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Abstract. In this paper, we study a Fokker-Planck equation of the form ut =
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1 Introduction

In this paper, we are interested in the long time behaviour of the following
generalized Fokker-Planck equation:

∂tu = I[u] + div(u∇V ) x ∈ R
d, t > 0, (1)

submitted to the initial condition:

u(0, x) = u0(x) x ∈ R
d (2)

where u0 is nonnegative and in L1(Rd) and V is a given proper potential for
which there exists a nonnegative steady state (see below). We will assume
without loss of generality that

∫

u0(x)dx = 1. We refer to (1) as the Lévy-
Fokker-Planck equation since the operator I is the infinitesimal generator of a
Lévy process.

As pointed out in [4], Equation (1) is studied at least for two important rea-
sons. First, it is deeply connected with stochastic differential equations driven

1



by Gaussian and Lévy processes, see e.g. [7]. Secondly, in the case of a quadratic
potential, i.e. V (x) = 1

2 |x|
2, and the fractional Laplacian (even for general α-

stable Lévy process – see Section 2 for a definition), it permits to describe the
long time behaviour of the solution of:

∂tU = I[U ] (3)

with an initial condition U0 nonnegative in L1(Rd). Solution of (3) is a semi-
group and it is often noted Pt(U0)(x), this notation is used on section 4. Indeed,
the reader can check that the function

u(t, x) = Rd(t)U (τ(t), xR(t)) (4)

satisfies (1) as soon as one chooses R(t) = et and τ(t) = (eαt − 1)/α and

U0(x) = u0(x).

On the one hand, U vanishes as t→ +∞ and on the other hand, u is expected
to tend towards the steady state of (1), that is to say towards the nonnegative
stationary solution u∞ of (1) with the quadratic potential V (x) = 1

2 |x|
2:

I[u∞] + div(u∞x) = 0 (5)

such that
∫

u∞ =
∫

u0 = 1. We see that dealing with the quadratic potential is
of particular interest and we will be able to say more in this special case.

In full generality, we expect that the solution u of (1) converges towards the
unique nonnegative solution of:

I[u∞] + div(u∞∇V ) = 0

such that
∫

u∞ =
∫

u0 = 1. Conditions on V must ensure that such a steady
state exists and is nonnegative.

In [4], the authors exhibit a class of functionals that decrease along trajec-
tories of (1): consider a smooth convex function Φ : R

+ 7→ R and define for any
nonnegative function f :

EntΦu∞

(f) :=

∫

Φ (f)u∞dx− Φ

(
∫

fu∞dx

)

.

We follow [5] by referring to this functional as a Φ-entropy. Since the initial
condition u0 is nonnegative, the maximum principle ensures that

EΦ(u0)(t) = EntΦu∞

(

u(t)

u∞

)

is well defined for t > 0. Biler and Karch prove that EΦ(u0) decreases in time
for general confinement potentials V ; they also prove that for Φ(r) = r2/2 and
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for the quadratic potential V (x) = 1
2 |x|

2, there exists C = C(u0, I) and ε such
that:

E|.|2/2(u0)(t) ≤ Ce−εt. (6)

To prove the latter result, they assume that the symbol ψ satisfies for some
α ∈ (0, 2]:

{

0 < lim infξ→0
ψ(ξ)
|ξ|α ≤ lim supξ→0

ψ(ξ)
|ξ|α < +∞,

0 < inf ψ(ξ)
|ξ|2 .

(7)

In particular, the second assumption says more or less that there is a nontrivial
Gaussian part (σ 6= 0). These results are the starting point of this paper. We
tried to understand if one can generalize them and obtain an exponential decay
for any convex function Φ under a sharper form. Our two main contributions
are:

1. to exhibit the so-called Fisher information associated with the entropies
EΦ

2. and to take advantage of this result to prove an exponential decay of
the Φ-entropies for a class of convex functions Φ and for a larger class of
operators. Moreover, the constant ε only depends on I and C = EΦ(u0)(0)
in (6).

Let us describe our results more precisely. Using the notation of Chafäı
in [5], let us consider the Bregman distance associated with Φ:

∀(a, b) ∈ R
+, DΦ(a, b) = Φ(a) − Φ(b) − Φ′(b)(a− b) ≥ 0. (8)

Our first result states that:

∀t ≥ 0,
d

dt
EΦ(u0)(t) = −

∫

DΦ (v(t, x), v(t, x+ z)) ν(dz)u∞(x)dx (9)

where v(t, x) = u(t,x)
u∞(x) , as soon as (a, b) 7→ DΦ(a + b, b) and (x, y) 7→ Φ′′(x) <

σy ; y > are convex. Biler and Karch were very close to this formula (see their
proof of the entropy decreasing property). These conditions appear in [5] (see
(H1) and (H2) in this paper). Basic examples of such convex functions are
given by Φ(x) = xp− 1− p(x− 1) with p ∈ (1, 2], Φ(x) = x log x− x+ 1. When
p = 2, DΦ(a, b) = (a− b)2 and in the latter case, DΦ(a, b) = a ln a

b + (b− a). If
Φ is C2, these conditions are satisfied if Φ,Φ′′ are convex and 1/Φ′′ is concave.

A nice observation made in [4] is that, under their assumptions, the steady
state u∞ is the density of an infinitely divisible law µ. It turns out that we
can get the same result under our weaker assumptions (see Proposition 1). In
addition, such probability measures µ satisfy a logarithmic Sobolev inequal-
ity involving

∫

DΦ (v(x), v(x+ z)) νµ(dz)µ(dx) where νµ is the associated Lévy
measure (see Theorem 3). This functional inequality is proved in [8] for σ = 0
and Φ(x) = x2 or Φ(x) = x lnx, and for general Φ with σ = 0 in [5]. The
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general case, i.e. σ 6= 0, is announced in [5] but is not given explicitely, we thus
make it precise. Combining it with (9) yields exponential decay as soon as:

ν ≤ Cν∞ (10)

where ν∞ is the Lévy measure associated with u∞. This condition is fullfilled by
any α-stable Lévy process with (eventually) no Gaussian part. It is also satisfied
by multifractal operators. See the next section for definitions. Furthermore, it
should be compared with the first part of (7). Indeed, freely speaking, it says
that the symbol lies between two α-stable ones for small ξ.

The paper is organized as follows. In Section 2, we recall basic facts about
Lévy operators and associated Lévy measures. Section 3 is devoted to derivat-
ing with respect to time the Φ-entropies for general potentials V . In the last
section, we suppose that the potential is quadratic and we prove exponential
decay (Theorem 2) by combining a modified logarithmic Sobolev inequality
(Theorem 3) and the study of the steady state (Proposition 1). We also discuss
Condition (10) in Proposition 2.

Notation. 〈x ; y〉 or x · y denotes the usual scalar product in R
d. The unit ball

of R
d is denoted by B.

2 Preliminaries

Let us next recall basic definitions about Lévy operators and introduce no-
tations. See [3] for further details.

Characteristic exponents and Lévy measures. The Lévy-Khinchine for-
mula implies that there exists a symmetric semi-definite d×d matrix σ = (σi,j),
a vector b = (bi) ∈ R

d and a nonnegative mesure ν on R
d such that the Lévy

operator writes:

I[u](x) = 〈σ∇u ;∇u〉 + 〈b ;∇u〉 +

∫

Rd

(u(x+ z) − u(x) −∇u(x) · zh(z))ν(dz)

where h is a truncature function that we choose as follows: h(z) = 1
1+|z|2 . The

so-called Lévy mesure ν can be singular at the origin and satisfies:

ν({0}) = 0 and

∫

min(1, |z|2)ν(dz) < +∞ (11)

and The matrix σ characterizes the diffusion (or Gaussian) part of the operator
(it can be null if σ = 0), while b and ν characterises the drift part and the
pure jump part, respectively. The characteristic exponent of the Lévy process
is denoted by ψ:

ψ(ξ) = 〈σξ ; ξ〉 + 〈b ; ξ〉 + a(ξ)

where a is associated with the pure jump part of the underlying process:

a(ξ) =

∫

(

eiz·ξ − 1 − i(z · ξ)
)

ν(dz).
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The pseudodifferential point of view. It is convenient to introduce Ig, the
operator associated with the Gaussian part, and Ia, the operator associated
with the pure jump part. The operator Ia can be seen as a pseudodifferential
operator of symbol a:

Ia(u) = F−1(aFu)

where F stands for the Fourier transform. We choose the probabilistic conven-
tion in defining, for all function w ∈ L1(Rd):

∀ξ ∈ R
d, ŵ(ξ) = F(w)(ξ) =

∫

eix·ξw(x)dx. (12)

Multifractal and α-stable Lévy operators. Lévy operators whose char-
acteristic exponent is positively homogenous of index α ∈ (0, 2] are called α-
stable. The fractional Laplacian corresponds to a particular α-stable Lévy pro-
cess whose characteristic exponent is ψ(ξ) = |ξ|α. Note that if α = 2 the Lévy
operator has no jump part. They play a central role in this paper since they are
the operators for which we have equality in Condition (10). See the discussion
in the last section.

Lévy operators whose characteristic exponent can be written as ψ(ξ) =
∑n
i=1 ψi(ξ) where ψi is αi-homogenous with αi ∈ (0, 2], are often referred to

as multifractal Lévy operators. These operators are typically those who satisfy
Condition (10).

3 Φ-Entropy and associated Fisher information

In this section, we are interested in the (time) derivative of EΦ(t) in the case
where a steady state is given. Precisely, the following theorem is proved.

Theorem 1. Assume that the initial condition u0 is non-negative and satisfies

EntΦu∞

(

u0

u∞

)

< ∞ with u∞, a solution of (5). Then for any convex smooth

function Φ : R
+ → R and any t ≥ 0, the solution u of (1)-(2) satisfies:

d

dt
EΦ(u0)(t)=−

∫

Φ′′(v)〈σ∇v ;∇v〉u∞−

∫ ∫

DΦ(v(x), v(x+z))ν(dz) u∞(x)dx

where v(t, x) = u(t,x)
u∞(x) and ν is the Lévy measure associated to I.

Remark 1. 1. The quantity EΦ is often called the Fisher information or en-
ergy in the literature.

2. The existence of a steady state u∞ is studied in the case of a quadratic
potential in the next section.
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Corollary 1 ([4]). Assume that σ = 0, b = 0 and u a solution of (1) with
u0 a non-negative initial solution in L1(Rd). Then for any convex function
Φ : R

+ → R, the function

t 7→ EntΦu∞

(

u(t)

u∞

)

decreases with time.

If one considers the special case Φ(r) = r2/2, then DΦ(a, b) = (a−b)2. Now,
let us define the “carré du champ” operator ΓI , associated to the operator I.
For all smooth functions u and v:

ΓI [u, v] = I[uv] − uI[v] − vI[u]

= 〈σ∇u ;∇v〉 +

∫

(u(x+ z) − u(x))(v(x+ z) − v(x))ν(dz).

Hence, Theorem 1 can be reformulated as follows:

Corollary 2. If Φ(r) = r2/2, then:

E′
Φ(u0)(t) = −

∫

ΓI [v, v]u∞ ≤ 0.

Remark 2. Recall that in the case of the Laplacian, the energy depends only on
the operator ∆ and not on the potential V . We recover a similar result in the
general case.

To prove Theorem 1, since the Φ-entropy involves the function v(t, x) =
u(t,x)
u∞(x) , its derivative makes appear ∂tv and it is natural to ask ourselves which

partial differential equation v satisfies. A simple computation gives:

∂tv =
1

u∞
I[u∞v] + div(u∞v∇V )

=
1

u∞
(I[u∞v] − I[u∞]v) + ∇V · ∇v =: Lv. (13)

In the case where I[u] = ∆u (i.e. σ is the identity matrix, b = 0 and a = 0),
Equation (13) writes:

∂tv = ∆v −∇V · ∇v

and is known as the Ornstein-Uhlenbeck equation. This is the reason why we
will refer to Equation (13) as the Lévy-Ornstein-Uhlenbeck equation. We next
give a simpler formulation for the Lévy-Ornstein-Uhlenbeck operator appearing
in (13).

Lemma 1 (Lévy-Ornstein-Uhlenbeck equation). If the integro-differential oper-
ator in the right-hand side of (13) is denoted L, we have for all smooth functions
w1 and w2:

∫

w1 Lw2 u∞ =

∫

(I[w1] −∇V · ∇w1) w2 u∞.
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This can be expressed by the formula: L∗ = I −∇V · ∇ where duality is under-
stood with respect to the measure u∞dx.

Proof. The main tool is the integration by parts for the operator I, for any
smooth functions u, v one gets

∫

vI[u]dx =

∫

uI[v]dx.

Let now w1 and w2 are two smooth functions on R
d then:

∫

w1 Lw2 u∞ =

∫

w1 (I[u∞w2] − I[u∞]w2 + u∞∇V · ∇w2)

=

∫

w2 I[w1] u∞ −

∫

I[u∞]w1w2 −

∫

div(u∞w1∇V )w2

=

∫

u∞(I[w1] −∇V · ∇w1)w2.

Proof of Theorem 1. By using Lemma 1 with v = u/u∞, we get:

d

dt
EΦ(u0)(t) =

∫

Φ′(v) ∂tv u∞ =

∫

Φ′(v) Lv u∞

=

∫

(I[Φ′(v)] −∇V · ∇(Φ′(v))) v u∞.

If now one remarks that rΦ′′(r) = (rΦ′(r) − Φ(r))′, we get:

E′
Φ(u0)(t) =

∫

vI[Φ′(v)]u∞ −

∫

∇V · ∇(vΦ′(v) − Φ(v))) u∞

=

∫

vI[Φ′(v)]u∞ +

∫

div(u∞∇V )(vΦ′(v) − Φ(v))

=

∫

vI[Φ′(v)]u∞ −

∫

I[u∞](vΦ′(v) − Φ(v))

=

∫

(vI[Φ′(v)] − I[vΦ′(v)] + I[Φ(v)])u∞
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E′
Φ(u0)(t) =

∫

(vIg[Φ
′(v)] − Ig[vΦ

′(v)] + Ig[Φ(v)])u∞

+

∫

(vIa[Φ
′(v)] − Ia[vΦ

′(v)] + Ia[Φ(v)])u∞

= −

∫

Φ′′(v)〈σ∇v ;∇v〉u∞

+

∫ ∫
(

v(x)(Φ′(v(x+ z)) − Φ′(v(x))) − v(x+ z)Φ′(v(x+ z))

+v(x)Φ′(v(x)) + Φ(v(x+ z)) − Φ(v(x)))

)

ν(dz) u∞(x)dx

= −

∫

Φ′′(v)〈σ∇v ;∇v〉u∞

−

∫ ∫

(Φ(v(x)) − Φ(v(x+ z)) − Φ′(v(x+ z))(v(x) − v(x+ z)))

× ν(dz) u∞(x)dx.

Then the definition of the Bregman distance gives

E′
Φ(u0)(t) = −

∫

Φ′′(v)〈σ∇v ;∇v〉u∞−

∫ ∫

DΦ(v(x), v(x+ z))ν(dz)u∞(x)dx.

4 Quadratic potential and exponential decay to

equilibrium

By combining a functional inequality proved by Wu and Chafäı in [8, 5] and
the observation made by Biler and Karch [4] that u∞ is an infinitely divisible
measure, we are able to prove exponential decay to 0 of any Φ-entropy under
some conditions on the convex function Φ and on the characteristic exponent
ψ.

Theorem 2 (Exponential decay to equilibrium). Assume that Φ is such that
(a, b) 7→ DΦ(a + b, b) and Φ′′(x)〈σy · y〉 are convex on {a + b ≥ 0, b ≥ 0} and

R
+ ×

(

R
d
)2

respectively. Assume also that V (x) = 1
2 |x|

2 and the operator I is
the infinitesimal generator of a Lévy process with a characteristic exponent ψ
associated to a Lévy measure ν. We assume that ν has a density N with respect
to the Lebesgue measure and that N satisfies

∫

Rd\B

ln |z| N(z) dz < +∞ (14)

and
∫ +∞

1

N(sz)sd−1ds ≤ CN(z) (15)
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for some constant C > 0.
Then the Φ-entropy of the solution u of (1)-(2) goes to 0 exponentially;

precisely, for any non-negative initial condition u0 such that

EntΦu∞

(

u0

u∞

)

<∞,

one gets:

∀t ≥ 0, EntΦu∞

(

u(t)

u∞

)

≤ e−
t
C EntΦu∞

(

u0

u∞

)

(16)

where v(t, x) = u(t,x)
u∞

, u∞ is the unique nonnegative solution of (5) and C
appears in (15).

Remark 3. 1. Both conditions we impose to Φ appear in [5].

2. For α-stable Lévy processes, C = 1
α . See the last section for further

discussion.

3. As far as steady states are concerned, we prove that there exists one (see
Proposition 1) and that it is unique.

4.1 A modified logarithmic Sobolev inequality

The functional inequality we need is the following.

Theorem 3 ([8, 5]). Assume that Φ is such that (a, b) 7→ DΦ(a + b, b) and

Φ′′(x)〈σy · y〉 are convex on {a + b ≥ 0, b ≥ 0} and R
+ ×

(

R
d
)2

respectively.
Consider an infinitely divisible law µ. Then for all smooth and positive functions
v,

EntΦµ (v) ≤

∫

Φ′′(v)〈σ∇v ;∇v〉µ(dx) +

∫ ∫

DΦ(v(x), v(x+ z))νµ(dz)µ(dx)

(17)
where νµ and σ denote respectively the Lévy measure and diffusion matrix as-
sociated with µ.

Remark 4. In the particular case where Φ(x) = x2 then the Φ-entropy EntΦu∞

reduces to the variance. We shed some light on the fact that one can obtain
Inequality (17) by using Γ2 associated with I = Iµ defined as follows:

ΓI
2 (u, v) = I[ΓI [u, v]] − ΓI [u, I[v]] − ΓI [v, I[u]].

Inequality (17) can be obtained by remarking that (assume σ = 0 for simplicity):

ΓI
2 (u, u) =

∫ ∫

(u(x+ z + z′) − u(x+ z) − u(x+ z′) + u(x))2ν(dz)ν(dz′) ≥ 0,

with ν the Lévy measure associated to I. We refer to [2] for a review about the
Γ2 operator. This computation was already done by Chafäı and Malrieu in a
nice but unpublished note [6].
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Remark 5. Remark that the drift of the law plays no role in this functional
inequality.

This inequality is proved in [8] for Φ(x) = x2 or Φ(x) = x log x and in
this general form in [5] but only for a pure jump Lévy process. The two arti-
cles are generalization of the logarithmic Sobolev for Poisson measure, given in
[1]. Surprisingly, this theorem is not given in [5] in this general form, for the
completeness of this article we next give a sketch of the proof.

Proof (sketch). Let v be a smooth and positive function on R. Denote by (Pt)t≥0

the semi-group associated to the operator I:

d

dt
Pt(v)(x) = I(Pt(v))(x), (18)

with P0(v) = v. Define for s ∈ [0, t],

ψ(s) = Ps(Φ(g)),

where g = Pt−s(v). One gets, for s ∈ [0, t],

ψ′(s) = Ps(I(Φ(g)) − Φ′(I(g)))

= Ps(Φ
′′(g)〈σ∇g;∇g〉) + Ps

(
∫

DΦ(g(· + z), g(·))νµ(dz)

)

.

Since I is associated with µ, one gets that a solution of (18) is given by

Pt(v)(x) = Kψ(t, ·) ∗ v(x),

where Kψ(t, y) = F−1
(

e−tψ(·)
)

(y) and ψ is the characteristic exponent of the
law µ. In particular, µ = Kψ(1, ·). Then one gets

∇Pt(g)(x) = ∇g ∗Kψ(t, ·) = Pt(∇g)(x).

Using the fact that (a, b) 7→ DΦ(a+ b, a) and (x, y) 7→ Φ′′(x)〈σy; y〉 are convex,
one gets by Jensen’s inequality,

ψ′(s) ≤ Pt(Φ
′′(v)〈σ∇v;∇v〉) + Pt

(
∫

DΦ(v(· + z), v(·))νµ(dz)

)

.

Integrate over s ∈ [0, t], we obtain for t ≥ 0 and x ∈ R
d,

Pt(Φ(v))(x) − Φ(Pt(v))(x) ≤ tPt(Φ
′′(v)〈σ∇v;∇v〉)(x)

+tPt

(
∫

DΦ(v(· + z), v(·))νµ(dz)

)

(x). (19)

Then choose t = 1 and x = 0 in Inequality (19) and get:

EntΦKψ (v)≤

∫

Φ′′(v)〈σ∇v;∇v〉Kψdx+

∫ ∫

DΦ(v(x), v(x+ z))νµ(dz)Kψ(x)dx.
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4.2 Study of the steady state

Let us now make precise the statement about the steady state u∞.

Proposition 1 (The steady state as an infinitely divisible measure). Assume
that the Lévy measure ν has a density N and that it satisfies:

∫

|z|≥1

ln |z|N(z)dz < +∞.

There then exists a steady state u∞, i.e. a solution of (5). Moreover, it is an
infinitely divisible measure whose characteristic exponent A is defined by:

A(ξ) = 〈b ; ξ〉 +
1

2
〈σξ ; ξ〉 +

∫ 1

0

a(sξ)
ds

s
. (20)

Moreover, the Lévy measure ν∞ has: a density N∞ with respect to the Lebesgue
measure given by the following formula:

N∞(z) =

∫ ∞

1

N(tz)td−1dt; (21)

a drift part b− bA where:

bA =

∫ ∫ 1

0

z
(1 − τ2)|z|2

(1 + τ2|z|2)(1 + |z|2)
dτN(z)dz; (22)

and a Gaussian part equal to σ/2.

Remark 6. In the general case, Condition (15) precisely says that N∞ ≤ CN .

Proof of Proposition 1. Let us start as in [4]. At least formally, the Fourier
transform û∞ of any steady state u∞ satisfies

ψ(ξ)û∞ + ξ · ∇û∞ = 0

so that û∞ = exp(−A) with A such that:

∇A(ξ) · ξ = ψ(ξ).

The solution of this equation is precisely given by (20). It is not clear that A is
well defined and is the characteristic exponent of an infinitely divisible measure;
this is what we prove next. This implies in particular that F−1(exp(−A)) is a
nonnegative function (see [3]).

Define the nonnegative N∞ by Equation (21). This integral is well-defined
since for any R > 0: if dσ denote the uniform measure on Sd−1 we get,

∫ ∞

R

∫

|D|=1

N(τD)τd−1dτdσ(D) =

∫

|y|≥R

N(y)dy < +∞

11



We conclude that for any r ≥ R > 0 and almost every D on the unit sphere
(where the set of nul measure depends only on R),

rdN∞(rD) =

∫ ∞

r

N(τD)τd−1dτ < +∞

so that N∞(z) is well-defined almost everywhere outside BR. Choose now a
sequence Rn → 0 and conclude.

Let us define IB(r) =
∫

|D|=1
NB(rD)dσ(D) for B = a or A. The previous

equality implies that: rdIA(r) =
∫ +∞

r
Ia(τ)τ

d−1dτ . We conclude that:
∫

|z|≤1

|z|2N∞(z)dz =

∫ 1

0

IA(r)rd+1dr =

∫ 1

0

r

∫ +∞

r

Ia(τ)τ
d−1dτdr

=
1

2

∫

|z|≥1

N(z)dz +
1

2

∫

|z|≤1

|z|2N(z)dz < +∞

∫

|z|≥1

N∞(z)dz =

∫ +∞

1

IA(r)rd−1dr =

∫ +∞

1

1

r

∫ +∞

r

Ia(τ)τ
d−1dτdr

=

∫

|z|≥1

ln |z|N(z)dz.

Hence we have
∫

min(1, |z|2)N∞(z)dz < +∞. We conclude that it is a Lévy
measure. Now consider the associated characteristic exponent:

Ã(ξ) = 〈b ; ξ〉 +
1

2
〈σξ ; ξ〉 +

∫

(eiz·ξ − 1 − i(z · ξ) h(z))N∞(z)dz.

Now compute:

Ã(ξ) − 〈b ; ξ〉 −
1

2
〈σξ ; ξ〉

=

∫ ∫ ∞

1

(eiz·ξ − 1 − i(z · ξ) h(z))N(sz)sd−1ds dz

=

∫ ∞

1

{
∫

(

eiz̃·
ξ
s − 1 − i

(

z̃ ·
ξ

s

)

h

(

z̃

s

))

N(z̃)dz̃

}

ds

s

=

∫ ∞

1

a

(

ξ

s

)

ds

s
− iξ ·

∫ ∞

1

{
∫

z̃

s

(

h

(

z̃

s

)

− h(z̃)

)

N(z̃)dz̃

}

ds

s

= A(ξ) − iξ · bA

where bA is defined by (22). Properties (11) of the Lévy measure ν implies
that bA is well defined. We conclude that A is the characteristic exponent of an
infinitely divisible law u∞ whose drift is b − bA, Gaussian part σ/2 and whose
Lévy measure is N∞(z)dz.

Proof of Theorem 2. Theorem 1 gives for t ≥ 0,

d

dt
EntΦu∞

(v(t, ·)) = −

∫

Φ′′(v(t, ·))〈σ∇v(t, ·) ;∇v〉u∞

−

∫ ∫

DΦ(v(t, x), v(t, x+ z))ν(dz)u∞dx.

12



It is enough to prove the following inequality

EntΦu∞

(v) ≤ C

∫

Φ′′(v(t, ·))〈σ∇v(t, ·) ;∇v〉u∞

+C

∫ ∫

DΦ(v(x), v(x+ z))ν(dz)u∞(x)dx

for some constant C independent of v and Gronwall’s lemma permits to con-
clude. But this inequality is a direct consequence of (17) for the infinitely
divisible law u∞. Remark also that if one considers another nonnegative steady
state ũ∞ such that EntΦu∞

(ũ∞) < +∞ for some Φ strictly convex and satisfying

the assumptions of the theorem, then EntΦu∞

(ũ∞) = 0 and we conclude that
ũ∞ = u∞.

4.3 Discussion of Condition (15) and examples

Let us discuss the condition we impose in order to get exponential decay. We
point out that equality in this condition holds true only for α-stable operators
and we give a necessary condition on the behaviour of the Lévy measure at
infinity if one knows that it decreases faster than |x|−d.

Proposition 2. • Equality N∞ = N/λ if and only if ψ is positively ho-
mogenous of index λ ∈ (0, 2], i.e.

ψ(tξ) = tλψ(ξ) for any t > 0, ξ ∈ R
d.

In this case, we get A = ψ/λ and bA = 0. Note that in the extreme case,
where λ = 2, then we get N∞ = N/2 = 0.

• If |x|dN(x) → 0 as |x| → +∞, then the densities N and N∞ satisfy:

N = −div(xN∞).

• In this case, Condition (15) is equivalent to:

{

N∞(tx) ≤ N∞(x)t−d−1/C if t ≥ 1
N∞(tx) ≥ N∞(x)t−d−1/C if t ≤ 1

(23)

Proof. The first item simply follows from the definition of A.
Let us first prove the second item.

N(x) = −( lim
t→+∞

tdN(tx)) + 1dN(1 × x) = −

∫ +∞

1

d

dt
(tdN(tx))dt

= −dN∞(x) − x · ∇N∞(x) = −div(xN∞).

To prove the third item, use the first one to rewrite (15) as follows:

x · ∇N∞(x) + (d+ 1/C)N∞(x) ≤ 0.

Integrate and conclude.
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Example 1. The Lévy measure 1
|z|e

−|z| does not satisfy Condition (15). Indeed,

it is equivalent to:
∫ +∞

1

sd−2e−|x|(s−1)ds ≤ C

and the monotone convergence theorem implies that the left hand side of this
inequality goes to +∞ as |x| → +∞.
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Lectures on probability theory (Saint-Flour, 1992), volume 1581 of Lecture Notes
in Math., pages 1–114. Springer, Berlin, 1994.
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