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This paper provides a primer in quantum field theory (QFT)edasn Hopf algebra and describes new Hopf
algebraic constructions inspired by QFT concepts. Thedollg QFT concepts are introduced: chronological
products, S-matrix, Feynman diagrams, connected diagr&mesen functions, renormalization. The use of
Hopf algebra for their definition allows for simple recussigerivations and lead to a correspondence between
Feynman diagrams and semi-standard Young tableaux. Reaify, these concepts are used as models to
derive Hopf algebraic constructions such as a connectegjuatar action or a group structure on the linear
maps fromS(V') to V. In most cases, noncommutative analogues are derived.
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1 Introduction

Although Hopf algebraic concepts were used in quantum fledity (QFT) as early as 196E [1], the real boom
in the collaboration between Hopf algebra and QFT started thie work of Connes and Kreimer in 19@ [2],
that spurred an enthousiastic activity partly reviewed lgyp€roa and Gracia-BondiE [3]. In these works, Hopf
algebraic structures were discovered in QFT and used tterpiet some aspects of renormalization theory.

The aim of the present paper is a bit different. As a first psepdt tries to convince the reader that Hopf
algebra is a natural language for QFT. For that purposeg# topf algebraic techniques to express important
concepts of QFT: chronological products, S-matrix, Feymmiagrams, connected diagrams, Green functions,
renormalization. The power of Hopf algebra manifestsfitéebugh the ease and economy with which complete
proofs can be given, with full combinatorial factors.

The second purpose of this paper is to demonstrate that QGepts can help designing new Hopf algebraic
objects. As a first example, the connected Feynman diageadais to the definition of two coproducts8(C)
and7 (C) (whereC is a coalgebra$(C) the symmetric algebra ovérand7 (C) the tensor algebra ové). These
two coproducts are in a comodule coalgebra relation andlenahto define “connected” coregular actions on
S(C) and7T (C). As a second example, the Bogoliubov approach to renoratalizleads to a group structure
on the linear maps fron§(V') to V and from7 (V') to V, whereV is a vector space. There, the infinitesimal
bialgebraic structure of (V') plays an essential rolf] [4]. As a last example we recall #radmalization can be
considered as a functor on bialgebras.

It might be useful to explain why Hopf algebra is so powertubeal with quantum field theory. The first
reason was given by Joni and Rota a long time z[bo [5]: the clyatcsplits an object into subobjects and the
product merges two objects into a new one. These operatierfsisdamental in most combinatorial problems.
Therefore, Hopf algebra is a convenient framework to detd wdmbinatorics in general and with the combina-
torial problems of QFT in particular. The second reason bafotwith the fact that Hopf algebraic techniques
exploit efficiently the recursive nature of perturbativeTQF we express this property in terms of Feynman di-
agrams, Hopf algebra makes it very easy to add a new vertegisgeam and to deduce properties of diagrams
with n vertices from properties of diagrams with-1 vertices. Such recursive procedure can also be carried out
directly on Feynman diagrams, without using Hopf algebtd,ibis much harder and is the source “egregious
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2 Ch. Brouder: QFT meets Hopf algebra

errors by distinguished savants”, as Wightman pLE it [6].@&®nsequence, many textbooks give detailed proofs
for very simple diagrams and leave as an exercise to the tiod pf the general case. No such thing happens with
Hopf algebras: the present paper makes clear that a proofifomillion vertices is as simple as for two vertices.
Finally, the Hopf algebraic approach uses naturally thetfzat the unrenormalized chronological product is an
associative product. This property is usually neglected.

The use of Hopf algebraic techniques reveals also that maagtgm field concepts can be defined on any
cocommutative coalgebra. Sometimes, natural noncomiveitatalogues of the commutative constructions of
guantum field theory can be found.

The Hopf algebra background of this paper can be learnt franfitst chapters of any book on the subject,
but Majid’s monograpiﬂ?] is particularly well suited.

2 A primer in quantum field theory

This section provides a self-contained introduction to QiSing Hopf algebraic tools. Some aspects of this
section were already published in a conference procee(ﬁ]ngsut complete proofs are given here for the first
time. We deliberately avoid the delicate analytical pratdeof quantum field theory.

For some well-known physicistEl [9], Feynman diagrams aeeetfsence of QFT. Indeed, Feynman diagrams
contain a complete description of the perturbative asp&fc@FT, providing its most spectacular success: the
calculation of the gyromagnetic factor of the electrE @]. Therefore, this primer goes all the way to the
derivation of Feynman diagrams. However, it is not restddb a particular quantum field theory but is valid for
any cocommutative coalgebfaoverC. By extending the coproduct and counit®to the symmetric algebra
S(C), we equipS(C) with the structure of a commutative and cocommutative lefatg. Then, we twist the
product ofS(C) using a Laplace pairing (or coquasitriangular structuoejefine the chronological produet
This chronological product enables us to describe the Sbmattthe theory, that contains all the measurable
guantities. The S-matrix is then expanded over Feynmanatiagand the Green functions are defined.

2.1 The coalgebraC

In the QFT of the scalar field, the coalgelttas generated as a vector space olleby the symbolsy™(x;)
wheren runs over the nonnegative integers andruns over a finite number of points iR*. The choice of

a finite number of points is meant to avoid some analyticabl@ms and is consistent with the framework of
perturbative QFT. The coprodut of C is

N () = i(?)w<xi>®w-j<xi>,

=0

the counite’ of C is ¢’ (¢™(z;)) = dn0. The coalgebr& is cocommutative (it is a direct sum of binomial
coalgebras). Moreovet, is a pointed coalgebra because all its simple subcoalgabeasne-dimensional (each
simple subcoalgebra is generated by’4x;)).

This coalgebra is chosen for comparison with QFT, but thiefohg construction is valid for any cocommu-
tative coalgebra. From the coalgelgrave now build a commutative and cocommutative bialgei@).

2.2 The bialgebraS(C)

The symmetric algebr&(C) = .- ,S™(C) can be equipped with the structure of a bialgebra @efThe
product of the bialgebr&(C) is the symmetric product (denoted by juxtaposition) anddfsroductA is defined
onSY(C) = C by Aa = A’a and extended t6(C) by algebra morphismAl = 1@ 1 andA(uv) = > uqyva), ®
U= V). The elements o™ (C) are said to be of degree. The counite of S(C) is defined to be equal to
g’ on SY(C) = C and extended t&(C) by algebra morphismz(1) = 1 ande(uv) = e(u)e(v). It can be
checked recursively that is coassociative and cocommutative. Th8I&7) is a commutative and cocommutative
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bialgebra which is graded as an algebra. In the case of tHgetwa of the scalar field, we have

A" (1) o™ (1) = nz_i("l)<”’“)

Jk
@ (1) @7 (wp) @ @ T (@) - ™M TR ().

The powersA* of the coproduct are calleiterated coproductsnd are defined bpA® = Id, A' = A and
AR+ = (Id®% ® A)AF. Their action on an elemeatof S(C) is denoted byA\fu = 3" ugy @ -+ @ gy In
the case of the scalar field, we have

Lemma 2.1 If k is a positive integer, th&é-th iterated coproduct op™ (z) is
k—1 n _ n! mi . m
A" ") = %:m@ () ® - ® ™ (),

wherem = (myq,...,my) runs over allk-tuples of nonnegative integens, , . . ., m; such thatz L mi =,

Proof. Fork = 1, we haveA® = Id. Thus, the left hand side of the equalltygag( ). On the other hand,
we have only one integen; that must be equal ta because of the constra@: _, m; = n. Therefore, the
right hand side is alsg™ (z) and the lemma is true fdr = 1. Assume that the lemma is true &§ —!. From the
definition of A* and the recursion hypothesis, we have

Ak n my . Mg _1 7 my—1 )
Zm:;ml (Z)s@ (2) @ @™ (@) © ¢ (2) ® ™ (w)
If we define the tuplem’ = (m}, ..., m} ;) with m; = m; for j < k, mj, = i andm;_, = my — i, then we

see that thain’ runs over all tuples of + 1 nonnegative integers such t@fill m; = n and we can rewrite

TL' ’
AFh(z) = ZWSOW(!E)@'“@@W’““@),
mil L my !

and the lemma is proved fax”. O

Now, we equipS(C) with a Laplace pairing that will be used to twist the commivtaproduct ofS(C).

2.3 Laplace pairing

The concept of Laplace pairing was introduced by Rota aridkmﬂatorsleB]. In the quantum group litera-
ture, it is called a coquasitriangular structLI]e [7].

Definition 2.2 A Laplace pairing is a linear maf)) from S(C) ® S(C) to the complex numbers such that
<1|u)> = (ul1) = (), (wolw) = Y (ulw))(vlwe) and (ulvw) = 3 (ue v)(ue [w) for anyu, v andw in
S(0).

The Laplace pairing of products of elementsX{€) is calculated with the following lemma
Lemma 2.3 For »* andv’ in §(C), we have

(u' - uffo! ZHH )

i=1j=1

Whereu( ) is the term at pOSItIOIj in the iterated coproduct!~!v? andv is the term at position in the
iterated coproduct\*~1v

For examplguvw|st) = Z(u(l)|s(1))(u(2)|t(1))(v(1)|s(2))(v(2)|t(2))(w(1)|s(3))(w(2)|t(3)).
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4 Ch. Brouder: QFT meets Hopf algebra

Proof. The proof is recursive. B = [ = 1, we haveA%! = u' andA%! = v', so that lemm4 2.3
becomegu!|[v!) = (u'|v!), which is true. Now assume that the lemma is true up &md/ and writeu* = st
with s andt in S(C). Lemma[23 becomes

k-1 1

l

(- b = STTT TGy o) TT (st (21)
=1 j=1 j=1

By algebra morphlsnﬁst)(j) = s(;t(;) and by the def|n|t|0n of the Laplace pairing and by the codatioity

of the coproduc(s(J)t(j)|v(k)) Z(s(j)|v(k))(t(j)|v k1) ). If we introduce this equation i} (3.1) and redefine

u* = s andu*+! = t, we obtain Lemm§ 2.3 fok + 1 and. If we apply the same reasoningib= st, we see
that the lemma is true fdr andi + 1. Thus, it is true for alk andi. O

If we write Iemm with all,’ andv7 in C, we see that the Laplace pairing is entirely determined dy it
value orC. In other words, once we kno|b) for all  andb in C, lemma[2.3 enables us to calculate the Laplace
pairing onS(C). In the case of the algebra of the scalar field, we can use aticadd structure to determine the
usual QFT expression f@p™ (z)|p™ (y)).

Lemma 2.4 For nonnegative integens andm,
(" @)™ (y) = OGnmnlg(z,y)",
whereg(z,y) = (o(z)[0(y))-

Proof. The coalgebr@ was not supposed to be a bialgebra. However, the algebra afcthlar field can
be equipped with the structure of a bialgebra. This additigtructure will be described in secti4.5. At
this point, we only need the obvious product structiiféz) - ¢™(z) = ¢""™(x). We do not need to know
what is the product of fields at different points and the prids only used here as a heuristic to determine
(¢™(z)|¢™(y)). We consider that the Laplace pairing satisfies its definimperties for the productof C:
(a-ble) = > (aleq,)(blew) and(ald - ¢) = > (aw,|b)(aw]|c) for a, bandcin C. The lemmais clearly true for
n = m = 1. Assume that it is true up to andm and calculaté ™ (z)|e™(y)) = (o(z) - ™ ()| (y))
From the definition of a Laplace pairing, we have

m

(o) @) = 3 (m> (@) () (" (@™ (3)).

=0 N7
The recursion hypothesis gives jis= 1 andn = m — 1, so that

(@ @le™ W) = mnldnm-1(p(@)le))(@" @)e" (1)) = dmns1(n+ De(@)le(y)" ",

and the lemma is proved for + 1. The same reasoning leads to the lemmavfor 1. Note that the lemma is
also true fom = 0 orm = 0 if we put(¢°(z)|¢" (y)) = (¢"(z)|4° (y)) = do,n- O

In QFT, the functiong(z,y) is a distribution ]. Two distributions are commonly usdgtle Wightman
function and the Feynman propagator. The prodiet )" is well-defined for Wightman functions but not for
Feynman propagatorﬂlS]. The solution of this problem ésfitst step of the renormalization theory. In the
following, we assume that(z, y) was regularized to make it a smooth function, so iHat )" is well defined.

2.4 Twisted product
The Laplace pairing induces a twisted producn S(C).

Definition 2.5 If u andv are elements af(C), the twisted product of andv is denoted by o v and defined
byuowv =73 (um|va )ueve.

This product was introduced by Sweedl [16] as a crossedugtan Hopf algebra cohomology theory be-

cause a Laplace pairing is a 2-cocycle. It was defined indigdty by Rota and Stein ascicle product[@].
To become familiar with this twisted product, we first proveseful relation
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Lemma 2.6 For v andv in S(C), we have
e(wov) = (ufv)
Proof. The proofis straightforward. By linearity and algeimorphism property of the counit

e(uov) = Z(“(1)|U<1>)5(“<2)U<2)) = Z(“m|U<1))5(“<2))5(U<2>)-

Now, by linearity of the Laplace pairing and the definitiortioé counit

e(uov) = (Zu<1)5(u<2>)|Z”(l)f(”@))):(U|U)-

For completeness, we now prove the classical

Proposition 2.7 The twisted product endowsS(C) with the structure of an associative and unital algebra
with unit 1.

The proof is the consequence of several lemmas. The first &eimm
Lemma 2.8 For v andv in §(C),

A(uov) = Z Uy O V() & U Vi)
Proof. By the definition of the twisted product,
A(uov) = Z(U<1>|U<1))A(“<2)U<2>) = Z(“(1>|U<1>)“<2>U<2> Q Uz Vi) = Z“m 0 V1) @ Uz)Viz)s
where we used the coassociativity of the coproduct. O

The second lemma is
Lemma 2.9 For u, v andw in S(C),

(ujpow) = (uov|w).
Proof. From the definitions of the twisted product and of tiaplace pairing we find
(ulvow) = Z(U<1>|w<1>)(u|v<2>w<2)) = Z(%)|w<1>)(u<1)|U<2>)(U<2>|w<2))
= Z(Uu)|w<2>)(u<2>|”<2)>(U<1)|w<1>)a
where we used the cocommutativity of the coproduet ahdw. The definition of the Laplace pairing gives now

(ulvow) = Z(u(l)v(1)|w)(u(2)|v(2)) = (uovfw).

These two lemmas enable us to prove the associtavity of tiséetthproduct as follows
uo(vow) = Z(U<1>|(U 0 W) Uz (VO W)(z) = Z(“(1)|U<1> O W) ) U2y Uiz Wiy
by lemmd2J8. Lemmp 2.9 is used to transfdum, v ,, o w,,) iNto (u, © v, [w,), SO that

uo(vow) = Z(“m 0V [Wa) ) U2 VW) = Z((“ 0 V) |wa))(uov)pwe = (wowv)ow,

where we used again lemral2.8 and the definition of the twisteduct. Finally, the fact that 1 is the unit of the
twisted product follows from the conditiofu|1) = e(u) by

uol = Z(Umu)“u) = ZE(Um)U(z) = U.
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6 Ch. Brouder: QFT meets Hopf algebra

2.5 lIterated twisted products

In quantum field theory, the Lagrangian is an elemerd aihd the S-matrix is defined (in the sense of formal
power series in the complex numb@ras

2 3

A
S = expo)\a:1+)\a+§aoa+6—aoaoa+ (2.2)

To compare this expression with that given in QFT textbo@ @], take\ = i. Therefore, it is important
to investigate the iterated twisted products. We shall baethe Feynman diagrams arise from these iterated
products. The main properties of the iterated twisted pcbdre consequences of the three following lemmas

Lemma 2.10 For u!, ..., u* in S(C) we have

A(ulo"'ouk) — Zu(ll)o...ouﬁ)@u(lz)...ué).
Proof. The lemmais true fdr = 2 by lemma[2]8. Assume that it is true upit@nd putu* = v o w. Then,
lemma[2.B and the associativity of the twisted product intpit lemmd 2.0 is true for + 1. O
The next lemma gives an explicit expressiondtu! o - - - o u¥)
Lemma 2.11 For u!, ..., u* in §(C) we have
k—1 k .
e(uto---ouf) = Z H H (uzj_1)|uzi)),
i=1 j—it1

whereu{i) is the term at position in the iterated coproduch =27

For examples (u o v) = (ulv) ande(u o v o w) = 3 (uw|v)) (U (W) (Ve (We)-

Proof. Fork = 2, lemma[2.3]1 is true because of lemfng 2.6. Assume that it ésuputok and write
U=u'o--ouF. Fromlemmg2|6 anti =Y ¢(U,,)U ., we find

SUou™th) = (UPM) =D e(Ua)Ueluf*h) = D e(uly 0w o ub)(uly -+ ufy [u+)

k
_ K1y
= ZE( Uy O <1> H (2)|u

where we used lemmés 2110 dnd 2.3. By the recursion hypstheshave

k=1 k k
stwhorout™) = 3T T onlety) IT i i)

i=1 j=i+1 n=1
k—1 k+1 k  k+1
1 j k k+1y\ __ 1 j
YUIT 1T @l lugs™ =TT T (i lufs)
i=1 j=i+1 i=1j=i+1
and the identity is proved for the twisted productof 1 elements. O

The last lemma completes the calculationibb - - - o u* by expressing it as a linear combination of elements
of S(C).
Lemma 2.12 For u!,...,u* in S(C) we have

= 1 DR k; 1...k;
uoroun = E:E(“mo O U Yy Uy

Proof. To show lemmp 2.]12 recursively, we observe that itis fork = 2 by the definition of the twisted
product. We writeq = u! o --- o ¥ and we assume that the property is truekupSince, by definition,
Uov=>3(Uuvu)Uazve), lemma2.30 yields/ o v = coul [va))ub, -+ uk, v, and the result
follows for the twisted product of + 1 terms because of IemrFEIZ 6. O
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2.6 Application to the scalar field

If we apply these results to the coalgebra of the scalar fieddpbtain the following expression for the iterated
twisted product

Proposition 2.13

Fr(e)o o m) = 3o 3 () (2) el @o- 00 )

p1=0 pr=0

(bnﬁm (IE1) o ¢n;rm- ($k), , (2_3)
with
k-1 & (@3, ;)™
(@ (@)oo (@) = mloopd D] [T £54—, (2.4)
M i=1 j—it1 Mg

where the sum is over all symmetficx £ matricesM of nonnegative integers;; such thath:1 Mij = Ds
with m;; = 0 for all 7.

Proof. Equation[(2]3) is a simple rewriting of lemina .12dr= ¢(") (zy),... u* = ¢("*) (x;,). For the
proof of (2.4), we first recall from lemmé (2.1) that

INSHCOREEDY

where the sum is over all nonnegative integgfsuch thatZé.:l1 qij = pi- Thus, lemm§ 2.31 becomes

K k=1 K
e(P(z1) 00 P (ax)) = Z(Hlﬁizll,)]:[ H (%91 () [ ¥ (x5)),

Q i=1 Hj:l Qij-" =1 j=i+1

D! o . |
md) 1(z1)®®¢ k 1(1,1),

where the sum is over all x (k — 1) matrices) with matrix elements;; such thatzfgll qi; = p;- Lemma
@ implies thaty;;_1 = g;;. Itis very convenient to associate to each mafjia k x k matrix M with matrix
elementsn;; = ¢;; if i < j, my; = 0andmy; = g;;—1 if j < i. With this definition, the conditiog;;—1 = ¢;;
implies that the matri¥\/ is symmetric. The conditioEf;l1 qij = Di implieszg?:1 mj; = p; and we recover
the condition of propositioh 2.]13. It remains to show that dembinatorial factors come out correctly. Lemma
B.4 gives us the combinatorial factﬁ[f;ll I8 1 my;!. On the other hand, we have

j=i+
k k-1 k i—1 k—1k—1 k i—1 k—1k—1
[Tt = (ITTTes!)(IT T ast) = (TTTTmet) (TT TLmesnt)
i=1j=1 i=2j=1 i=1 j=i i=2 j=1 i=1 j=i
k-1 k E—1 k E—1 k& 9
= (H II mw!)(H II mw"):(ﬂ 11 mij’) :
j=1i=j+1 i=1 j=i+1 i=1 j=i+1
by symmetry ofM. This completes the proof O

Each matrixM! is the adjacency matrix of a graph called a Feynman diagramcldrify this matter, it is
convenient to give a few examples.

Example 2.14 We consider the case ofy*(z)¢*(y)). If we compare with propositioh 213, we halve- 2,
p1 = 3 andps, = 3. The only nonnegative integer 2x2 symmetric matkik with zero diagonal such that

k .
Zj:l mi; = Pi IS

0 3
w-(13)
Thus, according to the general formu#y?® (z)¢* (y)) = 3lg(z, ).

The matrixM is the adjacency matrix of the following Feynman diagramwvhich is called thesetting sun
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8 Ch. Brouder: QFT meets Hopf algebra

Example 2.15We consider the case ef¢®(z)¢?(y)¢?(z)). We have nowk = 3, p; = 3, p, = 3 and
p3 = 2. The only matrix that satisfies all the conditions is

M =

=N O

21
0 1
1 0

Thus, according to the general formuté® (z)¢3 (y)?(2)) = 3!3lg(z, y)?g(z, 2)g(y, 2).
The matrixM is the adjacency matrix of the following Feynman diagramwhich is called théce cream

’y:

Example 2.16 Finally, we consider the case of? (z1)¢*(x2)p* (23)¢?(z4)). Six matrices)/ satisfy the
conditions:

00 0 2 00 1 1 00 2 0
00 20 00 1 1 000 2
My = 0200 M= 1100 M=|200 0|
20 0 0 1100 020 0
01 0 1 0110 020 0
1010 1 00 1 20 0 0
My = 0101 | M=l1001| M=|00 o0 2
1010 0110 00 2 0

The matrices\/; enable us to write the value ofy?(z1)p?(z2) 0% (z3) 9% (24)) as

4g(z1, 24)%g(w2, 23)° + 8g(21, 23) (21, 24)g(w2, 23)g(w2, T4) + 4g (21, 23) g(22, 74)°
+8g(z1,x2)9(x1, 74)g (22, 13)g (w3, 24) + 8g(1, 2)g (w1, ¥3)g(w2, 24)g(23, T4)
+4g(z1,22)% g(x3, 74)°.

The matricedV/; are the adjacency matrices of the following Feynman diagram

;7:Q2+N+%+ +X+Z

Note that the first, third and last Feynman diagrams are disected. This will be important in the following.

2.7 Enumeration of Feynman diagrams
Various authors[[39, 24, PL,]22] studied the number of mesid (or of Feynman diagrams) corresponding to
5(50”1 (x1) 00k (xk))

Proposition 2.17 The number of Feynman diagrams generatet—:l(tqyl1 (x1)o0- - 0™k (xk)) is the coefficient
of 21" ...zp*in [T, (1 — ziz5) "L

Since we do not know of any published simple proof of this psifion, we provide the following one.
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Proof. LetNy(ni,...,n,) denote the number of (labelled) Feynman diagranagpf (z1)o- - -o™ (zy,))
andfx(z1,...,z;) the generating function

felz1, .y 21) = Z Ni(na,...,ng)20" o2k,

ny...Nng

Whenk = 2, we haves (¢™ (21) 0 ©"*(22)) = 6nynon1!(¢(21)|¢(22))™ S0 there is no diagram if; # n
and 1 ifn; = ns (n1 lines linkingz; andx,). Therefore

1
n
fa(z1,22) E Na(ny,ng)z1" 252 E 272y =

n1ms 1 — 2122
Assume that you knowV;(n4,...,n;) up tol = k — 1. To calculate it fork, take a matrix representing a
diagram fork and calliy, ..., i1 its last line (recall that the diagonal is zero so that= 0). The matrix ob-

tained by removing the last line and the last column encodiéggaam fors (o™ =% (1) . .. ™1 =1 (z,_1)).
Therefore,

Ni(ni,...,ng) = Z Nig—1(n1 —d1,...,ng—1 —ig_1).
i1+ Fig—1=Nnk
This gives us
felz1,e e y21) = Z Ni(ni,...,ng)z1t . z0k
ni,..,Nk
= Z Z?IZZ'“ Z Nk—l(nl_i17-'-1nk—1_ik—1)
N1y Nk i1t tig—1=nk
_ ng i G — . . J Jk—
= sz’“ Z 2z Z Ni—1(j1, -y Jr—1)21" o 25
Nk i1+t i1 =Nk 1y Jk—1
where we puby; =1i; + j; fori =1,...,k — 1. The sum oveyj is the generating functiofy._; so

fk(zl,...,zk) = sz’“ Z Zil---Z]lc’tllfk—l(zla---azk—l)-

i1t tik—1=nk
S (ma)" () a2, ze)
D] yeenslle—1
fk—l(Zh oy Zh—1)
(1—212) ... (1 — zp_128)

So finally

—

j7

k
fk(Zh H

1— 2z
j=2i=1 i<

Note that, by a classical identity of the theory of symméfuinctions (se€[[33], p. 77),

H(lfzizj)fl = Zs,\,

i<j A

wheres, is the Schur function for partitioh and where the sum runs over all partitionsaving an even number
of parts of any given magnitude, for examgle }, {22}, {14}, {2212}, {32}, {16}.

Burge |2 ] proposed algorithms to generate different tygfegraphs based on a correspondence with semi-
standard Young tableaux. We recall that a Young diagram @leation of boxes arranged in left-justified rows,
[]

[]

with a weakly decreasing number of boxes in each r@\/ [24].example_] is a Young diagram. A Young
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10 Ch. Brouder: QFT meets Hopf algebra

tableau is a Young diagram where each box contains a stpofitive integer. A Young tableau is semi-standard

if the numbers contained in the boxes are weakly increasong feft to right in each row and strictly increasing
1[1]3]
2]4]

2
13

down each column. For exampl&=[4] is a semi-standard tableau. The number of semi-standardgyou
tableaux of a given shape and content is given by the Kostkebers [214].

To obtain all the Feynman diagrams contributing(tga”1 (1) ... (xk)), list all the semi-standard Young
tableaux withn; + --- + nr = 2n boxes, where all columns &f have an even number of boxes, filled
with ny times the symbol 1, ...p, times the symbok. For instance, our example table&ducorresponds to
(0% (x1)9? (x2)? (z3)9? (24)). There are efficient algorithms to generate this [is} [25].

Then, for each tabledll of the list, use the Robinson-Schensted-Knuth correspwef@b] for the pai(T’, T
to generate the Feynman diagram. This relation betweennfr@ymliagrams and semi-standard Young tableaux
is not widely known. Thus, it is useful to give it here in soneail.

A box in a Young tableau is Boundary boxf it is the rightmost box of a row and if it has no box below it.
If a box is referenced by a pair, ¢) wherer is the row number and the column number (counted from the
upper-left corner), then the boundary boxes of our exanglileaul” are the boxe$2, 3) and(4, 1) containing
the numbers 4 and 4, respectively. We define now the algordiéinate taking a tablead” and a boundary box
(r,¢) and building a tablead’ and a numbek. If » = 1, thenc is the last column of the first row. The result
of delete(T’; (1, ¢)) is the tablead” obtained from the tabledli by removing box(1, ¢) and numbek is the
number contained in boi, ¢) of T. If » > 1, box (r, ¢) is removed fron" and the numbei contained in box
(r, ¢) replaces the first number in row-1 (from right to left) that is strictly smaller thah The numbey; it
replaces is then moved to row-2 with the same rule, until row 1 is reached. The tableau thdaioed isT’
and the number replaced in the first rowkigsee Knuth's papef [p6] for a more computer-friendly altori).

In our examplél’, if we choose the boundary bdg, 3), the number 4 of box2, 3) is moved to the first row,
1]4]
2]

[

2
3]
where it replaces the number 3, so tH&![4]
1]1]3] 1

_ [2]2]4] . . 2[3[4]
successively4d] |, where 4 replaces a 3; moving this 3 to the second row gives , where 3 replaces a 2;
1[2]3]
2[3]4]
14]

andk = 3. If we choose the boundary bax, 1), we have

moving this 2 to the first row gives’= and the replaced number in the first rowkis= 1.

To generate the Feynman diagram corresponding to a giveatab (with 2n boxes), we first need to defime
pairs of integers$uy, vi), wherek = 1, ..., n (each pair represents an edge of the diagram)u},&te the largest
number contained in the boxesBfand, among the boxes @f containing the numbeit,,, let (r, ¢) be the one
with largestc. Let Ty be the tableau obtained frof by removing box(r, ¢). Calculatedelete(T7;(r—1,c¢))
to obtain a tablead’ and a numbek. Assignv, = k and repeat the procedure @}. This givesn pairs
(u1,01), ..oy (Un,vn), With u, > vy,

Let us apply this procedure to our example tabl&alt contains 8 boxes, so that= 4. Its largest number is

4, the rightmost box containing it i€, 3) and the Young tableau obtained by removing this box ffbis 73 =
1]3]
2]

1

z

3 3

[4] . If we applydelete to 77 and boundary bokl, 3) we obtain7}=4] andk = 3. Thus,(u4,v4) = (4, 3).

We have nowus = 4 and the box(4,1). We apply the same procedure to g&t[2[3] andk = 1, so that
(us,v3) = (4,1). Doing this again gives UE?fz and(usz, v2) = (3,1). Finally (uy,v1) = (2,1).

Then, the Feynman diagram is generated as follows: bt the largest number containedlindrawk points
labelledx, ..., z;. Then, for each paitu;,v;), draw an edge between, andx;, wherea = u; andb = v;.
Note that our example tableducorresponds to the fourth diagram of exanfple]2.16.

Similarly, the adjacency matri#/ is built as follows: letk be the largest number containediirand M the
k x k null matrix. Fori = 1 ton increasen;, andm,,, by one, where, = u; andb = v;.
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The semi-standard Young tableaux corresponding to theatiagjof examplds 2.1, 2]15 and 2.16 are, respec-
1[1]2] 1]1[3]
2[2][2]3]4] 2[2[4]
[1]1]1] [1]1]1]2] 13[3][3] 1[1]2]2] [3] 1{1]2]3][1]1]3]3
tively, [2[2]2], andl4]4] [4] 4] [2]3[4]4]

2.8 Chronological product and Green functions

If the Laplace coupling is symmetric, i.e. (ifi|v) = (v|u) for all w andv in S(C), then the twisted product is
commutative and we can define a Mafrom S(C) to S(C) by T'(uv) = T'(u) oT'(v). In particular, ifay, . .., ax
are elements df, thenT'(a; . ..ax) = aj0---oax. Using Iemm2, we see tHBfu) = > t(uq))u ), Where
t is a linear map frons(C) to C defined byt(u) = (T'(u)). For historical reasons, the mépis called the
chronological producor thetime-ordered productThe mapt is an element of(C)*, the dual ofS(C). In that
sense, the chronological product is the right coregulaoact S(C)* onS(C) by T'(u) = u <t =Y t(ug) )t
andS(C) is a rightS(C)*-module if S(C)* is endowed with the convolution product (sﬂe [7] p. 21). TlopH
algebraic properties af were discussed in detail |ﬂ27]

The mapT" enables us to write the S-matrix 8s= T'(exp(Aa)), whereexp(Aa) = 1 + 307 (A\"/nl)a™,
where the product” is the product inS(C). Moreover, the map is useful to define the Green functions of a
theory:

Definition 2.18 Then-point Green function of the scalar field theory with Lagriamg: is the function

G(z1,...,zx) = t(p(x1)...o(zk)exp(Aa)).

The usefulness of the Green functions stems from the fattntlast important physical quantities can be
expressed in terms of Green functions with a small numbergiraents. For instance, the charge density is
proportional toG (x, ) [2§], the optical spectrum is a linear function@fz1, 22, 23, x4) [R9], etc.

Let us consider the example of thé theory with Lagrangian = g fR4 ¢*(x)dx. Strictly speaking, we are
not allowed to consider an infinite number of points as in thegral oveiR*, but this drawback can be cured in
the perturbative regime, whesgp(\a) is expanded as a seriesirand each term™ is rewritten

a" = g"/4 dyr ... dyne* (1) - - " (Yn)-
R'ﬂ

Thus, the perturbative expansion of the Green function is

Glorrovvvm) = 3 CI [y gt (o) o) ) )

|
"0 n.
Then, in each term of the expansion the coregular adtiaots on a finite number of points and the present
formulation is valid. For instance, the first nonzero terh&/@c,, z2) are
)\2 2
2

G(z1,22) = t(e(z1)e(22)) + /dy1dy2t(( De(x2)e (y1) e (12)) + O(X?),

= g(x1,22) + Ng° /8 dy1dys (489(11”17 y1)9(y1, y2)°9(y2, v2)
R

+48g(x1,y2)9(y1, y2)* 9 (Y1, 22) + 12g(w1, 552)9(91792)4) +0(N?)

In terms of Feynman diagrams, this gives us

2,2

G(z1,m2) = p—p+ Ay /dy1dy2('—9—' + @ +y ©y2) O(N?)

For the clarity of the figure, the labels andy, were given explicitly only for the last diagram. The three
diagrams under the integral sign correspond to the thregaeat

0010 00 0 1 01 0 0
00 0 1 0010 10 0 0
My = 1003 /| M=o 103] M=o 0 4
0130 10 30 0 0 4 0
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12 Ch. Brouder: QFT meets Hopf algebra

Note that the first and second integrals have the same vataeibey(y1, y2) = g(y2, y1). Their sum would be
counted as a single diagram in the standard theory. The tay@of the present procedure is that we do not have
to determine the number of elements of the symmetry groupevtitagrams. Note also that the last term is not
connected. To define connected Green functions, just replagt. in definition.

We considered only Feynman diagrams without tadpoles @otads an edge going from a vertex to itself).
For some applications, it is useful to consider diagrams ¢tha possibly contain tadpoles. Burge defined a
similar correspondence for this more general c@e [22].sEn@-standard tableaux are now required to have an
even number of boxes in each row (and no condition on the awd)inin the corresponding adjacency matrix, the
tadpoles attached to vertey are described by assigning to the diagonal matrix elemegptthe value of twice
the number of tadpoles attachedio

2.9 The noncocommutative case

When the coalgebré is not cocommutative, the above construction is not valichlige the twisted product is
not associative. However, it is still possible to define ddahra7 (C) from any coalgebré& overC as follows.
As an algebra7 (C) is the tensor algebra @& 7(C) = @, ,7"(C). The coproduct\ of 7(C) is defined by
extending the coproduct 6fby algebra morphism and the counivf 7 (C) is defined by extending the counit of
C by algebra morphism. With this coproduct and counit, thelatg7 (C) becomes a bialgebra. This bialgebra
was used by RittemO] in the framework of noncommutativelfQF

For any element of 7(C)*, the dual of7 (C), we can define the right coregular action®fC)* on 7 (C) by
T(u) =u<t => t(uu )uw- If 7(C)* is endowed with the convolution produet« ') (u) = > t(uw) )t (uew)),
then7 (C)* is a unital associative algebra with uaitMoreover,

Lemma 2.19 7(C) is aright7 (C)*-module, i.,eu<e =uand(u<t) <t = u<(t*xt).

Proof. By definition of the action and of the counit, we haves = > e(uq))u) = u. By definition of
the action,

(uat)at’ = Z (t(um)u(z)) at' = Z tuw ) (ue at') = Z tuw )t (ue) )ues
Z(t f 1) (uey U = u<(txt').

3 Connected chronological products

In exampl6, we saw that some of the Feyman diagrams scertgiected. According to a basic result of
QFT (the Gell-Mann and Low theorer‘ﬂSl]), these diagramstrbasliminated. In this section, we show that
this elimination can be carried out by a purely algebraichoét using the fact that(C) can be equipped with a
second coproduct.

3.1 A second coproduct or§5(C)

For the calculation of connected diagrams, it is convenierdefine a second coprodutton the symmetric
algebraS(C) byda =1®a+a® 1forainC, extended t&5(C) by algebra morphism. Besides, the coupits
defined bye;s(1) = 1, e5(a) = 0 for a in C and extended by algebra morphism. We denot8{¢) the resulting
bialgebra. This is the standard symmetric algebr& @onsidered as a vector space. The Sweedler notation for
the action ofy on an element of S(C) is du = > ugy @ Ugs.

We prove now the following crucial

Proposition 3.1 S;5(C) is a right S(C)-comodule coalgebra for the right coactigh= A.

Proof. Themag : S5(C) — Ss(C) ® S(C) defined bys = A is a right coaction o8(C) onS;(C) because
we obviously have (see ref|[7] p.22 or r§f][32] p.28)® 1d)3 = (Id ® A)B and(Id ® )3 = Id. Thus,S5(C)
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is a rightS(C)-comodule coalgebra if we can prove the two properties (sb}p.23 or ref.] p.352)
(65 & Id)ﬂ = les,
(f®I1d)p = (deldep)(ldereI1d)(8® 3)s,

wherey is the algebra product &(C) andr is the flip. In Sweedler’s notation this becomes

Zfé(Uu))U(z) = es(u)l, (3.1)
Zuum} R Uyg2y O U@y = Zu{l}m @ Ugay 1) © Ugry 2) U2y 2 (3.2)

We first show equation] (3.1). i € S"(C), thenes(u) = 0 by definition ofes. Moreover,fu = Au =
> uny ® ugy, Where allu;, andu,, belong toS™(C) by definition of the coproduch. Thus,es(u,,) = 0 and
Soes(up )ue = 0 = es(u)l. The remaining case is € S°(C), so thatu = A1 for some complex numbex.
Then" es(uq) )ue) = Aes(1)1 = e5(u)1 and equation[(3]1) is proved.

To show equation@.Z) we use a recursive proof. It is ob\otrsie for u = 1, assume that it is true
for elements of degree up te. Takew an element of degree anda € C. Fromd(au) = (da)(du) =
> augy ® Uy + uny ® aug,y We can calculate

(6@ Id)A(au) = Z S(amun)) ® ap)ue
= Z(au)“mm ® Uy 23 + Uy 13 @ AUy g23) @ Aoy U

= Z(au)“{l}u) ® Upay) + Uy ® Aoy Uizra)) © Qo) Uy ol 2
Id®Tde ) Ide T o 1d)(A ® A)s(au),

where we go from the first line to the second with the expres&io j(a.,u ), from second line to the third
with the recursion hypothesis and from the third to the flowith the expression faf(au). O

For the coalgebra of the scalar field, one might be tempteeptace allp®(z;) by 1, the unit ofS(C).
However, if we do this the coproduct of an elemeantvill contain the terma, @ 1 and1 ® w that spoils the

validity of equations|(3]1) and (3.2).

3.2 The connected chronological product
We denote the reduced coproddiat= du — 1 ® u — u ® 1 with Sweedler’s notatiofu = > u;; ® U(y.
Definition 3.2 Foru € S(C) with e5(u) = 0, we define the connected chronological prodiigt:) as

T(ugy). - T(um).

Note that the connected chronological product is relatetedirst Eulerian idempotenft [33] far € ker &5

n

Ugay - -+ Uinys

|
gl
i

in the sense that the operatBris applied on each termy;,. Recall that the first Eulerian idempotent projects
onto the primitive elements of a connected cocommutatiagbbra. Reciprocally, we can exprdse terms of
T. by

Lemma 3.3 For u € keres

|
Zn_ (uiy) - Te(ugmy).

n=1
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14 Ch. Brouder: QFT meets Hopf algebra

Proof. From the definition df,., we have

= 1 (1) g (S
—Te(uy) - Tolwmy) = Y o > ﬁT(uu}) T (Ui ety )
n=1 " n=1 Y id,ein e
& k (_1)k+n 1
= ZT(“{;})---T(“{E})ZT Z i i
k=1 n=1 ’ idtip=k LT
The sum oven andiy, . . ., i, is the coefficient of:* in the series expansion gP(1+%) Fromeloe(1+#) — 141
we deduce that the sumdg ;. Therefore
=1
ﬁTc(Uu}) o Te(umy) = T(upy) =T(u).
n=1
O
For example,
T(a) = Tc(a),
T(ab) = T.(ab) + Te(a)Te(b),
T(abc) = T.(abc)+ Te(ab)Te(c) + Te(a)Te(be) + Te(ac)Te(b) + Te(a)Te(b)T.(c),

wherea, b andc are elements af. The relations betwe€eh and7,. were given in one form of another by Haag
[B4l, Epstein and Glase[ [B5], Brunetti and Fredenhadejh Bétsch and Fredenhagen[[37] and Mestre and
Oeckl [38].

The chronological produdf(w) is a coregular actionl’(v) = > t(u, )u,), Where the coproduct iA. The
connected chronological produtt(u) is defined in terms of (u) through the coproduét Therefore, itis rather
surprising thafl. is also a coregular action: there is an elemgraf S(C)* such thatl,(u) = > tc(uw))ue,-

As we shall see, this is a consequence of the factSk@t) is a comodule coalgebra ovs(C).

Proposition 3.4 The connected chronological product is a coregular actidniu) = > t.(uq,)ue, for
u € kere, with

n

) = =3 T ). )

Proof. Fromiu = du + 1 ® u + u ® 1, itis straightforward to show that

Ideldeop)(ldereld)(f® )i = (d@Id)s,
implies
(deldep)(ldereld)(BeB)d = ((®Id)s.
In Sweedler’s notation,
Zu{l}(l) Q@ Upay1) O Uy U2y = Z Uy @ U2y @ Ugz)- (3.3)

Take now two coregular action(u) = 3" a(u) ), andB(u) = 3 b(uy, Jue,. We have, using equatiop (B.3)
for u € kere,

ZA(U{;})B(U@}) = Za(“u}<1>)b(“{z}<1>)Uu}<2>“{z}<2>
= Z a(ua) (19)b(Ua) (21U = ZC(“U))U(%

with c(u) = 3 a(uy)b(ugy). Therefore)” A(u,)B(ug,) is a coregular action. Using this argument re-

cursively, we obtain that, ifl; (u) = > a1 (ua)) U, - - - Ar(u) = > ax (v )ue arek coregular actions, then
ST A1(ugy) .. Ak(ugy ) is a coregular actiod  c(u ) u ey, With e(u) = > a1 (ugy) - - - ax(uk, ). This proves
that all terms off. are coregular actions, so that their sum is also a coregctiana O
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3.3 The linked-cluster theorem

The name of the connected chronological product comes fnanfeict that, for the coalgebra of the scalar field,
t.(u) is made of exactly the connected diagrams&(af. This was proved, for example by Mestre and OelcK| [38].
We do not offer a complete proof of this but, for a S-mat$ix= 7'( exp(Aa)), we can calculate an expression
relatingt(u) andt.(u). First, we have fok > 0 andn > 0,

| . .
ékila" = Z #a“ R alk, (3_4)

, ‘ 11! 1!
it tig=n L k

where alli; are strictly positive integers. Therefore,

t(a") = Z% Z _'nil_'tc(a“)...tc(ai’“).
‘ !

1 ‘ 11 ..
=1 11t ig=n

If we write E = exp(Aa), this gives us

HE) = 1+ZA—TZ%4 Z %tc(a“)...tc(aik)

The last line was obtained because alt- 0. The fact that.(E — 1) contains only connected Feynman diagrams
follows from the fact that the logarithm of E) is the sum of all connected vacuum diagra@; [14].
The same proof holds for tHE-products, so that

S = T(E)=-exp(T.(E—-1)).

If we define a connectefl-matrix by S. = T.(F — 1), we obtain the linked-cluster theore@[&‘b]: eSe.

3.4 A noncommutative analogue

If the tensor bialgebrd (C) is used instead of the symmetric bialgelt&), the construction is similar. We
start from the bialgebrd (C) and we define the coalgeba(C) to be the vector spacE(C) endowed with the
deconcatenation coprodudtt =1® 1,da =a®1+1®afora € C and

n—1
ou = u®1+1®u+Zal...ak®ak+1...an,

k=1
foru =ay...a, € 7"(C) andn > 1. The counitss of 75(C) is defined byss(1) = 1 andes(u) = 0 if
u € T™(C)withn > 0. If 75(C) is equipped with the concatenation product, tgfT) is not a bialgebra because
the coproduct is not an algebra morphism. Loday and Rdﬂ\cd{d\]ved that the deconcatenation coproduct and
the concatenation product satisfy the compatibility d(lev) = (v ® 1)dv + §(u)(1 ® v) — u ® v, which makes
75(C) a unital infinitesimal bialgebra. Note that.if= a, the compatibility rule becomes

d(av) = (a®@1)dv+1®av, (3.5)

fora € C andu € 75(C).
We have the following

Proposition 3.5 75(C) is a right 7 (C)-comodule coalgebra for the right coactigh= A.
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Proof. The proof of conditior@.l) on the counit is exactig same as for the symmetric case. We prove
@) recursively. It is obviously true far = 1, assume that this is true for elements of degree up ftakeu an
element of degree anda € C. We rewrite equatior] (3.5) @§au) = 3" au; @ ugsy + 1 ® au. Thus,

(A®A)dau = Z A)Ugrya) & AUy @) & Uy @ Uy + Z 1®1®anua ® o)
(ld@reld)(A® A)dau = Z A1) Uiy ) & Ugaya) & Ay Uqay ) & Ugzy2)
+ Z L®anua) @1 @ ae@ e (3.6)

Thus,

(0 ®Id)A(au) = Z dlamuw) ® ap e
= Z AUy (13 O Uy (23 & Ay Uy + Z I®anyua) @ ap e

= Z AUy ) & Ugaya) & Q) Uqay ) Uq2y ) T Z I®anyua) @ ap e
Id@Tde ) Ide T o 1d)(A ® A)(au),

where we go from the first line to the second using equalid),(8om the second to the third with the recursion
hypothesis and from the third to the fourth using equatjo)(3rhis completes the proof. O

Inspired by the first Eulerian idempotent (fore ker ¢4)

o0
e = *Z(*l)nu{;} o Ugny,
n=1

defined by Loday and Roncﬂ [4] for connected unital infinitesi bialgebras, we define the connected chrono-
logical productl, by

To(w) = =Y (~1)"T(ugy)---T(um),

n=1
or, reciprocally,
T(u) = Z Te(uqyy)- - Te(ugmy),
n=1

still for u € keres. Again,T. is a coregular action if” is a coregular action.

4 Renormalization

Renormalization is a fundamental aspect of quantum fieldrthelt was discovered because many Feynman
diagrams containing loops are divergent when evaluatedystforwardly. After several attempts, notably by
Dyson ], the problem was essentially solved by Bogoliu]. The renormalization theory found in most
textbooks ] is a development of the Bogoliubov approaalted the BPHZ renormalization. However, it
appeared recently that the original Bogoliubov approachdegisive advantage over the BPHZ renormalization.
In particular, it can be used for the renormalization of quanfield theory in curved spacetinE[ 43].

We first present Bogoliubov’s solution in Hopf algebraiater then we consider in more detail a simplified
model.
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4.1 The Bogoliubov formula

Bogoliubov (], section 26.2) and Epstein-GIa@ [35)whkd that the relation between the bare (i.e. divergent)
chronological product’ and the renormalized chronological prodifittis

1
T'(u) = Z ET(A(U{;}) o Auwy)), (4.1)
n=1
for u € kere and7”(1) = T(1) = 1. In equation[(4]1)A is a linear operatoker 5 — C called a generalized
vertex ]. Epstein and Glaser proved that the standardBfeHormalization is a consequence of this formula

[@]. Note that the renormalized chronological prodtitts not in general a coregular action.
To see the effect of the operathmwe calculatel” (E) for E = e, We first use equatio@A) to write

T'(a") = Z% Z, #T(A@“)...A(aik)),

T'E) = 1+ %T'(a") =1+ Z% > ' ! Z_k'T(A((Aa)“) L A((Na)))
n=1 ! n=1k=1 i1+ Fig=n ’
- ; W2 .1.ik!T(A((M)“) A((Aa)™))
= 1+ %T(A(e” —1)... A — 1)) = T(exp(A(e*® — 1))
k=1
If we definead’ € C by
ad = %A(em —1)=Aa)+ ) X; A(a™), (4.2)

the previous equality can be rewrittgfi(e*) = T'(e*’) In other words, the change of chronological product
from T to T’ amounts to a change of Lagrangian frano «’. This result was obtained by Hollands and Wald
[@] who showed that it holds also in curved spacetime.

In flat spacetime, the chronological product satisfi€¢s) = 7’(a) = a for a € C. Thereforeq = T'(a) =
T(A(a)) = A(a) because\(a) € C. This impliesA(a) = a and the renormalized Lagrangian starts with the
unrenormalized one. The terms with> 1 in equation [4]2) are called the renormalizatimunterterms In
curved spacetime the situation is more complicated andaHd# and Wald|E4] showed that we have in general
T'(a) = > t'(aw)T (aw)), Wheret' is a linear map fron€ to C. In that case\(a) = > t'(aq))a)-

4.2 The renormalization group: preparation

In this section, we define a product on linear maps S(V)™ — V for any vector spac& on the complex
numbers, wheré (V) = C1& S(V)* is the symmetric Hopf algebra dn, with coproduct and counit;. The
Sweedler notatin for the coproducand the reduced coproducfiu = du—u®1—1Qu)aredu = Y Uy Qs
anddu = 3 ugy ® -

We first define linear maps(™ from S(V') to S*(V') by

Definition 4.1 Let u € S(V), we defineA©® : S(V) — S°(V) by A (u) = es(u)l. If u = 1, we
defineA(™ (1) = 0 for any integem > 0, if u € S(V)*, we define recursivelA™) : S(V)* — S™(V) by
A (w) = Afu) andA™ (u) = STAD (uy ) )AT D (upy) = 3 Aluny ) APV (uy,,) for any integem > 1.
Moreover, we define the linear map : S(V) — S(V) by

AMu) = Z%AW(U).
n=0
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18 Ch. Brouder: QFT meets Hopf algebra

Note that the exponential is well defined becauseufer S*(V'), A" (u) = 0 for n > k. This is true for
k = 0 by definition. Fork > 0, A (u) can be rewritten

A (u Z Augyy) - M)

The right hand side is zero far > k becausé” ‘v = 0 for n > k. The following special cases are illustrative:
eM(1) = 1,eM(a) = A(a), e®(ab) = A(ab) + A(a)A(b) and

eM(abe) = A(abe) + A(a)A(be) + A(b)A(ac) + A(c)A(ab) + A(a)A(b)A(c),
for a, b andc in V. Note also that® mapsS(V)* to S(V)*.

We first prove the useful lemma
Lemma 4.2 For u € S(V), we havele (u) = (e* @ e*)du.

Proof. We first give a recursive proof of the identity

n

3100 = 3 () TA® ) 940 ) @3)

k=0
Forn = 0, equation 3) is satisfied because

A () = esw)iel= ZEJ(U{l})l ®es(upy)l = ZA(O)(UU}) ® A0 (uy).

Equation ) is obviously true far = 1 and alln > 0. Thus, we assume from now on thate S(V)*. For
n = 1, equation 3) holds because

AV () = Aw)@1+10Aw) =Y A (uu)l@es(up)l + > es(uny)1 @ A0 (ug))
1
1 _
= Z (k:) ZA(k)(“{l})®A(1 ") (1 gay)-
k=0

Assume that equatiof (4.3) is true upitothen the definition oA ("+1) () and the recursion hypothesis imply

SATD () = 2(5/\(1)(“{1})) (6A (uay))

n

n —
= Z (k) ZA(l)A(k) (tgay) ® A7) ()

k=0
Z< >ZA (tgzy) @ AD (u ) )AT™P (uy,).

The cocommutativity of the coproduct and the definitioméf+) andA(™—*+1) yield

n n B .
SAC () = Y (k) > (AF D uay) @ AT () + AD () © AT () )

k=0

n+1

n+1 ) el —k
- Z< k )ZA(k)(U{1}>®A( ) (ugy),

k=0
by Pascal’s formula. The lemma follows immediately becausig equatior@.S),

o0

=3 i (1) A Al

n=0

- Zk|ZZ|ZA() D) © A (ugy) = Ze upy) @ e (ug).
k=0 """ 1=0

de (u)

O
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A second lemma will be useful to derive recursive proofs.
Lemma 4.3 Fora € V andu € S(V), we havee® (au) = 3 Alau, )e™ (v ).

Proof. We first show recursively that, farc V,u € S(V)* andn > 1, then

A (au) = nA(@)A" (@) +n > Aaus) AT (ugy). (4.4)
Whenu € S(V)*, we take the definitiolh ™) (u) = 3~ A(ug,, ) A (u,,) and we start from the identity
d(au) = a®u+u®a+2aum @ Ugay +Zuu} @ au sy,

which is obtained by expandidau) = (a®1+1®a)(u®1+1Qu+du) in §(au) = §(au) —au®1—1Qau,
to derive

ZA((GU){;})A((GU)@}) =2A(a )+2 ZA at gy ) A (),

where we used the commutativity of the algelSfd@”) and the cocommutativity of the coproduct. Therefore,
equation 4) is satisfied far = 2. Assume that it is true up to, then, using again the expression &¢au),
we find

A("“)(au) = ZA au) ) ((au)m)
= AMa)A™ () + A(w)A™ (@) + ) Alauy)A™ (ugay) + D Aluy)A™ (aug,).
Forn > 1, A" (a) = 0 and the recursion hypothesis gives us
A (qu) = A(a)A(")(u)+ZA(au{l})A(")(u{2})+nZA(u{l})A(a)A("_l)(u{z})
+nZA(u{l})A(au{g})A("_l)(u{g}).

Using the definition of\ (™) (u) for u € S(V)*, the commutativity of the product and the cocommutativitihe
coproduct, we find

AT (au) = A@AD (W) + 3 Aaug) A () + 13 A@AD @)
JF”ZA(‘W{Q)A(R) (ugz)),

and equation|(4]4) is proved far+ 1.
To prove the lemma, we first consider the case 1, which holds because the left hand side/i$a) = A(a)
and the right hand side is(a1)e®(1) = A(a)1 = A(a). Assume now that € S(V)*. Then

eMau) = Alau) Jrz A”) (au).

n= 2

Using equation4), we obtain

- 1
eMau) = Afau) +Aa Z A(" D(u) + 3 Aaug, Z( T AP (g )
n*2 =2

= Aau) + Ala)e™(u) + ZA augy e (ug).
The lemma follows from the fact thét: = « ® 1 + 1 ® u + du ande’(1) = 1. O

We are now ready to define a productry

Definition 4.4 If A’ andA are linear maps fron® (V)" to V, the product ofA” and A to be the linear map
A’ x A defined by

(N xA)(u) = A’(eA(u))
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20 Ch. Brouder: QFT meets Hopf algebra

This definition enables us to write the last lemma of thisisactLet us denoted by (S(V)*, V) the set of
linear maps fron&(V)* to V.

Lemma 4.5 For A’ andA in £(S(V)*, V) andu € S(V), we havee?’ (e (u)) = e ** (u).

Proof. The lemmais true far = 1 andu = a € V because® (e’ (1)) = e’ (1) = 1 = 2**(1) and
e (eM(a)) = eV (A(a)) = A'(A(a)) = (A" * A)(a) = e **(a). Assume that the lemmais true for all elements
of S¥(V) uptok = n. Takea € V, u € S*(V) and use lemmp 4.3 to calculate

eA/( Ze (augy)e (U{z}))

If we denoteA(aum) by o’ ande” (u,.,) by u/, we can use lemnfa 4.3 again

/ ' ’ o’
= D N(aup)et (ule).

Lemma. enables us to calculd®u/,, ® ul,, = 6u’ = et (uy) = 3 et (ugy) ® et (uyy,). Therefore,

N (eMau)) = DN (Alaup,)e (uey))et (€ (ug,))
= ZA (augpy)e (U{z}))eAl*A(U{s})v

where we used the recursion hypothesis to evakiite” (u s, )). Lemma[4 B and the definition of * A yield

e (e™( = > N(Maup))e" M uw) = Y (A % M) aug et (ug) = 4 (aw),
where we used Iem@.S again to conclude. Thus, the lemmeigarau € S+ (V). O

This list of lemma leads us to the main result of this section,

Proposition 4.6 £(S(V)*, V) endowed with the produetis a unital associative algebra. The unit of this
algebra is the map\ such thatAy(a) = a fora € V andAy(u) = 0 for u € §™(V) withn > 1. The invertible
elements of this algebra are exactly thesuch that the restriction of to V is invertible as a linear map frorir
toV.

Proof. Associativity follows essentially from lemnha]4.5chese, fordy, A> andAs in £(S(V)*,V) we
have

((A1 x No) Ag)(u) = (A% A2>(6A3 (u)) =M\ (eA2 (eA3 (u))) = A (eA2*A3 (u))

Ay is the unit of the algebra becaus¥ (u) = u for anyu € S(V). This is true foru = 1 by definition of
eM and foru = a € V by definition of Ag. Assume that this is true far of degree up to. Takeu of degree
n and use lemmp 4.3 (au) = 3" Ag(au, )ed (ug,). Ao(auy,) = 0 if the degree ofu,,, is larger than 0.
Thuse® (au) = 3 Ag(a)e (u) = au by the recursion hypothesis. ThUs = Ag)(u) = A(e(u)) = A(u).
Similarly, (Ao * A)(u) = Ag(e®(u)). Ao is the identity on the elements of degree 1 and 0 on the elenoént
degree different from 1. The element of degree &) is A(u), thus(Ag * A)(u) = A(u).

To prove the invertibility property, consider an inveré@#lement\ with inverseA=!. ThenA=! x A = Aq
and, on any elementof V, (A= A)(a) = Ag(a) = a. Thus,A~*(A(a)) = aandA is invertible as a map from
V to V. Reciprocally, take & invertible as a map froy to V" with inverseA’. We shall construct recursively the
inverseA ! of A in the algebraC(S(V)*, V). Fora € V we haveA~!(a) = A’(a). To see how the recurrence
works, we calculate the nextterm. koandb in V we are looking for a\’ such thaf A=+ A)(ab) = Ag(ab) = 0.
Thus,0 = A= (e (ab)) = A=Y (A(ab) + A(a)A(b)). This defines\ ! (A(a)A(b)) = —A’(A(ab)), because —*
is A’ on V. The mapA being bijective on//, this defines\—! on §%(V). Assume now thah ~! is defined on
Sk(V)forallk < n,takeay,...,a,inV and putu = ay, ..., a, inS*(V). We wantto solvé A~ xA)(u) = 0,
with (A1 % A)(u) = A=*(e”(u)). The term of highest degree it (u) is A(a1) ... A(a,). The inverseA—!
is defined on all the other terms, thus the equatibn® « A)(u) = 0 definesA=* on A(aq) ... A(ay). In other
words,A~! is now uniquely defined 08" (V). Therefore A~! is uniquely defined o5 (V). O
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4.3 Renormalization group: QFT

If Ais a linear map fron&(C)* to C, we saw in equatior@.Z) that the renormalization encodetl ¢an be
considered as a change of Lagrangian feota o’ with

ad = Aa)+ Z )\n; A(a™).

n

Thus, itis possible to considet as the result of the action dfona: o’ = Ara. If we renormalize the Lagrangian
a’ with renormalization encoded in a map, we obtain a new Lagrangiaif = A’'>a’ = A’ > (A a). The first
terms ofa” are
o = N(A@)+ 5N (@) + A (A@)A@)
)\2
-WﬂNMwm+&WM®MfD+NMWMWMWW+OO%

The main result of this section is
Proposition 4.7 If A and A’ are linear maps fron§(C) " toC anda € C, thenA’ > (A>a) = (A" x A) > a.

Proof. Equation[(3]4) fos*~*a" gives us

1 n! . )

A/ n _ - i1 [

M) = D 2 gt A,
k=1 i1+ Fig=n

where all thei; are strictly positive integers. Thus, fér = e*?,

E—1 N el 1 A(a™ A(a’™
M) = T D <|X”<R

. 11 Uk
n=1 k=1 " i tip=n ! k

k! _ 71! 1!

On the other hand,

k=1

with @’ = 72 A=t A(a?) /il. Therefore,

_ = 1 i1 A@)  Aa™)
A$d._A(Z%%§%Aﬁ+klh!“.%!)

Thus,

Nvd = NGﬂgfh)zm%AN——sz%Mbm

where we used lemnja #.5 and the fact that, forang > a = (1/A\)A(E — 1). O

In standard QFT, the linear mapissatisfyA(a) = a. Thus, they are invertible for the producand they form
a group, which is one of the many faces of taeormalization group
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4.4 Connected renormalization

We argued that, in QFT, the connected chronological prodysttysically more useful than the standard chrono-
logical product. Thus, it is important to investigate homoected chronological products are renormalized.

Proposition 4.8 The relation between the connected renormalized chromAbgroduct and the con-
nected chronological produdt. is, foru € kereg,

1

Z —Te(Augy) A(U{m))v

n!

Proof. We first note that we can use definitipn] 4.1 to rewritaagign [4.]1) under the formi”(u) =
T(eM(u)). Lemme 33 express@qe (u)) in terms of connected chronological products. To evalddsesixpres-
sion we need” ‘e (u). The identitydv = v® 1+ 1®@v+Jv transforms lemmp 4.2 in@ (u) = (e* @e?)du.
By iterating and using the coassociativityoive find

3" Ze Upy) @ - @ e (Ugny), (4.5)

and we can rewrite the renormalized chronological produtgiims of the bare connected chronological products
as

o0

T = 3 TN ) TeleM )

n=1

To conclude, we use definitign 3.2 to exprdégu) in terms of7”. Then, we expand ead (u,;,) using the last
equation

/ = (_1 nH / /
To(u) = Z TT (wiy) - T (ugmy)

n=1
o~ () 1 A A

= 21 E— Z mTc(e (ui2y) - Te(e™ (tgiy4tiny))
n= L yeeeyln
S N k n+1 1

= ZTC(G (ugy)) - - Te(e™(uggy) Z Z A
1 =1 irtetin =k 1eeeolpe

The sum overn andis, . . ., i, is the coefficient of:* in the series expansion tfg(e”) = log(1 + (e® — 1)).

Fromlog(e®) = = we deduce that the sumdg ;. Thereforel”(u) = T.(e* (u)) and the lemma is proved. [

In other words, the connected chronological product is mmadized with the same formula and the same
generalized vertices as the standard chronological product. Such an expressidhd renormalization of the
connected chronological product was used, for instancéldiiands ].

4.5 A simplified model

In QFT, the Iinear map4 have a very particular form. In the example of th&(x) theory, the Lagrangian is
a=g [z *(x)dz and

A" = gt / P (x)dz + g"C5” [ PP(a)de
R4 R4

+g”C§n) /R4 o(x) (8 -0 — m2)<p(ac)dx

WhereCf"), Cé") andCé") are real numbers related to the charge, wavefunction and rensrmalization[[41].
Such a Lagrangian cannot be manipulated directly with opr@ach because the integral ot involves an
infinite number of points. However, as explained in sec@ # can be given a meaning in the perturbative
approach. A more serious problem is the presence of dersaiti |, go(:c)(a -0 — m2)<p(ac)dx. To deal with
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such terms, we must include derivatives of fields into oueltgC. This poses several problems that are debated
by Stora, Boas, Diitsch and Fredenhadeh [46] 47} 48, 49ecoimg the status of the Action Ward Identity or
whether the fields should be taken on-shell or off-shell.oBethe situation is fully clarified, we can propose a
model without derivatives (i.e. where the divergences alg mgarithmic, in the QFT parlancﬂ14]). In that
case, it was shown in a recent paper with Bill Sch [5G4t the coalgebré has to be replaced by a bialgebra
B and that renormalization becomes a functor on bialgebnathel case of the scalar field, the product is defined
by ¢"(z;) - ™ (z;) = 6;;0™" 7™ (z;). It can be checked that, with this product, the coalgebraeftalar field
becomes indeed a commutative bialgeBra

This simplified model can be extended to any commutative aedromutative bialgebrg by defining the
mapsA asA(u) = > Mug,) [] v, whered is a linear map fron&(B) " to C and[] u is defined as follows: if
u=a€ B, then[[u=a,ifu=a;...a, € S*(B),then[[u=a; - ... a, where the productis in B. With
this definition, it is clear that is a linear map fronker s to 3. The fact that suctA form a subgroup of the
renormalization group defined in the previous paragragbva from the existence of a bialgebraic structure on
S(S(B)™), studied in detail in[[§0]. If the product of elementsy,, . . ., u, of S(B)* in §*(S(B)*) is denoted
bywuy V- -V u,, the renormalization coproduty defined in ] can be written, far € S(B) ™,

o0

Aru = Z %Uu} Vi Vg @ (Hu{z}) . (Hum})-

n=1

This construction is functorial and has a noncommutatiaague [5D].

4.6 The renormalization group: the noncommutative case

In this section, we want to describe the renormalizatiorugrim the noncommutative case. We first define a
product on linear mapa : 7(V)*™ — V for any vector spac& on the complex numbers, whefgV') =
Cl® T (V)™ is the tensor algebra dri, with deconcatenation coprodutand counits. We first define linear
mapsA (™ from T (V) to 7™ (V) by

Definition 4.9 Letu € 7(V), we defineA® : T(V) — T°%V) by AO(u) = e5(u)l. If u = 1, we
defineA(™ (1) = 0 for any integem > 0, if u € 7(V)*, we define recursivelp(™ : 7(V)+ — 77(V) by
A (u) = Afu) andA™ (u) = STAD (uy ) )AT D (upy) = 30 Aluny ) AV (uy,,) for any integem > 1.
Moreover, we define the linearmdp : 7(V) — 7 (V) by

In(u) = Y AM(u).
n=0
Note that/, is well defined because, farc 7%(V), A" (u) = 0if n > k. The following special cases are
illustrative: Iy (1) = 1, Ix(a) = A(a), Ix(ab) = A(ab) + A(a)A(b) and
In(abe) = A(abe) + Ala)A(be) + A(ab)A(e) + A(a)A(b)A(e)

for a, bandcin V. Note also thafy maps7 (V)* to 7(V)*. As for the commutative case, we have the useful
lemma

Lemma 4.10 For u € 7 (V), we haveiI, (u) = (Ix @ Ix)du.

Proof. We first give a recursive proof of the identity

n

A (w) = Z Z AW () @ AT (ugy). (4.6)

k=0

Forn = 0, equation [(4]6) is satisfied because

A () = e5u)i®l= 256(“{1})1 ® e5(u2)1 = AV (ugy) © A0 (ugs).
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Equation [4.B) is obviously true far = 1 and alln > 0. Thus, we take from now om € 7 (V')*. Assume that
equation[(4.6) is true up te, then the definition oA (1) (u), the relation(au) = (a ® 1)du + 1 ® au, and the
recursion hypothesis imply

SAH () = Z Z AN (g ) AP (uay) @ AT (ugay) + Z 1@ AW (ugy ) A™ (ugay)
= Z ZA(H M (upy) @ AP (u,) + 10 AT (1)
n+1
- ZZA () @ AP ().
The lemma follows immediately. O

A second lemma is very close to its commutative analogue.
Lemma4.11 Fora € V andu € S(V) we havely (au) = Y Alawy ) Ia (uisy).

Proof. We first show that, far € V, u € S(V)* andn > 1, then
AW (au) = A@)ATY (u) + Z Aauy ) A (ugy). (4.7)
Whenu € S(V)7, we take the definitiom\ ") (u) = > A(ug, )A™ Y (ug,,). We start now from the identity
d(au) = a@u+ Y augy Qu,y, Which is obtained by expandingau) = (a®1)(1@u+u®1+du)+1Q au,
ind(au) = d(au) — au® 1 — 1 ® au, to derive

A(")(au) = ZA((a“)u})/\(n_l)((au){z}) A(n) +ZA (augy)A - (U{z})-

To prove the lemma, we first see that the case 1 obviously holds. Assume now thate S(V)*. Then
In(au) = A(au) + i A (au)
n=2
Afau) + i A(@) AT (w) + i > AMau)A" D (ug)
n=2 n=2
i ZA(‘WU})A(”*D(UM) = Z Alaugy ) I (ugy),
n=2

which follows froméu = u ® 1 + 1 ® u + du andA©® (u) = 0. O

We are now ready to define a productry

Definition 4.12 If A’ andA are linear maps frord (V)™ to V, the product ofA’ andA to be the linear map
A’ % A defined by

(N xA)(u) = A’(IA(u))

This definition enables us to write the last lemma of thisisectLet us denoted by (7 (V)*, V) the set of
linear maps fron? (V)™ to V.

Lemma 4.13 For A’ andA in £(T (V)*,V) andu € T(V), we havelys (Ix(u)) = Inren(u).
Proof. The proofis the same as for the commutative case. O

We can now state the main result of this section,
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Proposition 4.14 £(7 (V)*, V) endowed with the produstis a unital associative algebra. The unit of this
algebra is the map\( such thatAg(a) = a fora € VandAg(u) = 0 foru € 77(V) withn > 1. The invertible
elements of this algebra are exactly thesuch that the restriction of to V' is invertible as a linear map froriy
to V. In particular, the subset of (7 (V)*, V') characterized byA(a) = a for a € V' is a group.

Proof. The proofis the same as for the commutative case. O

5 Conclusion

This paper described the first steps of a complete desanipfi®QFT in Hopf algebraic terms. Although these
steps look encouraging, many open problems still have tohed. The main one is analytical: the use of a
finite number of points is not really satisfactory and we sti@llow for coalgebras containing elements such as
J ¢™(x)g(x)dx for some test functions.

Other open problems are easier. We list now three of thenT:h@renormalization approach presented here
is equivalent to the Connes-Kreimer approach because bottaivalent to the standard BPHZ renormalization
[E]. However, it would be quite interesting to describestbguivalence explicitly. (i) We proved that a QFT is
renormalized once its connected chronological produati®malized. In fact, a deeper result is true: a QFT
is renormalized once its one-particle irreducible diaggaare renormalizecmm]. To cast this result into our
framework, we would need to write the connected chronoklgicoduct’,. in terms of a one-particle irreducible
chronological product. Although such a connection was anned by Epstein and Glas[35], it was described
as complicated and was apparently never published. Sigilawould be worthwhile to determine a Hopf
algebraic expression of Green functions in terms.gfarticle irreducible functions, which is usually done by
Legendre transformation techniqupd [51]. (iii) It wouldibeoortant to develop the analogue of the constructions
presented in this paper to the case of gauge theories. Almatglihe, van Suijlekom obtained recently the
remarkable result that the Ward and Slavnov-Taylor idestigenerate a Hopf ideal of the Hopf algebra of
renormalizationEZ]. It would be nice to see how this resalt be adapted to our framework.

The most original aspect of this work is the determination@ficommutative analogues of some QFT con-
cepts (i.e. the replacement&{C) by 7(C), or of S(V') by 7(V')). Such a noncommutative analogue was first
determined for quantum electrodynam@ [53] and it leadhéodefinition of a noncommutative Faa di Bruno al-
gebra ], generalized to many variables by Ansheleviczﬂ.e[@]. These algebras provide an effective way to
manipulate series in noncommutative variables. The nonuatative constructions defined in the present paper
can also be useful to manipulate noncommutative objects.

The present approach enables us to recover the Feynmaamiié@mulation of QFT, but its most interesting
aspect is that it is defined at the operator level. For examplaur notation, the relation between connected and
standard chronological product is given not only at thelleé¢he coregular actionsandt., but at the level of
the maps fromS(C) to S(C) (i.e. the relation betweef and7.). As a consequence, we can calculate Green
functions such as

Go(z1,...,2n) = p(T((p(xl) o) exp()\a))),

wherep is a map fromS(C) to C. Such more general Green functions are the basic objectseofuantum
field theory with initial correlations (or QFT of degeneratestems) which is well suited to the calculation of
highly-correlated system§ [56].

Acknowledgements | am very indebted to Raymond Stora for sending me some ofasisiriating manuscripts and for
pointing out Ruelle’s work[[1]. I am grateful to Jean-Yvesifign for pointing out Burge's articld [p2].
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