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The Lévy-Fokker-Planck equation:
Φ-entropies and convergence to equilibrium

Ivan Gentil1 and Cyril Imbert2

February 6, 2007

Abstract. In this paper, we study a Fokker-Planck equation of the form ut =
I[u] + div(xu) where the operator I, which is usually the Laplacian, is replaced
here with a general Lévy operator. We prove by the entropy production method
the exponential decay in time of the solution to the only steady state of the
associated stationnary equation.
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1 Introduction and main results

The equation at stake. In this paper, we are interested in the long time
behaviour of the following generalized Fokker-Planck equation:

∂tu = I[u] + div(u∇V ) x ∈ Rd, t > 0, (1)

submitted to the initial condition:

u(0, x) = u0(x) x ∈ Rd (2)

where u0 is nonnegative and in L1(Rd) and V is a given proper potential for
which there exists a nonnegative steady state (see below). The operator I is a
Lévy operator

I[u](x) = div (σ∇u)(x)−b·∇u(x)+
∫

Rd
(u(x+z)−u(x)−∇u(x)·zh(z))ν(dz) (3)

with parameters (b, σ, ν) where b = (bi) ∈ Rd, σ is a symmetric semi-definite
d × d matrix σ = (σi,j) and ν denotes a nonnegative singular measure on Rd
that satisfies

ν({0}) = 0 and
∫

min(1, |z|2)ν(dz) < +∞; (4)
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h is a truncature function and we fix it on this article: for any z ∈ Rd, h(z) =
1/(1 + |z|2).

Remark that this equation is conservative: for any t > 0,
∫
u(t, x)dx =∫

u0(x)dx and we will therefore assume without loss of generality that we have∫
u0(x)dx = 1. The diffusion equation (1) is a natural generalization of the

well-known Fokker-Planck equation given by

∂tu = ∆u+ div(u∇V ) x ∈ Rd, t > 0, (5)

and since I defined by (3) is the infinitesimal generator of a Lévy process, we
refer to (1) as the Lévy-Fokker-Planck equation.

Motivations and goals. As pointed out by Biler and Karch in [7], Equation (1)
is studied at least for two important reasons. First, it is deeply connected
with stochastic differential equations driven by Lévy stable noise, see e.g. [11].
Secondly, in the case of a quadratic potential V (x) = 1

2 |x|
2 and the fractional

Laplacian I = −(−∆)
α
2 (even for general α-stable Lévy process – see Section 2

for a definition), it permits to describe the long time behaviour of the solution
of

∂tU + (−∆)
α
2 [U ] = 0 (6)

with a nonnegative initial condition U0 in L1(Rd). Indeed, the reader can check
that the function u(t, x) = Rd(t)U (τ(t), xR(t)) satisfies (1) as soon as one
chooses R(t) = et and τ(t) = (eαt − 1)/α and U0(x) = u0(x). Consequently, if
K(t, x) denotes the green function associated with the fractional Laplacian,

u(t, x) = edt
∫
u0

(
eαt − 1
α

x− y

)
K

(
et, y

)
dy.

On the one hand, U vanishes as t→ +∞ and on the other hand, u is expected
to tend towards the steady state of (1), that is to say towards the nonnegative
stationary solution u∞ of (1) with the quadratic potential V (x) = 1

2 |x|
2:

I[u∞] + div(u∞x) = 0 (7)

such that
∫
u∞dx =

∫
u0dx = 1. We see that dealing with the quadratic

potential is of particular interest and we will be able to say more in this case.

In full generality, we expect that the solution u of (1) converges towards the
unique nonnegative solution of:

I[u∞] + div(u∞∇V ) = 0

such that
∫
u∞ =

∫
u0 = 1. Function u∞ is called a steady state and conditions

on V must ensure that such u∞ exists and it is nonnegative.

Known results. Consider a smooth convex function Φ : R+ 7→ R and u∞
positive such that

∫
u∞dx = 1 and define the Φ-entropy: for any nonnegative

function f ,

EntΦu∞ (f) :=
∫

Φ (f)u∞dx− Φ
(∫

fu∞dx

)
.
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Jensen’s inequality gives that EntΦu∞(f) ≥ 0. Let u0 be a nonnegative initial
condition of (1) or (5) then the maximum principle ensures that

EΦ(u0)(t) = EntΦu∞

(
u(t)
u∞

)
is well defined for t > 0.

In the case of the classical Fokker-Planck equation (5), by using functional
inequalities as Poincaré, logarithmic Sobolev or Φ-entopy inequalities, and under
proper assumptions on the Potential V such as the Bakry-Emery criterion (Γ2),
one obtains exponential decays to zero of EΦ(u0). Then the solution u of (5)
converges towards the steady state u∞ in the sense of Φ-entropy. Methods to
prove such results are usually based on entropy/entropy-production tools. See
[5, 1, 4, 8] for different methods and applications.

For our equation (1), Biler and Karch prove in [7] that EΦ(u0) decreases in
time for general confinement potentials V ; they also prove that for Φ(r) = r2/2
and for the quadratic potential V (x) = 1

2 |x|
2, there exists C = C(u0, I) and ε

such that:
E|.|2/2(u0)(t) ≤ C0e

−εt. (8)
To prove the latter result, they assume that the symbol ψ satisfies for some real
number α ∈ (0, 2]:{

0 < lim infξ→0
ψ(ξ)
|ξ|α ≤ lim supξ→0

ψ(ξ)
|ξ|α < +∞,

0 < inf ψ(ξ)
|ξ|2 .

(9)

In particular, the second assumption says more or less that there is a nontrivial
Gaussian part (σ 6= 0).

Main results. The results of Biler and Karch we just described are the starting
point of this paper. We tried to understand if one can generalize them and obtain
an exponential decay for any convex function Φ under a sharper form. Our two
main contributions are:

1. to exhibit the so-called Fisher information associated with the Φ-entropies
EΦ,

2. and to take advantage of this result to prove an exponential decay of the
Φ-entropies for a class of convex functions Φ and for a larger class of
operators.

Let us describe our results more precisely. Let us consider the Bregman
distance associated with Φ:

∀(a, b) ∈ R+, DΦ(a, b) := Φ(a)− Φ(b)− Φ′(b)(a− b) ≥ 0. (10)

Our first result states that for all initial nonnegative datum u0:

∀t ≥ 0,
d

dt
EΦ(u0)(t) = −

∫
Φ′′(v)∇v · σ∇v u∞dx

−
∫
DΦ (v(t, x), v(t, x− z)) ν(dz)u∞(x)dx (11)
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where v(t, x) = u(t,x)
u∞(x) and ν is the Lévy measure appearing in the definition of

the operator I, see (4). The first result of Biler and Karch is a straightforward
consequence of this formula and they were very close to it (see their proof of
the entropy decreasing property). In the particular case of Φ(x) = x2, the right
hand side of (11) can be seen as the opposite of a Dirichlet form (see Chapter 3
of [3]).

The main result of this paper is the following.

Theorem 1 (Exponential decay to equilibrium). Assume that V (x) = 1
2 |x|

2

and the operator I is the infinitesimal generator of a Lévy process whose Lévy
measure is denoted ν. We assume that ν has a density N with respect to the
Lebesgue measure and that N satisfies∫

Rd\B
ln |z| N(z) dz < +∞ (12)

where B is the unit ball in Rd. Then there exists a steady state u∞, i.e. a
nonnegative solution of (7) satisfying

∫
u∞dx = 1.

If moreover N is even and for all z ∈ Rd,∫ +∞

1

N(sz)sd−1ds ≤ CN(z) (13)

for some constant C ≥ 0, then for any smooth convex function Φ such that{
(a, b) 7→ DΦ(a+ b, b)
(r, y) 7→ Φ′′(r)y · σy are convex on

{
{a+ b ≥ 0, b ≥ 0}
R+ × R2d (14)

the Φ-entropy of the solution u of (1)-(2) goes to 0 exponentially. Precisely, for
any nonnegative initial datum u0 such that EntΦu∞

(
u0
u∞

)
<∞, one gets:

∀t ≥ 0, EntΦu∞

(
u(t)
u∞

)
≤ e−

t
C EntΦu∞

(
u0

u∞

)
(15)

with C appearing in (13). In addition, u∞ is the unique nonnegative solution
of (7).

Condition (13) is fullfilled by any α-stable Lévy process and in this case,
C = α−1. It is also satisfied by multifractal operators. See the next section
for definitions. Furthermore, it should be compared with the first part of (9).
Indeed, freely speaking, it says that the symbol lies between two α-stable ones
for small ξ.

Conditions (14) appear in [8] (see (H1) and (H2) in this paper). Basic
but more important examples of such convex functions are given by Φ(x) =
xp − 1 − p(x − 1) with p ∈ (1, 2], Φ(x) = x log x − x + 1. When p = 2,
DΦ(a, b) = (a − b)2 and in the latter case, DΦ(a, b) = a ln a

b + (b − a). In
Theorem 4,4 of [9] it is proved that condition (14) is equivalent to either Φ is
affine or Φ is C2, Φ′′ > 0 on R+ and 1/Φ′′ is concave on R+.
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The paper is organized as follows. In Section 2, we recall basic facts about
Lévy operators and associated Lévy measures. We also recall a modified log-
arithmic Sobolev inequality due to Wu and Chafäı (Theorem 2). Section 3 is
devoted to derivating with respect to time the Φ-entropies for general potentials
V . The last section is devoted to the proof of Theorem 1, a discussion about
Condition (13) and some examples.

Notation. x · y denotes the usual scalar product in Rd.

2 Preliminaries

2.1 Lévy operators

Let us next recall basic definitions about Lévy operators and introduce no-
tations. See [3, 6] for further details.

Characteristic exponents and Lévy measures. The characteristic expo-
nent of a Lévy process (Xt)t≥0 is the function ψ such that the characteristic
function φXt(ξ) of (Xt)t≥0 is exp(tψ(ξ)). The Lévy-Khinchine formula states
that ψ can be written under the following form

ψ(ξ) = −σξ · ξ + ib · ξ + a(ξ) (16)

where a is associated with the pure jump part of the Lévy process

a(ξ) =
∫ (

eiz·ξ − 1− i(z · ξ)h(z)
)
ν(dz).

Recall that h(z) = 1/(1 + |z|2) and the Lévy measure satisfies (4). The matrix
σ characterizes the diffusion (or Gaussian) part of the operator (with eventually
σ = 0), while b and ν characterises the drift part and the pure jump part,
respectively. A Lévy operator I is the infinitesimal generator associated with the
Lévy process and the Lévy-Khinchine formula implies that it has the form (3).

The pseudodifferential point of view. It is convenient to introduce the
operator Ig associated with the Gaussian part,

Ig(u) = div (σ∇u)− b · ∇u

and the operator Ia associated with the pure jump part

Ia(u) =
∫

Rd
(u(x+ z)− u(x)−∇u(x) · zh(z))ν(dz).

The operator Ia can be seen as a pseudodifferential operator of symbol a:

Ia(u) = F(a×F−1u)

where F stands for the Fourier transform. We choose the probabilistic conven-
tion in defining, for all function w ∈ L1(Rd):

∀ξ ∈ Rd, ŵ(ξ) = F(w)(ξ) =
∫
eix·ξw(x)dx. (17)
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Multifractal and α-stable Lévy operators. Lévy operators whose char-
acteristic exponent is positively homogenous of index α ∈ (0, 2] are called α-
stable. The fractional Laplacian corresponds to a particular α-stable Lévy pro-
cess whose characteristic exponent is ψ(ξ) = |ξ|α. Note that if α = 2 the Lévy
operator has no jump part. They play a central role in this paper since they are
the operators for which we have equality in Condition (13). See the discussion
in the last section.

Lévy operators whose characteristic exponent can be written as ψ(ξ) =∑n
i=1 ψi(ξ) where ψi is αi-homogenous with αi ∈ (0, 2], are often referred to

as multifractal Lévy operators. These operators are typically those who satisfy
Condition (13).

2.2 A modified logarithmic Sobolev inequality

The functional inequality we will need in the sequel is given in the following
theorem. It was proved by Wu and Chafäı.

Theorem 2 ([12, 8]). Assume that a smooth function Φ satisfies (14) and
consider an infinitely divisible law µ. Then for all smooth positive functions v,

EntΦµ (v) ≤
∫

Φ′′(v)∇v ·σ∇vµ(dx)+
∫ ∫

DΦ(v(x), v(x+ z))νµ(dz)µ(dx) (18)

where νµ and σ denote respectively the Lévy measure and the diffusion matrix
associated with µ.

Remark that the drift of the law plays no role in this functional inequality.
Eq. (18) is proved in [12] for Φ(x) = x2 or Φ(x) = x log x and in this general form
in [8] but only for a pure jump Lévy process. The two articles are generalization
of the logarithmic Sobolev inequality for Poisson measure given in [2]. For the
completeness of this article, we give a sketch of the proof of this theorem in
Appendix.

The important special case Φ(r) = r2/2. A simple computation shows that
the Bregman distance in this case is DΦ(a, b) = (a − b)2. In this case, the Φ-
entropy EntΦu∞ reduces to the variance. One can next consider the “carré du
champ” operator ΓI associated with the operator I defined for smooth functions
u and v by:

ΓI [u, v] = I[uv]− uI[v]− vI[u]

= ∇u · σ∇v +
∫

(u(x+ z)− u(x))(v(x+ z)− v(x))ν(dz),

We shed some light on the fact that one can obtain in that case Inequality (18)
by using Γ2 associated with I = Iµ defined as follows:

ΓI2 (u, v) = I[ΓI [u, v]]− ΓI [u, I[v]]− ΓI [v, I[u]].
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Inequality (18) can be obtained by remarking that (assume σ = 0 for simplicity):

ΓI2 (u, u)=
∫∫

(u(x+ z + z′)− u(x+ z)− u(x+ z′) + u(x))2ν(dz)ν(dz′) ≥ 0,

with ν the Lévy measure associated to I. This computation was already done
by Chafäı and Malrieu in a nice but unpublished note [10].

3 Φ-Entropy and associated Fisher information

In this section, we are interested in the (time) derivative of EΦ(u0)(t) in the
case where a steady state is given. Precisely, the following theorem is proved.

Proposition 1. Assume that the initial condition u0 is nonnegative and satisfies
EntΦu∞

(
u0
u∞

)
< ∞ with u∞, a solution of (7). Then for any convex smooth

function Φ : R+ → R and any t ≥ 0, the solution u of (1)-(2) satisfies (11)
where v(t, x) = u(t,x)

u∞(x) and ν is the Lévy measure associated to I.

Remark 1. In the special case Φ(x) = x2/2, Proposition 1 can be reformulated
as follows:

d

dt
EΦ(u0)(t) = −

∫
ΓI [v, v]u∞dx ≤ 0.

As in the case of the classical Fokker-Planck equation, the energy does not
depend on the potential V .

In order to prove Proposition 1, since the Φ-entropy involves the function
v(t, x) = u(t,x)

u∞(x) , its derivative makes appear ∂tv and it is natural to ask ourselves
which partial differential equation v satisfies. A simple computation gives:

∂tv =
1
u∞

I[u∞v] + div(u∞v∇V )

=
1
u∞

(I[u∞v]− I[u∞]v) +∇V · ∇v =: Lv. (19)

In the case where I[u] = ∆u (i.e. σ is the identity matrix, b = 0 and a = 0),
Equation (19) writes:

∂tv = ∆v −∇V · ∇v
and is known as the Ornstein-Uhlenbeck equation. This is the reason why we
will refer to Equation (19) as the Lévy-Ornstein-Uhlenbeck equation. We next
give a simpler formulation for the Lévy-Ornstein-Uhlenbeck operator.

Lemma 1 (Lévy-Ornstein-Uhlenbeck equation). If the integrodifferential oper-
ator in the right-hand side of (19) is denoted L, we have for all smooth functions
w1 and w2: ∫

w1 Lw2 u∞dx =
∫

(Ǐ[w1]−∇V · ∇w1) w2 u∞dx
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where Ǐ is the Lévy operator whose parameters are (−b, σ, ν̌) with ν̌(dz) =
ν(−dz). This can be expressed by the formula: L∗ = Ǐ − ∇V · ∇ where du-
ality is understood with respect to the measure u∞dx.

Proof. The main tool is the integration by parts for the operator I, for any
smooth functions u, v one gets∫

vI[u]dx =
∫
uǏ[v]dx.

If w1 and w2 are two smooth functions on Rd, then:∫
w1 Lw2 u∞dx =

∫
w1 (I[u∞w2]− I[u∞]w2 + u∞∇V · ∇w2)dx

=
∫
w2 Ǐ[w1] u∞dx−

∫
I[u∞]w1w2dx−

∫
div(u∞w1∇V )w2dx

=
∫
u∞(Ǐ[w1]−∇V · ∇w1)w2dx.

The proof of Proposition 1. By using Lemma 1 with v = u/u∞, we get:

d

dt
EΦ(u0)(t) =

∫
Φ′(v) ∂tv u∞dx =

∫
Φ′(v) Lv u∞dx

=
∫
Ǐ[Φ′(v)] v u∞dx−

∫
∇V · ∇(Φ′(v)) v u∞dx.

If now one remarks that rΦ′′(r) = (rΦ′(r)− Φ(r))′, we get:

d

dt
EΦ(u0)(t) =

∫
vǏ[Φ′(v)]u∞dx−

∫
∇V · ∇(vΦ′(v)− Φ(v))) u∞dx

=
∫
vǏ[Φ′(v)]u∞dx+

∫
div(u∞∇V )(vΦ′(v)− Φ(v))dx

=
∫
vǏ[Φ′(v)]u∞dx−

∫
I[u∞](vΦ′(v)− Φ(v))dx

=
∫

(vǏ[Φ′(v)]− Ǐ[vΦ′(v)] + Ǐ[Φ(v)])u∞dx

d

dt
EΦ(u0)(t) =

∫
(vǏg[Φ′(v)]− Ǐg[vΦ′(v)] + Ǐg[Φ(v)])u∞dx

+
∫

(vǏa[Φ′(v)]− Ǐa[vΦ′(v)] + Ǐa[Φ(v)])u∞dx

= −
∫

Φ′′(v)∇v · σ∇v u∞dx

+
∫ ∫ (

v(x)(Φ′(v(x+ z))− Φ′(v(x)))− v(x+ z)Φ′(v(x+ z))

+v(x)Φ′(v(x)) + Φ(v(x+ z))− Φ(v(x)))
)
ν̌(dz) u∞(x)dx
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d

dt
EΦ(u0)(t) = −

∫
Φ′′(v)∇v · σ∇v u∞dx

−
∫ ∫ (

Φ(v(x))− Φ(v(x+ z))− Φ′(v(x+ z))

×(v(x)− v(x+ z))
)
ν̌(dz) u∞(x)dx.

Then the definitions of the Bregman distance and of the Lévy measure ν̌ give

d

dt
EΦ(u0)(t)=−

∫
Φ′′(v)∇v·σ∇v u∞dx−

∫ ∫
DΦ(v(x), v(x−z))ν(dz)u∞(x)dx.

4 The proof of Theorem 1, discussion and ex-
amples

To prove the first part of the Theorem, the existence of the steady state, we
need to state the following lemma.

Lemma 2. Assume that the Lévy measure ν has a density N with respect to
the Lebesgue measure and that it satisfies (12). There then exists a steady state
u∞, i.e. a solution of (7). Moreover, it is an infinitely divisible measure whose
characteristic exponent A is defined by:

A(ξ) = −ξ · σξ + ib · ξ +
∫ 1

0

a(sξ)
ds

s
. (20)

Moreover, parameters of the characteristic exponent A are (σ, b − bA, N∞dx)
where

bA =
∫ ∫ 1

0

z
(1− τ2)|z|2

(1 + τ2|z|2)(1 + |z|2)
dτN(z)dz, (21)

and
N∞(z) =

∫ ∞

1

N(tz)td−1dt. (22)

Note that the Lévy measure ν∞ associated to the characteristic exponent A has
a density N∞ with respect to the Lebesgue measure.

Remark 2. In the general case, Condition (13) precisely says that N∞ ≤ CN
which can be written in term of measures as follows: ν∞ ≤ Cν.

Proof. Let us start as in [7]. At least formally, the Fourier transform û∞ of any
steady state u∞ satisfies

ψ(ξ)û∞ + ξ · ∇û∞ = 0

9



so that û∞ = exp(−A) with A such that:

∇A(ξ) · ξ = ψ(ξ).

The solution of this equation is precisely given by (20). It is not clear that A is
well defined and is the characteristic exponent of an infinitely divisible measure;
this is what we prove next. This will imply in particular that F−1(exp(−A)) is
a nonnegative function (see [6]).

Define the nonnegative N∞ by Equation (22). This integral of a nonnegative
function is finite since for any R > 0, if dσ denotes the uniform measure on the
unit sphere Sd−1 we get,∫ ∞

R

∫
|D|=1

N(τD)τd−1dτdσ(D) =
∫
|y|≥R

N(y)dy < +∞.

We conclude that for any r ≥ R > 0 and almost every D on the unit sphere
(where the set of null measure depends only on R),

rdN∞(rD) =
∫ ∞

r

N(τD)τd−1dτ < +∞

so that N∞(z) is well-defined almost everywhere outside BR. Choose now a
sequence Rn → 0 and conclude.

Let us define I(r) =
∫
|D|=1

N(rD)dσ(D) and I∞ in an analogous way. The

previous equality implies that: rdI∞(r) =
∫ +∞
r

I(τ)τd−1dτ . We conclude that:∫
|z|≤1

|z|2N∞(z)dz =
∫ 1

0

I∞(r)rd+1dr =
∫ 1

0

r

∫ +∞

r

I(τ)τd−1dτdr

=
1
2

∫
|z|≥1

N(z)dz +
1
2

∫
|z|≤1

|z|2N(z)dz < +∞∫
|z|≥1

N∞(z)dz =
∫ +∞

1

I∞(r)rd−1dr =
∫ +∞

1

1
r

∫ +∞

r

I(τ)τd−1dτdr

=
∫
|z|≥1

ln |z|N(z)dz.

Hence we have
∫

min(1, |z|2)N∞(z)dz < +∞. We conclude that it is a Lévy
measure. Now consider the associated characteristic exponent:

Ã(ξ) = ib · ξ − σξ · ξ +
∫

(eiz·ξ − 1− i(z · ξ) h(z))N∞(z)dz.
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Now compute:

Ã(ξ) − ib · ξ + σξ · ξ

=
∫ ∫ ∞

1

(eiz·ξ − 1− i(z · ξ) h(z))N(sz)sd−1ds dz

=
∫ ∞

1

{∫ (
eiz̃·

ξ
s − 1− i

(
z̃ · ξ

s

)
h

(
z̃

s

))
N(z̃)dz̃

}
ds

s

=
∫ ∞

1

a

(
ξ

s

)
ds

s
− iξ ·

∫ ∞

1

{∫
z̃

s

(
h

(
z̃

s

)
− h(z̃)

)
N(z̃)dz̃

}
ds

s

= A(ξ)− iξ · bA

where bA is defined by (21). Properties (4) of the Lévy measure ν implies that
bA is well defined. We conclude that A is the characteristic exponent of an
infinitely divisible law u∞ whose drift is b − bA, whose Gaussian part is σ and
whose Lévy measure is N∞(z)dz.

Proof of Theorem 1. The proof of the first part is exactly given by Lemma 2.
We now turn to the second part of the theorem. Proposition 1 gives for

t ≥ 0,

d

dt
EntΦu∞(v(t, ·)) = −

∫
Φ′′(v(t, ·))∇v · (t, ·) · σ∇v(t, ·)u∞dx

−
∫ ∫

DΦ(v(t, x), v(t, x− z))ν(dz)u∞dx

= −
∫

Φ′′(v(t, ·))∇v · (t, ·) · σ∇v(t, ·)u∞dx

−
∫ ∫

DΦ(v(t, x), v(t, x+ z))ν(dz)u∞dx

where we used the fact that ν is even. It is now enough to prove the following
inequality

EntΦu∞ (v) ≤ C

∫
Φ′′(v(t, ·))∇v(t, ·) · σ∇vu∞dx

+C
∫ ∫

DΦ(v(x), v(x+ z))ν(dz)u∞(x)dx

for some constant C not depending on v and Gronwall’s lemma permits to
conclude. But this inequality is a direct consequence of (18) for the infinitely
divisible law u∞. Remark also that if one considers another nonnegative steady
state ũ∞ such that EntΦu∞(ũ∞) < +∞ for some Φ strictly convex and satisfying
the assumptions of the theorem, then EntΦu∞(ũ∞) = 0 and we conclude that
ũ∞ = u∞.
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4.1 Discussion of Condition (13) and examples

Let us discuss the condition we impose in order to get exponential decay. We
point out that equality in this condition holds true only for α-stable operators
and we give a necessary condition on the behaviour of the Lévy measure at
infinity if one knows that it decreases faster than |x|−d.

Proposition 2. • Equality N∞ = N/λ if and only if ψ is positively ho-
mogenous of index λ ∈ (0, 2], i.e.

ψ(tξ) = tλψ(ξ) for any t > 0, ξ ∈ Rd.

In this case, we get A = ψ/λ and bA = 0. Note that in the extreme case,
where λ = 2, then we get N∞ = N/2 = 0.

• If |x|dN(x) → 0 as |x| → +∞, then the densities N and N∞ satisfy:

N = −div(xN∞).

• In this case, Condition (13) is equivalent to:{
N∞(tx) ≤ N∞(x)t−d−1/C if t ≥ 1
N∞(tx) ≥ N∞(x)t−d−1/C if 0 < t ≤ 1

(23)

Proof. The first item simply follows from the definition of A.
Let us first prove the second item.

N(x) = −( lim
t→+∞

tdN(tx)) + 1dN(1× x) = −
∫ +∞

1

d

dt
(tdN(tx))dt

= −dN∞(x)− x · ∇N∞(x) = −div(xN∞).

To prove the third item, use the first one to rewrite (13) as follows:

x · ∇N∞(x) + (d+ 1/C)N∞(x) ≤ 0.

Integrate over [1, t] for t ≥ 1 and [t, 1] for t ≤ 1 to get the result.

Example 1. In R, the Lévy measure 1
|z|e

−|z| does not satisfy Condition (13).
Indeed, it is equivalent to: ∫ +∞

1

e−|x|(s−1)

s
ds ≤ C

and the monotone convergence theorem implies that the left hand side of this
inequality goes to +∞ as |x| → +∞.
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A Appendix

This is a sketch of the proof given by Chafäı. The difference is that we treat
here the case of a Lévy operator with eventually a diffusion part (σ 6= 0 in (16)).

Proof of Theorem 2. Let µ be the infinite divisible law. There then exists ψ a
characteristic exponent such that the characteristic function of µ is expψ. Now
consider K(t, ·) the law associated with exp(tψ). If I defined by (3), we know
that in this case the solution of

∂tu = I[u]
u(0, x) = u0(x)

is K(t, ·) ? u0. Let v be a smooth and positive function on R. Define next for
s ∈ [0, t]:

ψ(s) = K(s, ·) ? φ(K(t− s, ·) ? v).

It is convenient to write g for K(t− s, ·) ? v.

One gets, for s ∈ [0, t],

ψ′(s) = K(s, ·) ?
(
I(Φ(g))− Φ′(g)(I(g))

)
= K(s, ·) ?

(
Φ′′(g)∇g · σ∇g

)
+K(s, ·) ?

(∫
DΦ(g(·+ z), g(·))νµ(dz)

)
.

Using the fact that (a, b) 7→ DΦ(a + b, a) and (x, y) 7→ Φ′′(x)y · σy are convex,
one gets by Jensen’s inequality,

ψ′(s) ≤ K(t, ·) ? (Φ′′(v)∇v · σ∇v) +K(t, ·) ?
(∫

DΦ(v(·+ z), v(·))νµ(dz)
)
.

Integrate over s ∈ [0, t], we obtain for t ≥ 0 and x ∈ Rd,

K(t, ·) ? (Φ(v))(x)− Φ(K(t, ·) ? v)(x) ≤ tK(t, ·) ? (Φ′′(v)∇v · σ∇v)(x)

+tK(t, ·) ?
(∫

DΦ(v(·+ z), v(·))νµ(dz)
)

(x). (24)

Then choose t = 1 and x = 0 in Inequality (24) and get:

EntΦKψ (v)≤
∫

Φ′′(v)∇v · σ∇vKψ(dx)+
∫ ∫

DΦ(v(x), v(x+ z))νµ(dz)Kψ(dx).
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