on bialgebras [11].

It might be useful to explain why Hopf algebra is so powertubeal with quantum field theory. The first
reason was given long ago by Joni and Rota [36]: the copraflits an object into subobjects and the product
merges two objects into a new one. These operations arerfwerdal in most combinatorial problems. Therefore,
Hopf algebra is a convenient framework to deal with combuirias in general and with the combinatorial prob-
lems of QFT in particular. The second reason has to do witlatttethat Hopf algebraic techniques efficiently
exploit the recursive nature of perturbative QFT. If we egsrthis property in terms of Feynman diagrams, Hopf
algebra makes it very easy to add a new vertex to a diagranmoatetitice properties of diagrams wittvertices
from properties of diagrams with—1 vertices. Such recursive procedure can also be carriedidtlg on
Feynman diagrams, without using Hopf algebra, but it is mibaider and is the source “egregious errors by
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2 Ch. Brouder: QFT meets Hopf algebra

distinguished savants”, as Wightman put it [63]. As a consege, many textbooks give detailed proofs for very
simple diagrams and leave as an exercise to the reader thiqgtbe general case. No such thing happens with
Hopf algebras: the present paper makes clear that a proofifomillion vertices is as simple as for two vertices.

Finally, the Hopf algebraic approach uses naturally thetfzat the unrenormalized chronological product is an
associative product. This property is usually overlooked.

The use of Hopf algebraic techniques reveals also that maagtgm field concepts can be defined on any
cocommutative coalgebra. Sometimes, natural noncomiveitatalogues of the commutative constructions of
guantum field theory can be found.

The Hopf algebra background of this paper can be learnt franfitst chapters of any book on the subject,
but Majid’s monograph [43] is particularly well suited.

2 A primer in quantum field theory

This section provides a self-contained introduction to QISing Hopf algebraic tools. Some aspects of this
section were already published in a conference proceefifgsut complete proofs are given here for the first
time. We deliberately avoid the delicate analytical pratdeof quantum field theory.

For some well-known physicists [61], Feynman diagramslaeesssence of QFT. Indeed, Feynman diagrams
contain a complete description of perturbative QFT, whidvjules its most spectacular success: the calculation
of the gyromagnetic factor of the electron [45, 23]. Therefdhis primer goes all the way to the derivation
of Feynman diagrams. However, it is not restricted to a paldr quantum field theory but is valid for any
cocommutative coalgebrtaoverC. By extending the coproduct and counit®fo the symmetric algebrd(C),
we equipS(C) with the structure of a commutative and cocommutative leiatg. Then, we twist the product
of S(C) using a Laplace pairing (or coquasitriangular structuoeyléfine the chronological produet This
chronological product enables us to describe the S-mdtthedheory, that contains all the measurable quantities.
The S-matrix is then expanded over Feynman diagrams andréen@unctions are defined.

2.1 The coalgebraC

In the QFT of the scalar field, the counital coalgebiagenerated as a vector space dvéyy the symbol™ (x;)
wheren runs over the nonnegative integers anduns over a finite number of points IR*. The choice of a
finite number of points is meant to avoid analytical problemd is consistent with the framework of perturbative
QFT. The coproduch\’ of C is

n n . .
=0 M

the counite’ of C is ¢’ (¢™(z;)) = dn0. The coalgebr& is cocommutative (it is a direct sum of binomial

coalgebras). Moreovet, is a pointed coalgebra because all its simple subcoalgabeasne-dimensional (each

simple subcoalgebra is generated by’4x;)).

This coalgebra is chosen for comparison with QFT, but thiefohg construction is valid for any cocommu-
tative coalgebra. From the coalgelgrave now build a commutative and cocommutative bialgei@).

2.2 The bialgebraS(C)

The symmetric algebr&(C) = .- ,S™(C) can be equipped with the structure of a bialgebra @efThe
product of the bialgebr&(C) is the symmetric product (denoted by juxtaposition) anddfsroductA is defined
onSY(C) = C by Aa = A’a and extended t6(C) by algebra morphismAl = 1@ 1 andA(uv) = > uqyva) ®

U= V). The elements of™(C) are said to be of degree The counits of S(C) is defined to be equal td on
S1(C) = C and extended t&(C) by algebra morphisme(1) = 1 ande(uv) = (u)e(v). It can be checked that
A is coassociative and cocommutative [62]. Th8i&7) is a commutative and cocommutative bialgebra which is
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graded as an algebra. In the case of the coalgebra of the eldawe have

A" (1) ... o™ (1) = nz_i("l)<”k)

Jk
@ (1) @7 (wr) @ @M T (@) - ™M TR ().

The powersA* of the coproduct are calleiterated coproductsnd are defined bpA® = Id, A' = A and
AR+ = (Id®% ® A)AF. Their action on an elemeatof S(C) is denoted b\ u = 3wy @ -+ @ gy In
the case of the scalar field, we have

Lemma 2.1 If k is a positive integer, th&é-th iterated coproduct op™ (z) is
k—1 n _ n! mi . m
A" M) = %:m@ () ® - ® ™ (),

wherem = (myq, ..., my) runs over allk-tuples of nonnegative integens, , . . ., m; such thatz L mi =,

Proof. Fork = 1, we haveA® = Id. Thus, the left hand side of the equalltygag( ). On the other hand,
we have only one integen; that must be equal ta because of the constra@:i:1 m; = n. Therefore, the
right hand side is alsp™ (x) and the lemma is true fdr = 1. Assume that the lemma is true upAd—!. From
the definition ofA* and the recursion hypothesis, we have

Ak n my . Mg _1 7 my—1 )
;;ml (Z)s@ (2) @ @™ () © ¢ (2) ® ™ (w)
If we define the tuplem’ = (m},...,m} ;) with m; = m; for j < k, mj, = i andm;_, = my — i, then we

see that thain’ runs over all tuples of + 1 nonnegative integers such t@f;“ll m; = n and we can rewrite

TL' ’ ’
AFh(z) = ZWsﬁml(fE)®"'®sﬁm’““($)v
mil . my !

and the lemma is proved fax”. O

Now, we equipS(C) with a Laplace pairing that will be used to twist the commivtaproduct ofS(C).

2.3 Laplace pairing

The concept of Laplace pairing was introduced by Rota andlotators [16, 30]. In the quantum group litera-
ture, it is called a coquasitriangular structure [43].

Definition 2.2 A Laplace pairing is a linear maf)) from S(C) ® S(C) to the complex numbers such that
<1|u)> = (ul1) = (), (wolw) = Y (ulw,)(v]we) and (ulvw) = 3 (ue[v)(ue [w) for anyu, v anduw in
S(0).

The Laplace pairing of products of elementsX{€) is calculated with the following lemma
Lemma 2.3 For »* andv’ in §(C), we have

(u' - uffo! ZHH )

i=1j=1

Whereu( ) is the term in posmory of the iterated coproduch/~14! andv is the term in positiori of the
iterated coproduct\*~1v

For examplguvw|st) = Z(u(l)|s(1))(u(2)|t(1))(v(1)|s(2))(v(2)|t(2))(w(1)|s(3))(w(2)|t(3)).
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4 Ch. Brouder: QFT meets Hopf algebra

Proof. The proof is recursive. ¥ = | = 1, we haveAu! = u! andA%! = »!, so that lemma 2.3
becomegu! [v!) = (u'|v!), which is true. Now assume that the lemma is true up &md/ and writeu* = st
with s andt in S(C). Lemma 2.3 becomes

k—1 1

l
(Wl ukol - ol) = ZHH(ugj)w{i))H((st)(j)w{k)). (2.1)

i=1 j=1

By algebra morphisnist) ;) = s(;t;) and by the definition of the Laplace pairing and by the codasivity

of the coproducts ;)i |v€k)) = > (s¢j) |v€k))(t(j) [v{k41))- If we introduce this equation in (2.1) and redefine
u* = s andu*t! = ¢, we obtain Lemma 2.3 fat + 1 and!. If we apply the same reasoningdb= st, we see
that the lemma is true fdr and! + 1. Thus, it is true for alk and!. O

If we write lemma 2.3 with all’ andv’ in C, we see that the Laplace pairing is entirely determined dy it
value orC. In other words, once we kno{u|b) for all « andb in C, lemma 2.3 enables us to calculate the Laplace
pairing onS(C). In the case of the algebra of the scalar field, we can use aticadd structure to determine the
usual QFT expression fdp™ (z)|¢™ (y)).

Lemma 2.4 For nonnegative integens andm,
(" @)™ (y) = OGnmnlg(z,y)",
whereg(z,y) = (o(z)[e(y))-

Proof. The coalgebr@ was not supposed to be a bialgebra. However, the algebra afcthlar field can
be equipped with the structure of a bialgebra. This addifigtructure will be described in section 4.5. At
this point, we only need the obvious product structyféz) - ¢ (x) = "™ (z). We do not need to know
what is the product of fields at different points and the prids only used here as a heuristic to determine
(¢™(z)|¢™(y)). We consider that the Laplace pairing satisfies its definimperties for the productof C:
(a-ble) = - (alcwy)(blew) and(alb-c) = S (aq, |b)(aw |e) for a, b andcin C. Within this point of view," ()
is a sort of unit at point and(x° (z)|¢" (v)) = (¢"(2)|¢°(y)) = do.n-

The lemmais clearly true for = m = 1. Assume thatitis true up teandm and calculatéo™ ! (x)|¢™ (y)) =
(p(x) - ™ (2)|e™(y)). From the definition of a Laplace pairing, we have

m

m . .
) @l ) = 3 (7 )@l D" @l W),
=0
The recursion hypothesis gives jis= 1 andn = m — 1, so that
@ @)™ () = mnldnm-1(p(@)le@) (" (@)]e" () = Omnr1(n + 1 (p(2)p(y)"
and the lemma is proved far+ 1. The same reasoning leads to the lemmasiot 1. O

In QFT, the functiong(z,y) is a distribution [35]. Two distributions are commonly usetle Wightman
function and the Feynman propagator. The produet y)™ is well-defined for Wightman functions but not for
Feynman propagators [53]. The solution of this problem ésfttst step of the renormalization theory. In the
following, we assume thaf(x, y) was regularized to make it a smooth function, so {at y)" is well defined.

2.4 Twisted product

The Laplace pairing induces a twisted produon S(C).

Definition 2.5 If u andv are elements af(C), the twisted product of andv is denoted by o v and defined
byuowv =3 (u|va))ueve.

This product was introduced by Sweedler [60] as a crossedugtan Hopf algebra cohomology theory be-

cause a Laplace pairing is a 2-cocycle. It was defined indiggty by Rota and Stein ascécle product[55].
To become familiar with this twisted product, we first proveseful relation
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Lemma 2.6 For v andv in S(C), we have
e(wov) = (ufv)
Proof. The proofis straightforward. By linearity and algeimorphism property of the counit

e(uov) = Z(“(1)|U<1>)5(“<2)U<2)) = Z(“m|U<1))5(“<2))5(U<2>)-

Now, by linearity of the Laplace pairing and the definitiortioé counit

e(uov) = (Zu<1)5(u<2>)|Z”(l)f(”@))):(U|U)-

For completeness, we now prove the classical

Proposition 2.7 The twisted product endowsS(C) with the structure of an associative and unital algebra
with unit 1.

The proof is the consequence of several lemmas. The first &eimm
Lemma 2.8 For v andv in §(C),

A(uov) = Z Uy O V() & U Vi)
Proof. By the definition of the twisted product,
A(uov) = Z(U<1>|U<1))A(“<2)U<2>) = Z(“(1)|U<1>)“<2)U<2> Q Uz Vi) = Z“m 0 V1) @ Uz)Viz)s
where we used the coassociativity of the coproduct. O

The second lemma is
Lemma 2.9 For u, v andw in S(C),

(ujpow) = (uov|w).
Proof. From the definitions of the twisted product and of tiaplace pairing we find
(uvow) = Z(U<1>|w<1>)(u|v<2>w<z)) = Z(%)|w<1>)(u<1)|U<2>)(U<2>|w<z))
= Z(Uu)|w<2>)(u<2>|”<2)>(U<1)|w<1>)a
where we used the cocommutativity of the coproduet ahdw. The definition of the Laplace pairing gives now

(ulvow) = Z(u(l)v(1)|w)(u(2)|v(2)) = (uovfw).

These two lemmas enable us to prove the associativity ofatiséetd product as follows
uo(vow) = Z(U<1>|(U 0 W) (1) Uz (VO W)(z) = Z(“mwu) O W) ) U2y Uz Wiy
by lemma 2.8. Lemma 2.9 is used to transfdum, |v, o w,) iNto (ug, o v, |wy, ), SO that

uo(vow) = Z(“m 0V [Wa) ) U2 VW) = Z((“ 0 V) wa))(uov)pwe = (wowv)ow,

where we used again lemma 2.8 and the definition of the twjsteduct. Finally, the fact that 1 is the unit of the
twisted product follows from the conditiofu|1) = e(u) by

uol = Z(Umu)“m = ZE(Um)U(z) = U.
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6 Ch. Brouder: QFT meets Hopf algebra

2.5 lIterated twisted products

In quantum field theory, we start from an elemerdf C, called the Lagrangian, and the S-matrix is defined (in
the sense of formal power series in the complex humbas
A2 A3

S = expo)\a—1+)\a+2aoa+6aoaoa+ (2.2)

To compare this expression with that given in QFT textbo@&s 18], take\ = i. Therefore, it is important to
investigate iterated twisted products. We shall see thatfRan diagrams arise from these iterated products. The
main properties of iterated twisted product are conseeeeatthe following three lemmas

Lemma 2.10 For u!, ..., u* in S(C) we have
Al o--ouh) = Z“(ll) 0O UL, B Uy UG-
Proof. The lemmais true fdr = 2 by lemma 2.8. Assume that it is true upi@nd putu” = v o w. Then,
lemma 2.8 and the associativity of the twisted product intpat lemma 2.10 is true fdr + 1. O
The next lemma gives an explicit expressiondtu! o - - - o u¥)
Lemma2.11 Foru!, ..., u* in S(C) we have
k-1 k
1 k _ i J
e(wloout) = 3T IT (uyonlugs).
i=1 j=i+1

whereu{i) is the term in position of the iterated coproduch*—2u7

For examples(uov) = (ulv) ands(uovow) = 3 (ug [va) ) (U |wa ) (Ve [wey ). Ingeneralg(ulo- - -ouk)
is a sum of products df(k — 1)/2 Laplace pairings.

Proof. Fork = 2, lemma 2.11 is true because of lemma 2.6. Assume that it ésuputok and write
U=u'o---ouf. Fromlemma2.6 antl = ¢(U,,)U ., we find

eUouth) = (UM = ZE(Uu) YU lut*t) = ZE(U<11> 0 ouf) (g, ufy [ut )

k
1y
§ :E(Um O“(l) H “(2)|“(n)

where we used lemmas 2.10 and 2.3. By the recursion hypstheshave

k
g(ulo"'ouk+1) ZH H U(] 1|uz) H k+1

i=1 j=i4+1 n=1
k—1 k+1 k+1
i j k k+1
SSTT TT oyl ol = S TT 1T (ool
1=1 j=1i+1 =1 j=i+1
and the identity is proved for the twisted productof 1 elements. O

The last lemma completes the calculationbb - - - o u* by expressing it as a linear combination of elements
of S(C).
Lemma 2.12 For u!, ..., u* in §(C) we have

1 k — 1 N k 1 N k
wo---ou” = g E(Ugyy 00U VUi UG-

Proof. To show lemma 2.12 recursively, we observe that ituis fork = 1 by the definition of the counit.
We assume that the property is true upktand we defind/ = u! o --- o u*. Since by definition{J o v =
Z(U(1)|v(}))U(2)v(2), lemma 2.10 yield$/ o v = 3" (u,, o - -+ o uf, |y Jul, - - - uk, v,y and the result follows
for the twisted product of + 1 terms because of lemma 2.6. O
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2.6 Application to the scalar field

If we apply these results to the coalgebra of the scalar fieddobtain the following expression for the iterated
twisted product

Proposition 2.13

Fa) oo d () = 30 - Z() (1)etor oo an)

p1=0 pr=0

PP (xy) L @R TPR (2, (2.3)

with

e(¢" (x1) 00 @™ (ax)) = pk'ZH H “’““"J , (2.4)

M i=1 j=i+1

where the sum is over all symmetficx k£ matricesM of nonnegative integers;; such thath:1 mij = P;
with m;; = 0 for all 4.

Proof. Equation (2.3) is a simple rewriting of lemma 2.12dbr= ¢(™1) (z,),... u* = ¢(")(x},). For the
proof of (2.4), we first recall from lemma 2.1 that

Ak_z(bpi(l’i) — qu qui ¢(h1( ) .,.®¢Qik—l($i),

where the sum is over all nonnegative integgfssuch thath;l1 gij = p;- Thus, lemma 2.11 becomes

k
e(@P (21) 00 ¥ (xy)) = Z(H )H H P91 (1) |0 (7)),

legl'LJ i=1 j=i4+1

where the sum is over all x (k — 1) matrices) with matrix elements;; such thath;l1 ¢i; = pi- Lemma
2.4 implies thay;;—1 = g;;. It is very convenient to associate to each mafpia & x k matrix M with matrix
elementsn;; = g;; if © < j, my = 0andmy; = gj—1 if j < i. With this definition, the conditio;;—1 = ¢;;
implies that the matri¥\/ is symmetric. The conditio?Zf;ll qij = Di implieszz?:1 mj; = p; and we recover
the condition of proposition 2.13. It remains to show that tlombinatorial factors come out correctly. Lemma
2.4 gives us the combinatorial factﬁf‘_ On the other hand, we have

i+1 mg;!.
k k—1 k i—1 J k—1k—1
[T0ost = (ITTLat) (T TT009) = (ITTEmt) (TT T
i=1j=1 1—23—1 i=1 j=i i=2j=1 i=1 j=i
- (T 11 mw)(H 1 mit) = (H Il mw),
Jj=li=j+1 i=1 j=i+ i=1 j=i+
by symmetry ofM. This completes the proof O

If p is zero, equation (2.4) gives B¢’ (x1) 0 ¢F2 (x2) - - -0 ¢P* (x)) = e(PF2 (x2) 0 - -0¢P*(x)). Thus, for
anyu € S(C), we haves (¢°(z) ou) = e(u). In other words, by lemma 2.6, the definition of the Lapladeipg
is supplemented with the conditiq@®(«)|u) = (u). This is consistent with the remark made in the proof of
lemma 2.4. To generalize this convention we use the facatimatocommutative coalgebfaoverC is pointed
(see [1], p- 80). As a consequenceifC) denotes the set of group-like element€opthen the coradicdl, of C
is generated by the elements@(C) and there is a coidedlof C such thaC = Cy @ I ands(I) = 0. Moreover,
e(g) = 1for g € G(C) (see [46], section 5.4 and [47]). Then, for any elemeatG(C) andu € S(C), we define
(g9lu) = (u), so thate(g o u) = e(u) andg o u = gu.
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8 Ch. Brouder: QFT meets Hopf algebra

2.7 Relation with Feynman diagrams

To clarify the relation between equation (2.4) and Feynmiagrdams, we first give a definition of the type of
Feynman diagrams we consider. In this paper, a Feynmanatiaigra vertex-labelled undirected graph without
loop. The word loop is used here in the graph-theoreticaesefan edge that goes from a vertex to itself. Such
a loop is called a tadpole in the QFT jargon. The verticesatvelled by spacetime points. If & is the number

of vertices of a Feynman diagramthe adjacency matrit/ of v is akxk integer matrix wheren;; denotes the
number of edges between verteand vertexj. The absence of loops means that the diagonafa$ zero. The
valence of a vertex is the number of edges incident to it.

The vertex-labelled Feynman diagrams that we use here dr&nesvn ([35], p. 265) but not as common in
the literature as the Feynman diagrams where the edgesheitethby momenta ([35], p. 268). However, the
latter Feynman diagrams are not as general as the vertefddlbnes because they assume that the physical
system is translation invariant and this is not true in tresspnce of an external potential or in curved spacetime.

It is now clear that, in proposition 2.13, each mattikis the adjacency matrix of a Feynman diagranThe
value of~ is the quantity

k=1 &
g(xi, x;)™

U = Lo pg! —_—. 25

(v) = pilop 11]:111 - (2.5)

To clarify this matter, it is convenient to give a few exangple

Example 2.14 We consider the case ef x*(z) o ¢*(y)). If we compare with proposition 2.13, we have
k = 2,p1 = 3 andps = 3. The only nonnegative integer 2x2 symmetric mafvixwith zero diagonal such that

k .
Zj:l mi; = Pi IS

0 3
M = < 03 ) |
Thus, according to the general formutéy® () o ©*(y)) = 3lg(z, y).
The matrixM is the adjacency matrix of the following Feynman diagranwhich is called thesetting sun

L O

Example 2.15 We considet (¢* () o ¢*(y) 0 ¢*(z)). We have nows = 3, p1 = 3, p = 3andps = 2. The
only matrix that satisfies the conditions is

=
\
=N O

21
0 1
1 0

Thus, according to the general formu#y?® (z) o ¢*(y) 0 p*(2)) = 313lg(z, y)2g(z, 2)g(y, 2).
The matrixM is the adjacency matrix of the following Feynman diagranwhich is called théce cream
oz Yy
voo=
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Example 2.16 Finally, we consider (o?(z1) o ¢?(x2) o ¢*(x3) o ¢*(x4)). Six matricesM satisfy the
conditions:

00 0 2 00 1 1 00 2 0
00 2 0 00 1 1 00 0 2
My = 0200 | M=1 100 M=]9900]|
2 0 0 0 1 100 02 0 0
01 0 1 0110 02 0 0
1010 100 1 2 0 0 0
My = o101 ] M= 1001 M=|00 0 2
1010 0110 00 2 0

The matrices\/; enable us to write the value fp?(z1) o p?(z2) 0 p?(x3) 0 p?(24)) as

g1, w4)*g(xa, w3)% + 16g(x1, 23)g(21, 24)g (w2, 23)g (w2, T4) + 4g(w1, 23) g (22, 74)?
+16g(x1, x2)g(21, 24)9(22, 23)g(23, T4) + 169(21, 22)g (21, 3)g(T2, 24)g (23, T4)
+4g(x1, w2)* g (w3, 24)°.

The matricesV/; are the adjacency matrices of the following Feynman diagram

;7:Q2+N+%+ +X+Z

Note that the first, third and last Feynman diagrams are disected. This will be important in the following.
For a specific Lagrangian (for exampt& [35]), the value of a Feynman diagram defined in textbook$i3&
bit different from equation (2.5) because an integral oliergpacetime points labelling vertices with valence
is added. We do not use this convention here because we eoasigneral Lagrangian.

2.8 Enumeration of Feynman diagrams
Various authors [50, 51, 52, 14] studied the number of medrdd (or of Feynman diagrams) corresponding to
e(pm(z1) 00 @™ (wp)).

Proposition 2.17 The number of Feynman diagrams generated(gy* (z1)o- - - o™ (zy,)) is the coefficient
of 21" ...z"in HKj(l — zizj) "L

Since we do not know of any published simple proof of this psifion, we provide the following one.

Proof. LetNy(n1,...,n;) denote the number of Feynman diagrams @b (z1) o - - - o ¢™*(z,)) and
fx(z1,...,2z,) the generating function
fe(z1,- oy 2k) = Z Ni(ny, ... ng)zitooz0k.
ny... Nk

Whenk = 2, we haves (¢™ (21) 0 ¢"*(22)) = 6ny non1!(¢(21)]|¢(22))™ so there is no diagram if; # ny
and 1 ifn; = ns (nq lines linkingz; andx,). Therefore

[o ]
1
faler) = 30 Nalmona)el" a5 = 3o afsf = — .
ni,n2 n=0
Assume that you know;(n4,...,n;) up tol = k — 1. To calculate it fork, take a matrix representing a
diagram fork and calliy, ..., i1 its last line (recall that the diagonal is zero so that= 0). The matrix ob-

tained by removing the last line and the last column encodiéggaam fors (o™ = (1) . .. ™1 71 (z,_1)).
Therefore,

Ni(ni,...,ng) = Z Ni—1(n1 — i1, ... N1 — ip—1).

i1+t _1=ngk
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10 Ch. Brouder: QFT meets Hopf algebra

This gives us
felz1, e y21) = Z Ni(ni,...,ng)z1t . 20k
MN1y..Nk
= Z Z?lzzk Z Nk—l(nl_i17-'-)nk—1_ik—1)
N1y, NE i1t tig—1=nk
= Zz;”“ Z zil ...z;’fll Z Ne—1(J1, - -5 Jr—1)2]" ...zi’fll,
nk i1+t tig—1=nk 15 Jk—1
where we puky; =i, + j; fori =1,...,k — 1. The sum ovey is the generating functiofy._; so
fe(z1,- oy 2k) = Zzg’” Z zil...z;’fllfk,l(zl,...,zk,l)
Nk 11+t —1=ng
= Z (lek)il ...(Zkflzk)ik’lfkfl(zl,...,Zkfl)
Ulyeeesllo—1
_ fk—1(217---72k—1)
(1—2z12)...(1— 2-12k)
So finally
k j—1 1
atan = M
j=21i=1

Note that, by a classical identity of the theory of symméfuiinctions (see [42], p. 77),
H(lfzizj)_l = Zs,\,
1<j A

wheres,, is the Schur function for partitioh and where the sum runs over all partitioneaving an even number
of parts of any given magnitude, for examgle?}, {22}, {11}, {2212}, {32}, {16}.

2.9 Feynman diagrams and Young tableaux

Burge [14] proposed algorithms to generate different typlegraphs based on a correspondence with semi-
standard Young tableaux. We recall that a Young diagram adlaation of boxes arranged in left-justified rows,
[]

[

with a weakly decreasing number of boxes in each row [28].example_] is a Young diagram. A Young
tableau is a Young diagram where each box contains a stpofitive integer. A Young tableau is semi-standard

if the numbers contained in the boxes are weakly increasony feft to right in each row and strictly increasing
1[3]
214]

D=

3

down each column. For examplg=[4] is a semi-standard Young tableau. The number of semi-stdnda
Young tableaux of a given shape and content is given by thé&kasimbers [28].

To obtain all the Feynman diagrams contributing ([Q"l (1) ... (:ck)), list all the semi-standard Young
tableaux withn; + --- + nr = 2n boxes, where all columns df have an even number of boxes, filled
with n; times the symbol 1, ..., times the symbok. For instance, our example table&ucorresponds
to t(p%(x1)9? (z2)@? (23) % (x4)). There are efficient algorithms to generate this list [25].

Then, for each tableali of the list, use the Robinson-Schensted-Knuth correspm@lf38] for the pair
(Y,Y) to generate the Feynman diagram. This relation betweennk@ymliagrams and semi-standard Young
tableaux is not widely known. Thus, it is useful to give it &@r some detail.

A box in a Young tableau is Boundary boxf it is the rightmost box of a row and if it has no box below it.
If a box is referenced by a pafr, c) wherer is the row number and the column number (counted from the
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upper-left corner), then the boundary boxes of our exanglleauy” are the boxe$2, 3) and(4, 1) containing
the numbers 4 and 4, respectively. We define now the algod#imte taking a tableay” and a boundary box
(r,¢) and building a tableat’’ and a numbek. If » = 1, thenc is the last column of the first row. The result
of delete(Y; (1, ¢)) is the tablead™ obtained from the tableali by removing box1, ¢) andk is the number
contained in box1,¢) of Y. If » > 1, box (r, ¢) is removed from¥” and the numbet contained in boXr, ¢)
replaces the first number in row-1 (from right to left) that is strictly smaller thah The numbeyj it replaces
is then moved to row—2 with the same rule, until row 1 is reached. The tableau thusied isY” and the
number replaced in the first row is(see Knuth'’s paper [38] for a more computer-friendly altfori).

In our examplé’, if we choose the boundary b@g, 3), the number 4 of box2, 3) is moved to the first row,
1]4]

2]

[=]eolro]=

where it replaces the number 3, so thdt andk = 3. If we choose the boundary bax, 1), we have
1113 1]11]3
] 2 2}4} ) ) 2 3|4|
successively4] |, where 4 replaces a 3; moving this 3 to the second row gives , where 3 replaces a 2;

1
2[3]4]
14]

moving this 2 to the first row gives’'= and the replaced number in the first rowkis= 1.

To generate the Feynman diagram corresponding to a giviatalh (with 2n boxes), we first need to defime
pairs of integersuy, vi), wherek = 1, ..., n (each pair represents an edge of the diagram)ul,.éte the largest
number contained in the boxesBfand, among the boxes &f containing the numbet,,, let (r, ¢) be the one
with largestc. LetY; be the tableau obtained frol by removing box(r, ¢). Calculatedelete(Y7; (r—1,c))
to obtain a tableay] and a numbek. Assignv, = k and repeat the procedure &f. This givesn pairs
(u1,v1), .., (Un, vp), With uy, > vp,.

Let us apply this procedure to our example tabl¥audt contains 8 boxes, so that= 4. Its largest number is

4, the rightmost box containing it i€, 3) and the Young tableau obtained by removing this box fiéns Y; =
1]3]
2]

3
. If we applydelete to Y7 and boundary bokl, 3) we obtainY/=4] andk = 3. Thus,(u4,v4) = (4, 3).
We have nowus = 4 and the box(4,1). We apply the same procedure to ggt: andk = 1, so that

1
12]
13
[4]

1
(us,v3) = (4,1). Doing this again gives u1§3: and(ug, v2) = (3,1). Finally (uy,v1) = (2,1).

Then, the Feynman diagram is generated as follows: et the largest number containedvindrawk points
labelledz, ..., z,. Then, for each paifu;, v;), draw an edge between, andz;, wherea = u; andb = v;.
Note that our example tabledtcorresponds to the fourth diagram of example 2.16.

Similarly, the adjacency matri#/ is built as follows: letk be the largest number containedYinand M the
k x k null matrix. Fori = 1 ton increasen,;, andm,, by one, where: = u; andb = v;.

The semi-standard Young tableaux corresponding to theatagof examples 2.14, 2.15 and 2.16 are, respec-
1]1]2] 1]1]3]

3[4]

2 2
) 13]3] [3] 1[1]2]2] [3] 1[1]2]3] [1]1]3]3
tively, [2[2]2], and(4[4] [4] H [4] w [2]2]4[4],

2.10 Chronological product and Green functions

If the Laplace coupling is symmetric, i.e. (ifi|v) = (v|u) for all w andv in S(C), then the twisted product is
commutative and we can define a nirom S(C) to S(C) by T'(uv) = T'(u) o T'(v) andT'(a) = a fora € C.
In particular, ifas, . .., a are elements of, thenT'(a; ...ax) = a1 o --- o ai. Using lemma 2.12, we see that
T(u) =3 t(uq))ue), wheret is a linear map frons(C) to C defined byt(u) = (7'(u)). For historical reasons,
the mapT is called thechronological producbr thetime-ordered produdi22, 35]. The mag is an element of
S(C)*, the dual ofS(C). In that sense, the chronological product is the right calagaction ofS(C)* on S(C)
by T(u) = u<at = > t(un))ue andS(C) is a rightS(C)*-module if S(C)* is endowed with the convolution
product (see [43] p. 21). The Hopf algebraic propertie® efere discussed in detail in [7].

If we take the convention thdy|u) = ¢(u) for any elemeny € G(C) andu € S(C) (see the end of section
2.6), thenT'(gu) = ¢gT'(u) andt(gu) = t(u). In particular, for the algebra of field%,(°(z)u) = ©°(x)T (u)
andt(o%(z)u) = t(u).
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12 Ch. Brouder: QFT meets Hopf algebra

The mapI enables us to write the S-matrix &s= T'(exp(Aa)), whereexp(Aa) = 1+ 37, (A" /nl)a",
where the produci” is the product inS(C). Moreover, the map is useful to define the Green functions of a
theory:

Definition 2.18 Then-point Green function of the scalar field theory with Lagriamg: is the function

G(z1,...,xx) = t(p(21)...o(xr)exp(Aa)).

In the usual definition of the Green function, the right haidk of the previous equation is divided by
t(exp(Aa)), because of the Gell-Mann and Low theorem [29]. We omit tieisaininator for notational con-
venience. The usefulness of the Green functions stems frerfatt that most important physical quantities can
be expressed in terms of Green functions with a small numbergaments. For instance, the charge density is
proportional toG(z, ) [26], the optical spectrum is a linear function@fz1, z2, 23, x4) [58], etc.

Let us consider the example of thé theory with Lagrangian = fR4 ©*(x)dx. Strictly speaking, we are not
allowed to consider an infinite number of points as in thegrakoverR*, but this drawback can be cured in the
perturbative regime, wheksp(Aa) is expanded as a seriesirand each term™ is rewritten

o' = /R4 dyl...dyn<,04(yl)---904(yn)'

Thus, the perturbative expansion of the Green function is

G(z1,...,z,) = Z()%/Rmdyl...dynt(tp(ml)...gp(mk)@4(y1)...g04(yn)).

Then, in each term of the expansion, the coregular aatiacts on a finite humber of points and the present
formulation is valid (up to renormalization). For instantee first nonzero terms @¥(z1, z2) are

2

Glaran) = tplonplen)) + 5 [ dmddiat(plon)oloa)ie! ()¢ (1) + O

= g(x1,22) + )\2/ dy1dy2 (489(551791)9(311792)39(92,562)
RS
+48g (1, y2)9(y1, y2)° 9 (Y1, 22) + 12g(w1, 552)9(91792)4) +0(X\?)
In terms of Feynman diagrams, this gives us

A2 z1 1 Y2
G(wl’xz) = 93.1_90.2+ 2 /dyldy2 (9”.1_9_90.2+ @2—’_1’.1_;2) + O()\B)

For the clarity of the figure, the labels andy, were given explicitly only for the last diagram. The three
diagrams under the integral sign correspond to the thregaeat

0010 000 1 0100
00 0 1 0010 1 0 0 0
My = 1003 | M=log1 03] M=o o0 4
0130 1 0 3 0 00 4 0

Note that the first and second integrals have the same vataeibey(y1, y2) = g(y2, y1). Their sum would be
counted as a single diagram in the standard theory. The tafy@of the present procedure is that we do not have
to determine the number of elements of the symmetry groupetiiagrams. Note also that the last term is not
connected. If we had used the standard definition of Greecttifums, the disconnected graph (i.e. the third term
of the integral) would be cancelled by the denominafaixp(Aa)).

We considered only Feynman diagrams without tadpoles (zotads an edge going from a vertex to itself).
For some applications, it is useful to consider diagrams ¢ha possibly contain tadpoles. Burge defined a
similar correspondence for this more general case [14].sEh&i-standard tableaux are now required to have an
even number of boxes in each row (and no condition on the awd)inin the corresponding adjacency matrix, the
tadpoles attached to vertey are described by assigning to the diagonal matrix elemeptthe value of twice
the number of tadpoles attachedug

Copyright line will be provided by the publisher



mn header will be provided by the publisher 13

2.11 The noncocommutative case

When the coalgebré is not cocommutative, the above construction is not valichlige the twisted product is
not associative. However, it is still possible to define ddahra7 (C) from any coalgebré& overC as follows.
As an algebra7 (C) is the tensor algebra @& 7(C) = @, , 7"(C). The coproduct\ of 7(C) is defined by
extending the coproduct 6fby algebra morphism and the counivf 7(C) is defined by extending the counit of
C by algebra morphism. With this coproduct and counit, thelatg7 (C) becomes a bialgebra. This bialgebra
was used by Ritter [54] in the framework of noncommutativelQF

For any element of 7(C)*, the dual of7 (C), we can define the right coregular actionfC)* on 7 (C) by
T(u) =u<dt = t(uy)ue. If T(C)* is endowed with the convolution produ@t« ') (u) = > t(u) )t (ue) ),
then7 (C)* is a unital associative algebra with uaitMoreover,

Lemma 2.19 7(C) is aright 7 (C)*-module, i.,eu<e =uand(u<t) <t = u<(t*xt).

Proof. By definition of the action and of the counit, we haves = > e(uq))u,) = u. By definition of
the action,

(wat)at” = Z (t(ua)ue) <’ = Zt(u(l))(u@) at') = Zt(wm)t’(wz))u(s)
= Z(t * t/)(u(l))u(z) =ud (t * ﬁ/)

3 Connected chronological products

In example 2.16, we saw that some of the Feyman diagrams sgerdiected. According to a basic result of
QFT, all Green functions can be written in terms of conne@eekn functions, i.e. Green functions that are the
sum of connected Feynman diagrams. In this section, we diavttis elimination can be carried out by a purely
algebraic method, using the fact t&(C) can be equipped with a second coproduct.

3.1 A second coproduct orS(C)

For the calculation of connected diagrams, it is convenierdefine a second coprodutton the symmetric
algebraS(C) byda =1®a+a® 1forainC, extended t&5(C) by algebra morphism. Besides, the coupits
defined byes(1) = 1, e5(a) = 0 for a in C and extended by algebra morphism. We denot8{¢) the resulting
bialgebra. This is the standard symmetric algebr& @onsidered as a vector space. The Sweedler notation for
the action of on an element of S(C) iSdu = > Uy @ Ugs.

We prove now the following crucial

Proposition 3.1 S5(C) is a rightS(C)-comodule coalgebra for the right coactign= A.

Proof. Thema : S5(C) — Ss5(C) ® S(C) defined bys = A is a right coaction 05(C) onS;(C) because
we obviously have (see ref.[43] p.22 or ref.[37] p.28)® 1d)3 = (Id ® A)B and(Id ® €) 8 = Id. Thus,Ss(C)
is a rightS(C)-comodule coalgebra if we can prove the two properties @Eg!B] p.23 or ref.[37] p.352)

(es®Id)8 = les, (3.1)
(eI = (deldep)ddereId)(8 e B)S, (3.2)
wherey is the algebra product &(C) andr is the flip. In Sweedler’s notation this becomes
Z es(uw)ue = es(u)l, (3.3)
Zuum} R Uyg2y O U@y = Zu{l}m @ Ugay 1) ® Ugry 2) U2y 2 (3.4)

We first show equation (3.3). Takec S*(C) with & > 0. An example of such a in the scalar field algebra is
u=@"(x1)...¢"(xx). Thenes(u) = 0 by definition ofes. Moreover,fu = Au = 3" u, ® u,, Where all
u,, andu,, belong toS*(C) by definition of the coproduch. Thus,es(uq,) = 0 and_ es(uq))ue, = 0 =
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14 Ch. Brouder: QFT meets Hopf algebra

e5(u)1. The remaining case is € S°(C), so thatu = A1 for some complex numbex. Then_ 5 (u ) )ty =
Aes(1)1 = e5(u)1 and equation (3.3) is proved.

To show equation (3.4) we use a recursive proof. It is ob\ouwege foru = 1, assume that it is true for all
elements ofS*(C) up tok = n. Takeu € S"(C) anda € C. Fromé(au) = (da)(du) = > auyyy ® up, +
Uy ® aug,; We can calculate

(0 ®Id)Aau) = Z §(awyum) ® ae e

E (@@ U 1y @ Ugy (21 + Uy (1) @ AyUay (21) @ Aoy Uy

= Z(amu{l}m ® Uy + Uy ® A Uera) ® Ao Uay ol e
= (deldeup)(ldereId)(A® A)d(au),
where we go from the first line to the second with the expresEiod (a,,u,), from the second line to the third

with the recursion hypothesis and from the third to the fowvith the expression faf(au). Thus, by linearity,
equation (3.4) is true for all elements&f+1(C). O

For the coalgebra of the scalar field, one might be tempteeptace all®(z;) by 1, the unit ofS(C).
However, if we do this the coproduct of an elementill contain the terms;, ® 1 and1 ® u that spoil the validity
of eq. (3.3).

3.2 The connected chronological product

We denote the reduced coproddat= du — 1 ® © — u ® 1 with Sweedler’s notatiodu = > 1) @ Uyy-
Definition 3.2 Foru € S(C) with e5(u) = 0, we define the connected chronological prodiigt:) as

T(ugpy). -T(U{Q})-

For notational convenience, we sometimes omit from now enstim sign corresponding to the coproduct:
we writeT (u;qy). . . T (ugny) for > T'(ugyy). . . T(ugmy ). Thisis called the enhanced Sweedler notation. Note that
the connected chronological product is related to the kEaredempotent [60] for: € ker e

e(u) = _Z (_1)nuu} o Ugny,

n

n=1
in the sense that the operafbris applied to each term;,. Recall that the first Eulerian idempotent projects
onto the primitive elements of a connected cocommutatigkgbbra. Reciprocally, we can exprdsg terms of
T. by
Lemma 3.3 For u € kereg

1
Z n_ c(uy) - Te(umy)-

Proof. From the definition df,, we have

© (_1yn 1 Yirtetin
Z c(uy) - Te(umy) = Z( 2, Z (DfT(u{l})-'-T(U{i1+---+in})a

|
1 =1 v T, et
e k k+n
(-1) 1
= ZT(“{l}) T (uky) Z 1 Z : -
n! ) ‘ 11...0n
k=1 n=1 i1+ Fin=Fk
The sum overn andiy, . . ., i, is the coefficient of* in the series expansion @fs(1*++) Fromelog(142) = 141
we deduce that the sumdg ;. Therefore
=1
ﬁTc(Uu}) o Te(umy) = Tl(ugy) =T(u).
n=1" "
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o
For example,
T(a) = Te(a),
T(ab) = Tc(ab) + T(:(a)TC(b)7
T(abc) = Te(abe) + Te(ab)Te(c) + Te(a)Te(be) + Te(ac)Te(b) + Te(a)Te(b)Te(c),

wherea, b andc are elements af. The relations betwee€h and7,. were given by Haag [31], Epstein and Glaser
[24], Brunetti and Fredenhagen [12], Dutsch and Fredeah§t8] and Mestre and Oeckl [44].

The chronological produd(«) is a coregular actionl'(u) = > t(u, )u), Where the coproduct id. The
connected chronological produfi(u) is defined in terms of (u) through the coproduét Therefore, itis rather
surprising thafl. is also a coregular action: there is an elemgrdf S(C)* such thatl,.(u) = > tc(ua))ue, -

As we shall see, this is a consequence of the factSk@t) is a comodule coalgebra ovs(C).

Proposition 3.4 The connected chronological product is a coregular actidiiu) = > t.(uq,)ue, for
u € kere, with

[e’e] _1)n
) = =3 T ). )
n=1
Proof. Fromiu = du + 1 ® u + u ® 1, itis straightforward to show that equation (3.2) implies
Mdeldep(deoreld)(fep)d = (d@ld)s.
In Sweedler’s notation,

E Uy ) @ Ugzyay @ UgayyUizyz) = E Uy 1y O Uy 2y @ U (3.5)

Take now two coregular actions(u) = > a(ug))ue andB(u) = > b(uq,))ue . We have, using equation (3.5)
foru € kere,

ZA(U{;})B(U@}) = Za(u{;}<1>)b(u{z}u))uu}(z)u{z}<2>
= Z a(ue 1)b(Ua) 21U = ZC(Uu))U(z)v

with c(u) = 3 a(uy)b(ugy). Therefore)” A(u,)B(ug,) is a coregular action. Using this argument re-

cursively, we obtain that, ifl; (u) = > a1 (ua)) U, - - -, Ar(u) = > ax (v, )ue arek coregular actions, then
ST A1(ugy) - .- Ak(ugy ) is a coregular actiod  c(u ) u ey, With e(u) = > a1 (ugy) - - - ax(ugk, ). This proves
that all terms off. are coregular actions, so that their sum is also a coregctiana O

3.3 The linked-cluster theorem

The name of the connected chronological product comes fnanfeict that, for the coalgebra of the scalar field,
t.(u) is made of exactly the connected diagrams(af). This was proved, for example by Mestre and Oeckl
[44]. We sketch an alternative proof of this. For a S-maffix T'(exp(Aa)), with @ € C, we can calculate an
expression relatinge*®) andt.(e*®). First, we have fok > 0 andn > 0,

| . .
Ftam = > @ @a, (3.6)
LT 11! .. 1!
1 T =N

where alli; are strictly positive integers. Therefore,

"1 n!
Ha") = ZE > il

k=1 i1+--+ir=n k:

te(a™) .. . to(a™).
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16 Ch. Brouder: QFT meets Hopf algebra

If we write E = exp(Aa), this gives us

) - 1+Z§Z% > e e

. . k-
n=1 k=1 11+ tig=n k

k-
k=1 n=~kt1+---+ix=n

_ = k _ ote(BE-1)
?

The last line was obtained becauseialt> 0. This result can also be obtained from the idendityy — 1) =
(E—1)® (E —1). The fact that.(E — 1) contains only connected Feynman diagrams follows from aloé f
that the logarithm of(E) is the sum of all connected vacuum diagrams [35].

The same proof holds for tHE-products, so that

S = T(E)=exp(T.(E—-1)).

If we define a connectesl-matrix by S. = 7.(E — 1), we obtain the linked-cluster theorem [39}= e°-.

3.4 A noncommutative analogue

If the tensor bialgebrd (C) is used instead of the symmetric bialgel&), the construction is similar. We
start from the bialgebrd (C) and we define the coalgebia(C) to be the vector spacE(C) endowed with the
deconcatenation coproduét =1 ® 1,0a =a® 1+ 1 ®afora € C and

n—1

ou = u®1+1®u+Zal...ak®ak+1...an,

k=1
foru = ay...a, € T"(C) andn > 1. The counitss of 75(C) is defined bys;(1) = 1 andes(u) = 0 if
u € T™(C) with n > 0. If 75(C) is equipped with the concatenation product, the(C) is not a bialgebra
because the coproduct is not an algebra morphism. Loday anddj41] showed that the deconcatenation
coproduct and the concatenation product satisfy the cahifitstrule §(uv) = (u® 1)dv +6(u) (1 ®@v) —u v,
which makesT;(C) a unital infinitesimal bialgebra. Note thatgif= a, the compatibility rule becomes

d(av) = (a®@1)dv+1®av, (3.7)
fora € C andv € T5(C).
We have the following
Proposition 3.5 75(C) is a right 7 (C)-comodule coalgebra for the right coactigh= A
Proof. The proof of condition (3.3) on the counit is exactig same as for the symmetric case. We prove

(3.4) recursively. It is obviously true far = 1, assume that this is true for elements of degree up ftakeu an
element of degree anda € C. We rewrite equation (3.7) @au) = > auyy ® Uy + 1 ® au. Thus,

(A®A)dau = Z A Ugrya) & AUy @) & Uy @ Ugaye) + Z 1®1®an)ua ® @)
(lde7®ld)(A® A)dau = Z AUy ay O Uzy ) @ AUy ) @ Uz 2)
+ Z 1®amun) @1 apte). (3.8)

Thus,
(0 ®Id)A(au) = Z d(amuw) ® am e
= Z AUy 13 © U (23 & Ay Uy + Z 1 ® anyua) @ ae) e

= Z AUy @ Ugaya) @ AUy Uiz o) + Z L® apyua) @ ae e
Id@Id® p)(Id® 7@ Id) (A @ A)d(au),
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where we go from the first line to the second using equatiaf),(8om the second to the third with the recursion
hypothesis and from the third to the fourth using equatio8)(3rhis completes the proof. O

Inspired by the analogue of the first Eulerian idempotentnéefiby Loday and Ronco [41] for connected
unital infinitesimal bialgebras, (far € ker ;)

o0
= - Z(*l)nuu} o Ugny,
n=1

we define the connected chronological prodiicby

= _Z T(ugy). - T(umy),

or, reciprocally,

Z Te(ugyy)- - Te(ugmy),

still for u € keres. Agam,TC is a coregular action iI" is a coregular action.

4 Renormalization

Renormalization is a fundamental aspect of quantum fieldrthdt was discovered because the values of many
Feynman diagrams are divergent. After several attemptaphoby Dyson [22], the problem was essentially
solved by Bogoliubov [3]. The renormalization theory foundmost textbooks [35] is a development of the
Bogoliubov approach called the BPHZ renormalization. Hesveit appeared recently that the original Bo-
goliubov approach has decisive advantage over the BPHZm&lization. In particular, it can be used for the
renormalization of quantum field theory in curved spacefib® 34].

We first present Bogoliubov’s solution in Hopf algebraiater then we consider in more detail a simplified
model.

4.1 The Bogoliubov formula

Bogoliubov ([3], section 26.2) and Epstein-Glaser [24]ws&d that the relation between the bare (i.e. divergent)
chronological product’ and the renormalized chronological prodifittis

o~ 1

T'(u) = Z ET(A(U{Q) = -A(U{ﬂ}))7 (4.1)

n=1
for u € kere and7’(1) = T'(1) = 1. In equation (4.1)A is a linear operatoker 5 — C called a generalized
vertex [3]. Epstein and Glaser proved that the standard BRd@rmalization is a consequence of this formula
[24]. Note that the renormalized chronological prodIitts not in general a coregular action.

To see the effect of the operatamwe calculatel” (E) for E = e**, with a € C. We first use equation (3.6) to

write

"1 n! i i
k=1 d1+-+ig=n
where alli; > 0. This gives us

T'(E) = 1+ZH—TT’( ") = Z
— : n=1k
- 1+Zk, Z (A((Aa)) ... A((Aa)™))

i1, ,lk
n

k=1

3

??‘|)—l
—
NI
=
—~
@

>
S]
|
—
N~—
N~—
N

—
@
=
o)
—~
=
—~
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IS
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18 Ch. Brouder: QFT meets Hopf algebra

If we definead’ € C by

X yn—1
a = %A(e)‘a —1)=A(a) + A

o A(a™), (4.2)
n=2

the previous equality can be rewritt@i(e*®) = T'(e**). In other words, the change of chronological product
from T to T’ amounts to a change of Lagrangian frano «’. This result was obtained by Hollands and Wald

[34] who showed that it holds also in curved spacetime.

In flat spacetime, the chronological product satisfi€¢s) = 7’(a) = a for a € C. Thereforeq = T'(a) =
T(A(a)) = A(a) because\(a) € C. This impliesA(a) = a and the renormalized Lagrangian starts with the
unrenormalized one. The terms with> 1 in equation (4.2) are called the renormalizateamunterterms In
curved spacetime the situation is more complicated andaHd# and Wald [33] showed that we have in general
T'(a) =Y t'(aw))T (aw)), Wheret' is a linear map fron€ to C. In that case\(a) = > t'(aq))a)-

4.2 The renormalization group: preparation

In this section, we define a product on linear maps S(V)* — V for any vector spac& on the complex
numbers, wher§(V) = C1 ® S(V)* is the symmetric Hopf algebra dn, with coproduct and counit;s. The
Sweedler notation for the coproducis againdu = > u) @ tysy.

Definition 4.1 If £(S(V')) denotes the set of linear maps frdil) to S(V'), theconvolution producof two
elementsf andg of L(S(V)) is the elemenf g of L(S(V)) defined by(f x g)(u) = > f(ugy)g(ugey ), where
u € §(V). Theconvolution powersf an elemenif of £L(S(V)) are the elementg*” of L(S(V)) defined by
0 =es1andf* = f« f*(*=1 for any integem > 0.

In particular, if we denote by:(S(V)*, V) the set of linear maps frol§(V)* to V, we first extend\ to
S(V) by A(1) = 0. Then, we define the convolution powers” as above and theonvolution exponentiat®
by

eMu) = Z lA*"(u)
n!

n=0

Note that the exponential is well defined (i.e. the sum isd)riecausd (1) = 0 implies that, foru € S*(V),
A*"(u) = 0 for n > k. The following special cases are illustrative:* (1) = 1, e**(a) = A(a), e**(ab) =
A(ab) + A(a)A(D) and

eMabe) = A(abe) + A(a)A(be) + A(D)A(ac) + A(c)A(ab) + A(a)A(b)A(c),
for a, b andc in V. Note also that** mapsS(V)* to S(V)*. We first prove the useful lemma

Lemma 4.2 For A € L(S(V)T,V) andu € S(V), we havey (e** (u)) = 3 e (uy) @ e (upsy).

Proof. The spac&(S(V)) equipped with the convolution product is a commutative latgevith unitl =
es1. We denote byA the subalgebra generated BYyS(V)*, V) (where the elementd of £(S(V)*,V) are
extended t&S(V') by A(1) = 0). For anyA of £L(S(V)*,V), A(u) is an element of/. Thus, it is primitive and

0A(u) = AwR1+10Au) =ARel+eslRA)u=(A®1+1®A)du.
Therefore, it is natural to equig with the structure of a Hopf algebra by defining the coprodhat = A ®
1+1®Afor A € £L(S(V)T,V) and extending it tod by algebra morphism. The equalitye** = e** @ e*A

follows from the fact that the exponential of a primitive ralent is group-like. The lemma is a consequence of
the fact thatS(V') is a.A-module coalgebra for the actioh> v = A(u). O

A second lemma will be useful to derive recursive proofs.
Lemma 4.3 For A € L(S(V)*,V),a € V andu € S(V), we have™ (au) = 3" Alaug;)e* (ug).
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Proof. We first show recursively that, fare V', v € S(V') andn > 0, then
AN au) = nZA(au{l})A*("_l)(u{Q}). (4.3)

This is true forn = 1 becausé\ (au) = 3" Aaug;)e(usy) = S A (aup, )A*(u,,). Assume that equation
(4.3) is true up toe. Then,

A*(HH)(GU) = ZA a“ {1} au {2} ZA awgy ) A (ugsy) + ZA(U{l})A*n(a“{z})
= ZA awgy ) A (ugsy) + ”ZA ) Aty ) A (ugay)
= (n+1) ZA (@) A ™ (ugsy),

where we used the coassociativity and cocommutativity efcibproduct and the commutativity of the product.
The lemma follows because

*A _ *n (n—-1)
e*Mau) = (au) + Z A ; =1, ZA augqy)A ) (tgay)
= Z Alaugy)e U{z})
where we used the fact thai(au) = es5(a)es(u) = 0 becauses(a) = 0. O

We are now ready to define a product66S(V)™, V) by
Definition 4.4 If A’ andA are in£(S(V)™, V), the product of\’ andA is the elemend’e A of L(S(V) 1, V)

defined by
(A oA)(u) = N(e* ).
This definition enables us to write the last lemma of thisieact
Lemma 4.5 For A’ and A in £(S(V)*, V) andu € S(V), we have™' (e (u)) = e* (VoM (u).

Proof. The lemmais true far = 1 andu = a € V because* (e*(1)) = eV (1) = 1 = e*'*M(1)
ande* (eMa)) = eV (A(a)) = A'(A(a)) = (A’ @ A)(a) = e*V"*Y(a). Assume that the lemma is true for
all elements ofS* (V) up tok = n. Takea € V, u € S*(V) and use lemma 4.3 to calculate

e*A/( ZG*A (augy)e A(U{z}))
If we denoteA(au{l}) by a’ ande*” (u,,) by v/, we can use lemma 4.3 again
et ZA/ "why)e e (u Uiay )
Lemma 4.2 enables us to calculdfeu),, ® ul,, = du’ = de™ (upy) = 3 e*A (upy) @ e (u,). Therefore,

e N (eMaw)) = DN (Aauny)e™ (ugy))e™ (e (ugy)))
ZA ‘W{l} (U{ }))e*(A“A) (U{a}%

where we used the recursion hypothesis to evaleigtege*” (u,,)). Lemma 4.3 and the definition of’ e A
yield

et (e*A(aU)) ZA/ ‘W{l} er(A'e) (ugzy) = Z(A/ ® A)(‘W{l})e*m/m) (ugzy)
e*(A oA) (au)7

where we used lemma 4.3 again to conclude. Thus, the lemmzisdrau € S"+1(V). O

These lemmas lead us to the main result of this section,
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Proposition 4.6 The vector spac£(S(V)*, V) endowed with the produetis a unital associative algebra.
The unit of this algebra is the majy such thatAg(a) = a fora € V andAg(u) = 0 for u € S™(V) with
n > 1. The invertible elements of this algebra are exactly shguch that the restriction of to V' is invertible
as alinear map fronV to V.

Proof. Associativity follows essentially from lemma 4.5chese, forA;, A; andAz in L(S(V)T, V) we
have

(A1 eAs) @A) (u) = (AqeAs)(e e (u)) = Ay (e**2(e*2(u))) = Ay (e* P28 (u))
= (A1 e (AzeAy))(u).

Ay is the unit of the algebra becausé® (u) = u for anyu € S(V). This s true foru = 1 by the definition of
e*Mo and foru = a € V by the definition ofA. Assume that this is true farof degree up ta. Takeu of degree
n and use lemma 4.3:2 (au) = Y Ag(au,y)e* 0 (ug,,). Ao(aug,,) = 0 if the degree ofi,, is larger than 0.
Thuse™ (au) = 3 Ag(a)e*  (u) = au by the recursion hypothesis. Thise Ag)(u) = A(e* 0 (u)) = A(u).
Similarly, (Ag  A)(u) = Ag(e*(u)). Ag is the identity on the elements of degree 1 and 0 on the elenoént
degree different from 1. The element of degree &'6f(w) is A(u), thus(Ag e A)(u) = A(u).

To prove the invertibility property, consider an inveré@#lement\ with inverseA=!. ThenA—' e A = Aq
and, on any element of V, (A~ e A)(a) = Ag(a) = a. Thus,A~!(A(a)) = a andA is invertible as a
map fromV to V. Reciprocally, take & invertible as a map fron to V' with inverseA’. We shall construct
recursively the inversé.—! of A in the algebral(S(V)*,V). Fora € V we haveA~'(a) = A’(a). To
see how the recurrence works, we calculate the next term.c Bodb in V' we are looking for aA~! such
that (A= @ A)(ab) = Ag(ab) = 0. Thus,0 = A~!(e**(ab)) = A~(A(ab) + A(a)A(b)). This defines
A~ (A(a)A(b)) = —A'(A(ab)), becausé\~! is A’ on V. The mapA being bijective orV/, this defines\~! on
S2(V). Assume now that —! is defined orS* (V) for all k < n, takeay, . ..,a, in V and putu = ay, ..., a, in
S™(V). We want to solvé A ! e A)(u) = 0, with (A~" e A)(u) = A~ (e**(u)). The term of highest degree in
e*Mu)isA(a1)...A(ay). Theinverse\~! is defined on all the other terms, thus the equation' e A)(u) = 0
definesA=! on A(aq)...A(a,). In other words A~ is now uniquely defined o8” (V). Therefore A~ is
uniquely defined o (V) ™. O

4.3 Renormalization group: QFT

If Ais a linear map fron(C)™* to C, we saw in equation (4.2) that the renormalization encodetl ¢an be
considered as a change of Lagrangian fiota o’ with

& )\nfl

ad = Aa)+

n=2

Aa™).

n!

Thus, itis possible to considet as the result of the action dfona: o’ = Ara. If we renormalize the Lagrangian
a’ with the renormalization encoded in a mafy we obtain a new Lagrangiaif = A’>a’ = A'> (A>a). The
first terms ofa” are

@ = N(A@) + 5 (VM) + A (A@)A @)

+% (A'(A(a®)) + 3N (A(a)A(a®)) + A (A(a)A(a)A(a))) + O(N?)
The main result of this section is

Proposition 4.7 If A andA’ are in £(S(V)*,V) anda € C, thenA’ > (Aba) = (A e A)>a.

Proof. Equation (3.6) fof"'a™ gives us

eMa") = Z% > %A(ail)...A(m,
k

e U
=1 itig=n k
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where all thei; are strictly positive integers. Thus, fér = e*?,

AE-1 S Aa™ A(a’
PET = P S Loy Aen Al

. 1. U+
k=1 11+t ig=n 1 k

i 1 i 1 M@™) Aa™)
- - AL+ =1 .

On the other hand,

Ao (Z)\k 1 )

with @’ = 72 X7t A(a?) /il. Therefore,

Ala™)  Afa™)
/ / _ 11441 1
ANrad = (Zk' Z A kT T T )
Thus,
A E—-1 E—-1
Noa = M=) = (Wed) (=) = (W e A)pa
where we used lemma 4.5 and the fact that, for&any > a = (1/A\)A(E — 1). O

In standard QFT, the linear mapissatisfyA(a) = a. Thus, they are invertible for the producand they form
a group, which is one of the many faces of tarormalization group

4.4 Connected renormalization

We argued that, in QFT, the connected chronological prodysttysically more useful than the standard chrono-
logical product. Thus, it is important to investigate homnected chronological products are renormalized.

Proposition 4.8 The relation between the connected renormalized chromdbgroduct7’. and the con-
nected chronological produdt. is, foru € kereg,

kel L
Z —Te(A(ugy) A(U{m))v

n!

Proof. We first note that we can use definition 4.1 to rewritaadign (4.1) under the forrfi”(u) =
T(e*M(u)). Lemma 3.3 expressé(e**(u)) in terms of connected chronological products. To evaluaite t
expression we neeil’ 'e*A (u). The identitydv = v ® 1 + 1 ® v + Jv transforms lemma 4.2 intée** (u) =
(e* @ e*M)du. By iterating and using the coassociativitydive find

3" e M u Ze (Upy) ® - @ e (ugmy), (4.4)

and we can rewrite the renormalized chronological produtgiims of the bare connected chronological products
as

Z ni Muw)) - Te(e (ugwy)).
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To conclude, we use definition 3.2 to expré3éu) in terms ofT”. Then, we expand ead (u;, ) using the last
equation

e —1)n+1
To(u) = Z ( 2 T'(ugy) - T (ugmy)

n=1
o~ () 1 . *

= Z Z ———Le(e Muw)) - Tel@ (g +tiny)
n=1 n Dl yeens in - tn:
S (e A ~ (1) !

= > Tl uw)) .. Tele™(uw)) Y " > P
=1 o =k 10 e 2p:

The sum overn andiy, ..., i, is the coefficient ofc* in the series expansion dfg(e”) = log(1 + (e* — 1)).

Fromlog(e®) = = we deduce that the sumdg ;. Thereforel(u) = T.(e**(u)) and the lemma is proved.[]

In other words, the connected chronological product is memadized with the same formula and the same
generalized verticeA as the standard chronological product. Such an expressighd renormalization of the
connected chronological product was used, for instanceldiyands [32].

4.5 A simplified model

In QFT, the linear map4 have a very particular form. In the example of th&(z) theory, the Lagrangian is
a= [ps*(x)dr and

Ala™) = Cf") /R4 <p4(ac)dx + Cb(,n) /]R4 @Q(x)dac + Cén) /]1@4 o(x) (8 -0 — m2)<p(ac)dx,

WhereC’fn), CQ(") andCé") are real numbers related to the charge, wavefunction and reasrmalization [3].
Such a Lagrangian cannot be manipulated directly with opr@ach because the integral ot involves an
infinite number of points. However, as explained in sectidtD2it can be given a meaning in the perturbative
approach. A more serious problem is the presence of desésaiti |, go(:c)(a -0 — mQ)@(m)dx. To deal with
such terms, we must include derivatives of fields into oueltgC. This poses several problems that are debated
by Stora, Boas, Diitsch and Fredenhagen [17, 19, 20, 21¢ecoimg the status of the Action Ward Identity or
whether the fields should be taken on-shell or off-shell.oBethe situation is fully clarified, we can propose a
model without derivatives (i.e. where the divergences ailg mgarithmic, in the QFT parlance [35]). In that
case, it was shown in a paper with Bill Schmitt [11], that tlealgebraC has to be replaced by a bialgelita
and that renormalization becomes a functor on bialgebrathd case of the scalar field, the product is defined
by o™ (x;) - ™ (xj) = d;;™ ™ (x;). It can be checked that, with this product, the coalgebraeftalar field
becomes indeed a commutative bialgeBra

This simplified model can be extended to any commutative aedromutative bialgebrg by defining the
mapsA asA(u) = > Muw) []we, whered is a linear map fron&(B) ™ to C and] | v is defined as follows: if
u=a€ B, then[[u=a,ifu=a;...a, € S*(B),then[[u=a; - ... a, where the productis in B. With
this definition, it is clear that is a linear map fronker s to 3. The fact that suctA form a subgroup of the
renormalization group defined in the previous paragragbva from the existence of a bialgebraic structure on
S(8(B)™), studied in detail in [11]. If the product of elements.y, . . ., u,, of S(B)™ in S*(S(B)™) is denoted
byw V- -+ V u,, the renormalization coprodutty defined in [11] can be written, far € S(B)*,

oo
1
Apu = Z ] Zu{mm Ve Vmy o) @ (H Ugzy (@) - - - (Humuz))-
n=1

This construction has a functorial noncommutative anaddda].
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4.6 The renormalization group: the noncommutative case

In this section, we want to describe the renormalizatiorugrim the noncommutative case. We first define a
product on linear mapa : 7(V)™ — V for any vector spac& on the complex numbers, whefgV') =
Cl @ T(V)™ is the tensor algebra ovi, with deconcatenation coprodut@and counites. Let us denoted by
L(T(V)*,V) the set of linear maps from(V)* to V.

ForAin £(T(V)*,V), we first define the noncommutative analogue’df, that we denote by, .

Definition 4.9 Let A € L(T(V)*,V), we define the convolution powers™ as in definition 4.1, with
the symmetric coproduct replaced by the deconcatenatiprodact. Moreover, we define the linear map:
T(V)—=T(V)by

oo

In(u) = Y A™(w),

n=0

foru e T(V).

Note thatl, is well defined because, farc 7%(V), A*"(u) = 0if n > k. The following special cases are
illustrative: Iy (1) = 1, Ix(a) = A(a), Ix(ab) = A(ab) + A(a)A(b) and

In(abe) = A(abc) + A(a)A(be) + A(ab)A(c) + A(a)A(b)A(c)

for a, bandcin V. Note also thafy, maps7 (V)™ to 7(V)™*. As for the commutative case, we have the useful
lemma

Lemma4.10 For A € £(T(V)",V) andu € T(V), we haveSIx (u) = (Ix ® Ip)du.

Proof. We give a detailed proof because unital infinitesiatgébra are not as well studied as Hopf algebras.
We first show recursively the identity

AT (w) = DY A () @ AP (). (4.5)
k=0
Forn = 0, equation (4.5) is satisfied because
5/\*0(“) = gwlel= Zgé(u{l})l ® es(upy)l = ZA*O(“{l}) ® A*O(“{z})-
Equation (4.5) is obviously true far = 1 and alln > 0. Thus, we take from now on € 7 (V)*. Assume that

equation (4.5) is true up te, then the definition o (*+1)(v), the relation(au) = (a ® 1)du + 1 ® au, and the
recursion hypothesis imply

SA* D (u) = Z Z Alupy) A (g2) © A9 (ugsy) + Z 1@ Augy)A™ (u))
k=0

- Z Z A D () @ A () + 1@ A (u)
k=0

n+1

= Z Z AF(ugy) @ AT (ug,y).
k=0

The lemma follows by summing both sides of equation (4.5) ave O

A second lemma is very close to its commutative analogue.
Lemmad4.11ForA € L(T(V)*,V),a € Vandu € S(V) we havelp (au) = Y Alaugy ) Ia (ugy).

Copyright line will be provided by the publisher



24 Ch. Brouder: QFT meets Hopf algebra

Proof. We first show that, it € V,u € S(V)* andn > 0, then

Aau) = > Alaugy) A (ug). (4.6)

For anyn > 0, the definition of the convolution powers and the compatibilile 6 (au) = (¢ ® 1)du + 1 @ au
imply

A (aw) = Y A((aw) o)A (au) )
= D Aaug) A () + 3 ALA D (au) = Y Aaun ) AT (ug),
because\(1) = 0. Thus,

In(au) = es(au)l + Z A" (au) = Z ZA(au{l})A*(nfl)(“{z}) = ZA(au{l})IA(u{Q}),

n=1

where we used;s(au) = g5(a)es(u) = 0, sincess(a) = 0. O

We are now ready to define a product&(7 (V)*,V) by

Definition4.12 If A’ andA are inL(7(V)™, V), the product of\’ andA is the elemenA’e A of L(T (V) T, V)
defined by

(A oA)(u) = A(Ix(uw)).

This definition enables us to write the last lemma of thisieact
Lemma 4.13 For A’ andA in £(T(V)*, V) andu € T(V), we havelas (Ix(u)) = Inren(u).

Proof. The proofis the same as for the commutative case. O

We can now state the main result of this section,

Proposition 4.14 The vector spac&(7 (V)*, V') endowed with the produetis a unital associative algebra.
The unit of this algebra is the mafy such thatAg(a) = a fora € V and Ag(u) = 0 for w € T™(V) with
n > 1. The invertible elements of this algebra are exactly Ahguch that the restriction of to V' is invertible
as a linear map fronV to V. In particular, the subset of (7 (V)*, V') characterized by\(a) = afora € V' is
a group.

Proof. The proofis the same as for the commutative case. O

5 Conclusion

This paper described the first steps of a complete desanipfi@FT in Hopf algebraic terms. Although these
steps look encouraging, many open problems still have tohed. The main one is analytical: the use of a
finite number of points is not really satisfactory and we sti@liow for coalgebras containing elements such as
J ¢"(z)g(z)dx for some test functiong.

Other open problems are easier. We list now three of thenT:h@renormalization approach presented here
is equivalent to the Connes-Kreimer approach because betbcuivalent to the standard BPHZ renormaliza-
tion [11]. However, it would be quite interesting to deserihis equivalence explicitly. (i) We proved that a
QFT is renormalized once its connected chronological ptbdurenormalized. In fact, a deeper result is true:
a QFT is renormalized once its one-patrticle irreduciblgdims are renormalized [35]. To cast this result into
our framework, we would need to write the connected chragiold productl’. in terms of a one-particle irre-
ducible chronological product. Although such a connectias announced by Epstein and Glaser [24], it was
described as complicated and was apparently never pudliStheee possible solutions to this problem have been
explored [57, 6, 10] Similarly, it would be worthwhile to @etine a Hopf algebraic expression of Green func-
tions in terms ofu-particle irreducible functions, which is usually done bygendre transformation techniques
[49]. (iii) It would be important to develop the analogue loétconstructions presented in this paper to the case of
gauge theories. Along that line, van Suijlekom obtained#mearkable result that the Ward and Slavnov-Taylor
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identities generate a Hopf ideal of the Hopf algebra of reradization [59]. It would be nice to see how this
result can be adapted to our framework.

The most original aspect of this work is the determinationaficommutative analogues of some QFT con-
cepts (i.e. the replacement 81C) by 7(C), or of S(V) by 7(V)). Such a noncommutative analogue was
first determined for quantum electrodynamics [8] and it leathe definition of a noncommutative Faa di Bruno
algebra [9], generalized to many variables by Anshelevici.g2]. These algebras provide an effective way to
manipulate series in noncommutative variables. The nonuatative constructions defined in the present paper
can also be useful for that purpose.

The present approach enables us to recover the Feynmaami&ymulation of QFT, but its most interesting
aspect is that it is defined at the operator level. For exanmmplaur notation, the relation between connected and
standard chronological product is given not only at thelle¥¢he coregular actionsandt,., but at the level of
the maps fromS(C) to S(C) (i.e. the relation betweeli andT.). As a consequence, we can calculate Green
functions such as

p(T((P(l’l) .. .go(xn)em))
p(T ()

wherep is a map fromS(C) to C. Such more general Green functions are the basic objecteaduantum
field theory with initial correlations (or QFT of degeneratestems) which is well suited to the calculation of
highly-correlated systems [5].

Gp(z1,...,20)

3
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