
HAL Id: hal-00113612
https://hal.science/hal-00113612v1

Submitted on 13 Nov 2006 (v1), last revised 21 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of tsunami waves
Frédéric Dias, Denys Dutykh

To cite this version:
Frédéric Dias, Denys Dutykh. Dynamics of tsunami waves. Extreme Man-Made and Natural Hazards
in Dynamics of Structures, May 2006, Opatija, Croatia. pp.35-60. �hal-00113612v1�

https://hal.science/hal-00113612v1
https://hal.archives-ouvertes.fr


ha
l-

00
11

36
12

, v
er

si
on

 1
 -

 1
3 

N
ov

 2
00

6

Dynamics of tsunami waves

Frédéric Dias∗ Denys Dutykh∗

Abstract

The life of a tsunami is usually divided into three phases: the gen-
eration (tsunami source), the propagation and the inundation. Each
phase is complex and often described separately. A brief description
of each phase is given. Model problems are identified. Their formula-
tion is given. While some of these problems can be solved analytically,
most require numerical techniques. The inundation phase is less doc-
umented than the other phases. It is shown that methods based on
Smoothed Particle Hydrodynamics (SPH) are particularly well-suited
for the inundation phase. Directions for future research are outlined.
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Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France

http://www.cmla.ens-cachan.fr/~dias
http://www.cmla.ens-cachan.fr/~dutykh


1 Introduction 2

4 Energy of a tsunami 23

5 Tsunami run-up 23

6 Direction for future research 26

1 Introduction

Given the broadness of the topic of tsunamis, our purpose here is to
recall some of the basics of tsunami modeling and to emphasize some general
aspects, which are sometimes overlooked. The life of a tsunami is usually
divided into three phases: the generation (tsunami source), the propagation
and the inundation. The third and most difficult phase of the dynamics of
tsunami waves deals with their breaking as they approach the shore. This
phase depends greatly on the bottom bathymetry and on the coastline type.
The breaking can be progressive. Then the inundation process is relatively
slow and can last for several minutes. Structural damages are mainly caused
by inundation. The breaking can also be explosive and lead to the formation
of a plunging jet. The impact on the coast is then very rapid. In very shallow
water, the amplitude of tsunami waves grows to such an extent that typically
an undulation appears on the long wave, which develops into a progressive
bore Chanson [2005]. This turbulent front, similar to the wave that occurs
when a dam breaks, can be quite high and travel onto the beach at great
speed. Then the front and the turbulent current behind it move onto the
shore, past buildings and vegetation until they are finally stopped by rising
ground. The water level can rise rapidly, typically from 0 to 3 meters in 90
seconds.

The trajectory of these currents and their velocity are quite unpredictible,
especially in the final stages because they are sensitive to small changes in the
topography, and to the stochastic patterns of the collapse of buildings, and to
the accumulation of debris such as trees, cars, logs, furniture. The dynamics
of this final stage of tsunami waves is somewhat similar to the dynamics of
flood waves caused by dam breaking, dyke breaking or overtopping of dykes
(cf. the recent tragedy of hurricane Katrina in August 2005). Hence research
on flooding events and measures to deal with them may be able to contribute
to improved warning and damage reduction systems for tsunami waves in the
areas of the world where these waves are likely to occur as shallow surge waves
(cf. the recent tragedy of the Indian Ocean tsunami in December 2004).

Civil engineers who visited the damage area following the Boxing day
tsunami came up with several basic conclusions. Buildings that had been
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constructed to satisfy modern safety standards offered a satisfactory resis-
tance, in particular those with reinforced concrete beams properly integrated
in the frame structure. These were able to withstand pressure associated with
the leading front of the order of 1 atmosphere (recall that an equivalent pres-
sure p is obtained with a windspeed U of about 450 m/s, since p = ρairU

2/2).
By contrast brick buildings collapsed and were washed away. Highly porous
or open structures survived. Buildings further away from the beach survived
the front in some cases, but they were then destroyed by the erosion of the
ground around the buildings by the water currents Hunt and Burgers [2005].

Section 2 provides a description of the tsunami source when the source
is an earthquake. In Section 3, we review the equations that are often used
for tsunami propagation. Section 4 provides a short discussion on the energy
of tsunamis. Section 5 is devoted to the run-up and inundation of tsunamis.
Finally directions for future research are outlined.

2 Tsunami induced by near-shore earthquake

The inversion of seismic data allows one to reconstruct the permanent
deformations of the sea bottom following earthquakes. In spite of the com-
plexity of the seismic source and of the internal structure of the Earth, sci-
entists have been relatively successful in using simple models for the source
Okada [1985]. A description of Okada’s model follows.

2.1 Introduction

The fracture zones, along which the foci of earthquakes are to be found,
have been described in various papers. For example, it has been suggested
that Volterra’s theory of dislocations might be the proper tool for a quan-
titative description of these fracture zones Steketee [1958]. This suggestion
was made for the following reason. If the mechanism involved in earthquakes
and the fracture zones is indeed one of fracture, discontinuities in the dis-
placement components across the fractured surface will exist. As dislocation
theory may be described as that part of the theory of elasticity dealing with
surfaces across which the displacement field is discontinuous, the suggestion
seems reasonable.

As commonly done in mathematical physics, it is necessary for simplicity’s
sake to make some assumptions. Here we neglect the curvature of the earth,
its gravity, temperature, magnetism, non-homogeneity, and consider a semi-
infinite medium, which is homogeneous and isotropic. We further assume
that the laws of classical linear elasticity theory hold.
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Several studies showed that the effect of earth curvature is negligible
for shallow events at distances of less than 20◦ Ben-Mehanem et al. [1970],
Ben-Menahem et al. [1969], McGinley [1969], Smylie and Mansinha [1971].
The sensitivity to earth topography, homogeneity, isotropy and half-space
assumptions was studied and discussed recently Masterlark [2003]. The au-
thor used a commercially available code, ABACUS, which is based on a finite
element model (FEM). Six FEMs were constructed to test the sensitivity of
deformation predictions to each assumption. The main conclusion is that the
vertical layering of lateral inhomogeneity can sometimes cause considerable
effects on the deformation fields.

The usual boundary conditions for dealing with earth’s problems require
that the surface S of the elastic medium (the earth) shall be free from
forces. The resulting mixed boundary-value problem was solved a century
ago Volterra [1907]. Later, Steketee proposed an alternative method to solve
this problem using Green’s functions Steketee [1958].

2.2 Volterra’s theory of dislocations

In order to introduce the concept of dislocation and for simplicity’s sake,
this section is devoted to the case of an entire elastic space. The second
reason is that in his original paper Volterra solved the problem in this case
Volterra [1907].

Let O be the origin of a Cartesian coordinate system in an infinite elastic
medium, xi the Cartesian coordinates (i = 1, 2, 3), and ei a unit vector in
the positive xi-direction. A force F = Fek at O generates a displacement
field uk

i (P, O) at point P , which is determined by the well-known Somigliana
tensor

uk
i (P, O) =

F

8πµ
(δikr, nn − αr, ik), with α =

λ + µ

λ + 2µ
. (1)

In this relation δik is the Kronecker delta, λ and µ are Lamé’s constants,
and r is the distance from P to O. The coefficient α can be rewritten as
α = 1/2(1 − ν), where ν is Poisson’s ratio. Later we will also use Young’s
modulus E, which is defined as

E =
µ (3λ + 2µ)

λ + µ
.

The notation r, i means ∂r/∂xi and the summation convention applies.
The stresses due to the displacement field (1) are easily computed from

Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i). (2)
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We find

σk
ij(P, O) = −αF

4π

(

3
xixjxk

r5
+

µ

λ + µ

δkixj + δkjxi − δijxk

r3

)

.

The components of the force per unit area on a surface element are denoted
as follows:

T k
i = σk

ij · νj,

where the νj ’s are the direction cosines of the normal to the surface element
Sokolnikoff and Specht [1946]. A Volterra dislocation is defined as a surface
Σ in the elastic medium across which there is a discontinuity ∆ui in the
displacement fields of the type

∆ui = u+
i − u−

i = Ui + Ωijxj , (3)

Ωij = −Ωji. (4)

Equation (3) in which Ui and Ωij are constants is the well-known Weingarten
relation which states that the discontinuity ∆ui should be of the type of a
rigid body displacement, thereby maintaining continuity of the components
of stress and strain across Σ.

The displacement field in an infinite elastic medium due to a dislocation
of type (1) is then determined by Volterra’s formula Volterra [1907]

uk(y1, y2, y3) := uk(yl) =
1

F

∫∫

Σ

∆uiT
k
i dS. (5)

Once the surface Σ is given, the dislocation is essentially determined by
the six constants Ui and Ωij. Therefore we also write

uk(yl) =
Ui

F

∫∫

Σ

σk
ij(P, Q)νjdS +

Ωij

F

∫∫

Σ

{xjσ
k
il(P, Q)−xiσ

k
jl(P, Q)}νldS, (6)

where Ωij takes only the values Ω12, Ω23, Ω31. Following Volterra Volterra
[1907] and Love Love [1944] we call each of the six integrals in (6) an ele-
mentary dislocation.

It is clear from (5) and (6) that the computation of the displacement field
uk(Q) is performed as follows: A force Fek is applied at Q, and the stresses
σk

ij(P, Q) that this force generates are computed at the points P (xi) on Σ. In
particular the components of the force on Σ are computed. After multipli-
cation with prescribed weights of magnitude ∆ui these forces are integrated
over Σ to give the displacement component in Q due to the dislocation on
Σ.
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2.3 Dislocations in elastic half-space

When the case of an elastic half-space is considered, equation (5) remains
valid, but we have to replace σk

ij by another tensor ωk
ij . This can be explained

by the fact that the elementary solutions for a half-space are different from
Somigliana solution (1).

The ωk
ij can be obtained from the displacements corresponding to nuclei

of strain in a half-space through relation (2). Steketee showed a method of
obtaining the six ωk

ij fields by using a Green’s function and derived ωk
12, which

is relevant to a vertical strike-slip fault. Maruyama derived the remaining
five functions Maruyama [1964].

It is interesting to mention here that historically these solutions were first
derived in a straightforward manner by Mindlin Mindlin [1936], Mindlin and Cheng
[1950], who gave explicit expressions of the displacement and stress fields for
half-space nuclei of strain consisting of single forces with and without mo-
ment. It is only necessary to write the single force results since the other
forms can be obtained by taking appropriate derivatives. Their method con-
sists in finding the displacement field in Westergaard’s form of the Galerkin
vector Westergaard [1935]. This vector is then determined by taking a linear
combination of some biharmonic elementary solutions. The coefficients are
chosen to satisfy boundary and equilibrium conditions. These solutions were
also derived by Press in a slightly different manner Press [1965].

6
x3

q
x1

*
x2

O

x3 = −d

δ
L

W
q

7

U1

U2IU3

Free surface

Figure 1: Coordinate system adopted in this study and geometry of the
source model

Here, we take the Cartesian coordinate system shown in Figure 1. The
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elastic medium occupies the region z ≤ 0 and the x−axis is taken to be paral-
lel to the strike direction of the fault. In this coordinate system, uj

i (x1, x2, x3; ξ1, ξ2, ξ3)
is the ith component of the displacement at (x1, x2, x3) due to the jth direc-
tion point force of magnitude F at (ξ1, ξ2, ξ3). It can be expressed as follows
Mindlin [1936], Okada [1985, 1992], Press [1965]:

uj
i (x1, x2, x3) = uj

iA(x1, x2,−x3)−uj
iA(x1, x2, x3)+uj

iB(x1, x2, x3)+x3u
j
iC(x1, x2, x3),

(7)
where

uj
iA =

F

8πµ

(

(2 − α)
δij

R
+ α

RiRj

R3

)

,

uj
iB =

F

4πµ

(

δij

R
+

RiRj

R3
+

1 − α

α

[ δij

R + R3
+

+
Riδj3 − Rjδi3(1 − δj3)

R(R + R3)
− RiRj

R(R + R3)2
(1 − δi3)(1 − δj3)

]

)

,

uj
iC =

F

4πµ
(1 − 2δi3)

(

(2 − α)
Riδj3 − Rjδi3

R3
+ αξ3

[

δij

R3
− 3

RiRj

R5

])

.

In these expressions R1 = x1 − ξ1, R2 = x2 − ξ2, R3 = x3 − ξ3, R2 =
R2

1 + R2
2 + R2

3.
The first term in equation (7), uj

iA(x1, x2, x3), is the well-known Somigliana
tensor, which represents the displacement field due to a single force placed
at (ξ1, ξ2, ξ3) in an infinite medium Love [1944]. The second term also looks
like a Somigliana tensor. This term corresponds to a contribution from an
image source of the given point force placed at (ξ1, ξ2,−ξ3) in the infinite
medium. The third term, uj

iB(x1, x2, x3), and uj
iC(x1, x2, x3) in the fourth

term are naturally depth dependent. When x3 is set equal to zero in equa-
tion (7), the first and the second terms cancel each other, and the fourth term
vanishes. The remaining term, uj

iB(x1, x2, 0) reduces to the formula for the
surface displacement field due to a point force in a half-space Okada [1985]:



















u1
1 = F

4πµ

(

1
R

+ (x1−ξ1)2

R3 + µ
λ+µ

[

1
R−ξ3

− (x1−ξ1)2

R(R−ξ3)2

])

,

u1
2 = F

4πµ
(x1 − ξ1)(x2 − ξ2)

(

1
R3 − µ

λ+µ
1

R(R−ξ3)2

)

,

u1
3 = F

4πµ
(x1 − ξ1)

(

− ξ3
R3 − µ

λ+µ
1

R(R−ξ3)

)

,



















u2
1 = F

4πµ
(x1 − ξ1)(x2 − ξ2)

(

1
R3 − µ

λ+µ
1

R(R−ξ3)2

)

,

u2
2 = F

4πµ

(

1
R

+ (x2−ξ2)2

R3 + µ
λ+µ

[

1
R−ξ3

− (x2−ξ2)2

R(R−ξ3)2

])

,

u2
3 = F

4πµ
(x2 − ξ2)

(

− ξ3
R3 − µ

λ+µ
1

R(R−ξ3)

)

,
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u3
1 = F

4πµ
(x1 − ξ1)

(

− ξ3
R3 + µ

λ+µ
1

R(R−ξ3)

)

,

u3
2 = F

4πµ
(x2 − ξ2)

(

− ξ3
R3 + µ

λ+µ
1

R(R−ξ3)

)

,

u3
3 = F

4πµ

(

1
R

+
ξ2

3

R3 + µ
λ+µ

1
R

)

.

In these formulas R2 = (x1 − ξ1)
2 + (x2 − ξ2)

2 + ξ2
3 .

In order to obtain the displacements due to the dislocation we need to
calculate the corresponding ξk-derivatives of the point force solution (7) and
to put it in Steketee-Volterra formula (5)

ui =
1

F

∫∫

Σ

∆uj

[

λδjk
∂un

i

∂ξn
+ µ

(

∂uj
i

∂ξk
+

∂uk
i

∂ξj

)]

νkdS.

It is expressed as follows:

∂uj
i

∂ξk

(x1, x2, x3) =
∂uj

iA

∂ξk

(x1, x2,−x3) −
∂uj

iA

∂ξk

(x1, x2, x3) +

+
∂uj

iB

∂ξk
(x1, x2, x3) + x3

∂uj
iC

∂ξk
(x1, x2, x3),

with

∂uj
iA

∂ξk
=

F

8πµ

(

(2 − α)
Rk

R3
δij − α

Riδjk + Rjδik

R3
+ 3α

RiRjRk

R5

)

,

∂uj
iB

∂ξk

=
F

4πµ

(

−Riδjk + Rjδik − Rkδij

R3
+ 3

RiRjRk

R5
+

+
1 − α

α

[ δ3kR + Rk

R(R + R3)2
δij −

δikδj3 − δjkδi3(1 − δj3)

R(R + R3)
+

+
(

Riδj3 − Rjδi3(1 − δj3)
)δ3kR

2 + Rk(2R + R3)

R3(R + R3)2
+

+(1 − δi3)(1 − δj3)
(Riδjk + Rjδik

R(R + R3)2
− RiRj

2δ3kR
2 + Rk(3R + R3)

R3(R + R3)3

)

]

)

,

∂uj
iC

∂ξk

=
F

4πµ
(1 − 2δi3)

(

(2 − α)
[δjkδi3 − δikδj3

R3
+

3Rk(Riδj3 − Rjδi3)

R5

]

+

+αδ3k

[ δij

R3
− 3RiRj

R5

]

+ 3αξ3

[Riδjk + Rjδik + Rkδij

R5
− 5RiRjRk

R7

]

)

.
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2.4 Finite rectangular source

Now, let us consider a more practical problem. We define the elementary
dislocations U1, U2, and U3, corresponding to the strike-slip, dip-slip, and
tensile components of an arbitrary dislocation. In Figure 1 each vector rep-
resents the direction of the elementary faults. The vector D is the so-called
Burger’s vector, which shows how both sides of the fault are spread out:
D = u+ − u−.

A general dislocation can be determined by three angles: the dip angle
δ of the fault, the slip angle θ, and the angle φ between the fault plane and
Burger’s vector D. This situation is schematically described in Figure 2.

-

>

x

y
6z

O

δ

7

Fault plane

Free surface

D

-
x′

φ
θ

L

W

Figure 2: Geometry of the source model and orientation of Burger’s vector
D

For a finite rectangular fault with length L and width W occurring at
depth d (Figure 2), the deformation field can be evaluated analytically by
changing the variables and performing integration over the rectangle. This
was done by several authors Chinnery [1963], Iwasaki and Sato [1979], Okada
[1985, 1992], Sato and Matsu’ura [1974]. Here we give the results of their
computations. The final results represented in compact form are listed below
using Chinnery’s notation ‖ to represent the substitution

f(ξ, η)‖ = f(x, p) − f(x, p − W ) − f(x − L, p) + f(x − L, p − W ).
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Let us introduce the following notation:

p = y cos δ + d sin δ, q = y sin δ − d cos δ,

ỹ = η cos δ + q sin δ, d̃ = η sin δ − q cos δ,

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2, X2 = ξ2 + q2.

The quantities U1, U2 and U3 are linked to Burger’s vector through the
identities

U1 = |D| cosφ cos θ, U2 = |D| cosφ sin θ, U3 = |D| sinφ.

For a strike-slip dislocation, one has

u1 = −U1

2π

(

ξq

R(R + η)
+ arctan

ξη

qR
+ I1 sin δ

)
∥

∥

∥

∥

,

u2 = −U1

2π

(

ỹq

R(R + η)
+

q cos δ

R + η
+ I2 sin δ

)
∥

∥

∥

∥

,

u3 = −U1

2π

(

d̃q

R(R + η)
+

q sin δ

R + η
+ I4 sin δ

)
∥

∥

∥

∥

∥

.

For a dip-slip dislocation, one has

u1 = −U2

2π

( q

R
− I3 sin δ cos δ

)
∥

∥

∥
,

u2 = −U2

2π

(

ỹq

R(R + ξ)
+ cos δ arctan

ξη

qR
− I1 sin δ cos δ

)
∥

∥

∥

∥

,

u3 = −U2

2π

(

d̃q

R(R + ξ)
+ sin δ arctan

ξη

qR
− I5 sin δ cos δ

)
∥

∥

∥

∥

∥

.

For a tensile fault dislocation, one has

u1 =
U3

2π

(

q2

R(R + η)
− I3 sin2 δ

)
∥

∥

∥

∥

,

u2 =
U3

2π

(

−d̃q

R(R + ξ)
− sin δ

[

ξq

R(R + η)
− arctan

ξη

qR

]

− I1 sin2 δ

)
∥

∥

∥

∥

∥

,

u3 =
U3

2π

(

ỹq

R(R + ξ)
+ cos δ

[

ξq

R(R + η)
− arctan

ξη

qR

]

− I5 sin2 δ

)
∥

∥

∥

∥

.
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parameter value

Dip angle δ 13◦

Fault depth d, km 25
Fault length L, km 220
Fault width W , km 90
Ui, m 30
Young modulus E, GPa 9.5
Poisson’s ratio ν 0.23

Table 1: Parameter set used in Figures 3, 4, and 5.

The terms I1, . . . , I5 are given by

I1 = − µ

λ + µ

ξ

(R + d̃) cos δ
− tan δI5,

I2 = − µ

λ + µ
log(R + η) − I3,

I3 =
µ

λ + µ

[

1

cos δ

ỹ

R + d̃
− log(R + η)

]

+ tan δI4,

I4 =
µ

µ + λ

1

cos δ

(

log(R + d̃) − sin δ log(R + η)
)

,

I5 =
µ

λ + µ

2

cos δ
arctan

η(X + q cos δ) + X(R + X) sin δ

ξ(R + X) cos δ
,

and if cos δ = 0,

I1 = − µ

2(λ + µ)

ξq

(R + d̃)2
,

I3 =
µ

2(λ + µ)

[

η

R + d̃
+

ỹq

(R + d̃)2
− log(R + η)

]

,

I4 = − µ

λ + µ

q

R + d̃
,

I5 = − µ

λ + µ

ξ sin δ

R + d̃
.

Figures 3, 4, and 5 show the free-surface deformation after three elemen-
tary dislocations. The values of the parameters are given in Table 1.

The traditional approach for hydrodynamic modelers is indeed to use
elastic models similar to the model just described with the seismic param-
eters as input to evaluate details of the seafloor deformation. Then this
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Figure 3: Dimensionless free-surface deformation z/a after dip-slip fault.
Here a is |D| (30 m in the present application).
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Figure 4: Dimensionless free-surface deformation z/a after strike-slip fault.
Here a is |D| (30 m in the present application).
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Figure 5: Dimensionless free-surface deformation z/a after tensile fault. Here
D = (0, 0, U3) and a = U3.
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deformation is translated to the initial condition of the evolution problem
described in the next section. A few authors have solved the linearized wa-
ter wave equations in the presence of a moving bottom Hammack [1973],
Todorovska and Trifunac [2001].

3 Propagation of tsunamis

The problem of tsunami propagation is a special case of the general water-
wave problem. The study of water waves relies on several common assump-
tions. Some are obvious while some others are questionable under certain
circumstances. The water is assumed to be incompressible. Dissipation is
not often included. However there are three main sources of dissipation for
water waves: bottom friction, surface dissipation and body dissipation. For
tsunamis, bottom friction is the most important one, especially in the later
stages, and is sometimes included in the computations in an ad-hoc way. In
most theoretical analyses, it is not included.

A brief description of the common mathematical model used to study
water waves follows. The horizontal coordinates are denoted by x and y, and
the vertical coordinate by z. The horizontal gradient is denoted by

∇ :=

(

∂

∂x
,

∂

∂y

)

.

The horizontal velocity is denoted by

u(x, y, z, t) = (u, v)

and the vertical velocity by w(x, y, z, t). The three-dimensional flow of an
inviscid and incompressible fluid is governed by the conservation of mass

∇ · u +
∂w

∂z
= 0 (8)

and by the conservation of momentum

ρ
Du

Dt
= −∇p, ρ

Dw

Dt
= −ρg − ∂p

∂z
. (9)

In (9), ρ is the density of water (assumed to be constant throughout the fluid
domain), g is the acceleration due to gravity and p(x, y, z, t) the pressure
field.

The assumption that the flow is irrotational is commonly made to analyze
surface waves. Then there exists a scalar function φ(x, y, z, t) (the velocity
potential) such that

u = ∇φ, w =
∂φ

∂z
.



3.1 Classical formulation 16

The continuity equation (8) becomes

∇2φ +
∂2φ

∂z2
= 0 . (10)

The equation of momentum conservation (9) can be integrated into Bernoulli’s
equation

∂φ

∂t
+

1

2
|∇φ|2 +

1

2

(

∂φ

∂z

)2

+ gz +
p − p0

ρ
= 0 , (11)

which is valid everywhere in the fluid. The constant p0 is a pressure of ref-
erence, for example the atmospheric pressure. The effects of surface tension
are not important for tsunami propagation.

3.1 Classical formulation

The surface wave problem consists in solving Laplace’s equation (10) in a
domain Ω(t) bounded above by a moving free surface (the interface between
air and water) and below by a fixed solid boundary (the bottom).1 The free
surface is represented by F (x, y, z, t) := η(x, y, t) − z = 0. The shape of the
bottom is given by z = −h(x, y). The main driving force is gravity.

The free surface must be found as part of the solution. Two boundary
conditions are required. The first one is the kinematic condition. It can be
stated as DF/Dt = 0 (the material derivative of F vanishes), which leads to

ηt + ∇φ · ∇η − φz = 0 at z = η(x, y, t) . (12)

The second boundary condition is the dynamic condition which states that
the normal stresses must be in balance at the free surface. The normal stress
at the free surface is given by the difference in pressure. Bernoulli’s equation
(11) evaluated on the free surface z = η gives

φt + 1
2
|∇φ|2 + 1

2
φ2

z + gη = 0 at z = η(x, y, t) . (13)

Finally, the boundary condition at the bottom is

∇φ · ∇h + φz = 0 at z = −h(x, y) . (14)

To summarize, the goal is to solve the set of equations (10), (12), (13)
and (14) for η(x, y, t) and φ(x, y, z, t). When the initial value problem is

1The surface wave problem can be easily extended to the case of a moving bottom.
This extension may be needed to model tsunami generation if the bottom deformation is
relatively slow.
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integrated, the fields η(x, y, 0) and φ(x, y, z, 0) must be specified at t = 0.
The conservation of momentum equation (9) is not required in the solution
procedure; it is used a posteriori to find the pressure p once η and φ have
been found.

In the following subsections, we will consider various approximations of
the full water-wave equations. One is the system of Boussinesq equations,
that retains nonlinearity and dispersion up to a certain order. Another one
is the system of nonlinear shallow-water equations that retains nonlinearity
but no dispersion. The simplest one is the system of linear shallow-water
equations. The concept of shallow water is based on the smallness of the ratio
between water depth and wave length. In the case of tsunamis propagating
on the surface of deep oceans, one can consider that shallow-water theory is
appropriate because the water depth (typically several kilometers) is much
smaller than the wave length (typically several hundred kilometers).

3.2 Dimensionless formulation

The derivation of shallow-water type equations is a classical topic. Two
dimensionless numbers, which are supposed to be small, are introduced:

α =
a

d
≪ 1, β =

d2

ℓ2
≪ 1, (15)

where d is a typical water depth, a a typical wave amplitude and ℓ a typical
wavelength. The assumptions on the smallness of these two numbers are
satisfied for the Indian Ocean tsunami. Indeed the satellite altimetry obser-
vations of the tsunami waves obtained by two satellites that passed over the
Indian Ocean a couple of hours after the rupture occurred give an amplitude
a of roughly 60 cm in the open ocean. The typical wavelength estimated
from the width of the segments that experienced slip is between 160 and 240
km Lay et al. [2005]. The water depth ranges from 4 km towards the west of
the rupture to 1 km towards the east. These values give the following ranges
for the two dimensionless numbers:

1.5 × 10−4 < α < 6 × 10−4, 1.7 × 10−5 < β < 6.25 × 10−4. (16)

The equations are more transparent when written in dimensionless variables.
The new independent variables are

x = ℓx̃, y = ℓỹ, z = dz̃, t = ℓt̃/c0, (17)

where c0 =
√

gd, the famous speed of propagation of tsunamis in the open
ocean ranging from 356 km/h for a 1 km water depth to 712 km/h for a 4
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km water depth. The new dependent variables are

η = aη̃, h = dh̃, φ = gaℓφ̃/c0. (18)

In dimensionless form, and after dropping the tildes, the equations become

β∇2φ + φzz = 0, (19)

β∇φ · ∇h + φz = 0 at z = −h(x, y), (20)

βηt + αβ∇φ · ∇η = φz at z = αη(x, y, t), (21)

βφt + 1
2
αβ|∇φ|2 + 1

2
αφ2

z + βη = 0 at z = αη(x, y, t). (22)

So far, no approximation has been made. In particular, we have not used
the fact that the numbers α and β are small.

3.3 Shallow-water equations

When β is small, the water is considered to be shallow. The linearized
theory of water waves is recovered by letting α go to zero. For the shallow
water-wave theory, one assumes that β is small and expand φ in terms of β:

φ = φ0 + βφ1 + β2φ2 + · · · .

This expansion is substituted into the governing equation and the boundary
conditions. The lowest-order term in Laplace’s equation is

φ0zz = 0. (23)

The boundary conditions imply that φ0 = φ0(x, y, t). Thus the vertical
velocity component is zero and the horizontal velocity components are inde-
pendent of the vertical coordinate z at lowest order. Let φ0x = u(x, y, t) and
φ0y = v(x, y, t). Assume now for simplicity that the water depth is constant
(h = 1). Solving Laplace’s equation and taking into account the bottom
kinematic condition yields the following expressions for φ1 and φ2:

φ1(x, y, z, t) = −1
2
(1 + z)2(ux + vy), (24)

φ2(x, y, z, t) = 1
24

(1 + z)4[(∇2u)x + (∇2v)y]. (25)

The next step consists in retaining terms of requested order in the free-
surface boundary conditions. Powers of α will appear when expanding in
Taylor series the free-surface conditions around z = 0. For example, if one
keeps terms of order αβ and β2 in the dynamic boundary condition (22) and
in the kinematic boundary condition (21), one obtains

βφ0t − 1
2
β2(utx + vty) + βη + 1

2
αβ(u2 + v2) = 0, (26)

β[ηt + α(uηx + vηy) + (1 + αη)(ux + vy)] = 1
6
β2[(∇2u)x + (∇2v)y].(27)
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Differentiating (26) first with respect to x and then to respect to y gives a
set of two equations:

ut + α(uux + vvx) + ηx − 1
2
β(utxx + vtxy) = 0, (28)

vt + α(uuy + vvy) + ηy − 1
2
β(utxy + vtyy) = 0. (29)

The kinematic condition (27) can be rewritten as

ηt + [u(1 + αη)]x + [v(1 + αη)]y = 1
6
β[(∇2u)x + (∇2v)y]. (30)

Equations (28)–(30) contain in fact various shallow-water models. The so-
called fundamental shallow-water equations are obtained by neglecting the
terms of order β:

ut + α(uux + vuy) + ηx = 0, (31)

vt + α(uvx + vvy) + ηy = 0, (32)

ηt + [u(1 + αη)]x + [v(1 + αη)]y = 0. (33)

Recall that we assumed h to be constant for the derivation. Going back to an
arbitrary water depth and to dimensional variables, the system of nonlinear
shallow water equations reads

ut + uux + vuy + gηx = 0, (34)

vt + uvx + vvy + gηy = 0, (35)

ηt + [u(h + η)]x + [v(h + η)]y = 0. (36)

This system of equations has been used for example by Titov and Syno-
lakis for the numerical computation of tidal wave run-up Titov and Synolakis
[1998]. Note that this model does not include any bottom friction terms. To
solve the problem of tsunami generation caused by bottom displacement,
the motion of the seafloor obtained from seismological models Okada [1985]
and described in Section 3 can be prescribed during a time t0. Usually t0 is
assumed to be small, so that the bottom displacement is considered as an in-
stantaneous vertical displacement. This assumption may not be appropriate
for slow events.

The satellite altimetry observations of the Indian Ocean tsunami clearly
show dispersive effects. The question of dispersive effects in tsunamis is
open. Most propagation codes ignore dispersion. A few propagation codes
that include dispersion have been developed Dalrymple et al. [2006]. A well-
known code is FUNWAVE, developed at the University of Delaware over the
past ten years Kirby et al. [1998]. Dispersive shallow water-wave models are
presented next.
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3.4 Boussinesq equations

An additional dimensionless number, sometimes called the Stokes num-
ber, is introduced:

S =
α

β
≈ 1. (37)

For the Indian Ocean tsunami, one finds

0.24 < S < 46. (38)

Therefore the additional assumption that S ≈ 1 may be realistic.
In this subsection, we provide the guidelines to derive Boussinesq-type

systems of equations Bona et al. [2002]. Of course, the variation of bathymetry
is essential for the propagation of tsunamis, but for the derivation the water
depth will be assumed to be constant. Some notation is introduced. The po-
tential evaluated along the free surface is denoted by Φ(x, y, t) := φ(x, y, η, t).
The derivatives of the velocity potential evaluated on the free surface are de-
noted by Φ(∗)(x, y, t) := φ∗(x, y, η, t), where the star stands for x, y, z or t.
Consequently, Φ∗ (defined for ∗ 6= z) and Φ(∗) have different meanings. They
are however related since

Φ∗ = Φ(∗) + Φ(z)η∗ .

The vertical velocity at the free surface is denoted by W (x, y, t) := φz(x, y, η, t).
The boundary conditions on the free surface (12) and (13) become

ηt + ∇Φ · ∇η − W (1 + ∇η · ∇η) = 0, (39)

Φt + gη + 1
2
|∇Φ|2 − 1

2
W 2(1 + ∇η · ∇η) = 0. (40)

These two nonlinear equations provide time-stepping for η and Φ. In addi-
tion, Laplace’s equation as well as the kinematic condition on the bottom
must be satisfied. In order to relate the free-surface variables with the bot-
tom variables, one must solve Laplace’s equation in the whole water column.
In Boussinesq-type models, the velocity potential is represented as a formal
expansion,

φ(x, y, z, t) =
∞
∑

n=0

φ(n)(x, y, t) zn. (41)

Here the expansion is about z = 0, which is the location of the free surface at
rest. Demanding that φ formally satisfy Laplace’s equation leads to a recur-
rence relation between φ(n) and φ(n+2). Let φo denote the velocity potential
at z = 0, uo the horizontal velocity at z = 0, and wo the vertical velocity
at z = 0. Note that φo and wo are nothing else than φ(0) and φ(1). The
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potential φ can be expressed in terms of φo and wo only. Finally, one obtains
the velocity field in the whole water column (−h ≤ z ≤ η) Madsen et al.
[2003]:

u(x, y, z, t) = cos(z∇)uo + sin(z∇)wo, (42)

w(x, y, z, t) = cos(z∇)wo − sin(z∇)uo. (43)

Here the cosine and sine operators are infinite Taylor series operators defined
by

cos(z∇) =

∞
∑

n=0

(−1)n z2n

(2n)!
∇2n, sin(z∇) =

∞
∑

n=0

(−1)n z2n+1

(2n + 1)!
∇2n+1.

Then one can substitute the representation (42)-(43) into the kinematic
bottom condition and use successive approximations to obtain an explicit
recursive expression for wo in terms of uo to infinite order in h∇.

A wide variety of Boussinesq systems can been derived Madsen et al.
[2003]. One can generalize the expansions to an arbitrary z−level, instead of
the z = 0 level. The Taylor series for the cosine and sine operators can be
truncated, Padé approximants can be used in operators at z = −h and/or
at z = 0.

The classical Boussinesq equations are more transparent when written in
the dimensionless variables used in the previous subsection. We further as-
sume that h is constant, drop the tildes, and write the equations for one spa-
tial dimension (x). Performing the expansion about z = 0 leads to the van-
ishing of the odd terms in the velocity potential. Substituting the expression
for φ into the free-surface boundary conditions evaluated at z = 1 + αη(x, t)
leads to two equations in η and φo with terms of various order in α and β.
The small parameters α and β are of the same order, while η and φo as well
as their partial derivatives are of order one.

3.5 Classical Boussinesq equations

The classical Boussinesq equations are obtained by keeping all terms that
are at most linear in α or β. In the derivation of the fundamental non-
linear shallow-water equations (31)–(33), the terms in β were neglected. It
is therefore implicitly assumed that the Stokes number is large. Since the
cube of the water depth appears in the denominator of the Stokes number
(S = α/β = aℓ2/d3), it means that the Stokes number is 64 times larger in a
1 km depth than in a 4 km depth! Based on these arguments, dispersion is
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more important to the west of the rupture. Considering the Stokes number
to be of order one leads to the following system in dimensional form2:

ut + uux + gηx − 1
2
h2utxx = 0, (44)

ηt + [u(h + η)]x − 1
6
h3uxxx = 0. (45)

The classical Boussinesq equations are in fact slightly different. They are
obtained by replacing u with the depth averaged velocity

1

h

∫ η

−h

u dz.

They read

ut + uux + gηx − 1
3
h2utxx = 0, (46)

ηt + [u(h + η)]x = 0. (47)

A number of variants of the classical Boussinesq system were studied by
Bona et al., who in particular showed that depending on the modeling of
dispersion the linearization about the rest state may or may not be well-
posed Bona et al. [2002].

3.6 Korteweg–de Vries equation

The previous system allows the propagation of waves in both the positive
and negative x−directions. Seeking solutions travelling in only one direction,
for example the positive x−direction, leads to a single equation for η, the
Korteweg–de Vries equation:

ηt + c0

(

1 +
3η

2d

)

ηx +
1

6
c0d

2ηxxx = 0, (48)

where d is the water depth. It admits solitary wave solutions travelling at
speed V in the form

η(x, t) = a sech2

(

√

3a

4d3
(x − V t)

)

, with V = c0

(

1 +
a

2d

)

.

The solitary wave solutions of the Korteweg–de Vries equation are of elevation
(a > 0) and travel faster than c0. Their speed increases with amplitude. Note
that a natural length scale appears:

ℓ =

√

4d3

3a
.

2Equations (44) and (45) could have been obtained from equations (28) and (30).
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For the Indian Ocean tsunami, it gives roughly ℓ = 377 km. It is of the order
of magnitude of the wavelength estimated from the width of the segments
that experienced slip.

4 Energy of a tsunami

The energy of the earthquake is measured via the strain energy released
by the faulting. The part of the energy transmitted to the tsunami wave is
less than one percent Lay et al. [2005]. They estimate the tsunami energy to
be 4.2×1015 J. They do not give details on how they obtained this estimate.
However, a simple calculation based on considering the tsunami as a soliton

η(x) = a sech2
(x

ℓ

)

, u(x) = αc0 sech2
(x

ℓ

)

,

gives for the energy

E =
1√
3
α3/2ρd2(c2

0 + gd)

∫

∞

−∞

sech4x dx + O(α2).

The value for the integral is 4/3. The numerical estimate for E is close to
that of Lay et al. (2005). Incidently, at this level of approximation, there
is equipartition between kinetic and potential energy. It is also important
to point out that a tsunami being a shallow water wave, the whole water
column is moving as the wave propagates. For the parameter values used so
far, the maximum horizontal current is 3 cm/s. However, as the water depth
decreases, the current increases and becomes important when the depth be-
comes less than 500 m. Additional properties of solitary waves can be found
for example in Longuet-Higgins [1974].

5 Tsunami run-up

The last phase of a tsunami is its run-up and inundation. Although in
some cases it may be important to consider the coupling between fluid and
structures, we restrict ourselves to the description of the fluid flow. The
problem of waves climbing a beach is a classical one Carrier and Greenspan
[1958]. The transformations used by Carrier and Greenspan are still used
nowadays. The basis of their analysis is the one-dimensional counterpart of
the system (34)–(36). In addition, they assume the depth to be of uniform
slope: h = −x tan θ. Introduce the following dimensionless quantities, where
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ℓ is a characteristic length3:

x = ℓx̃, η = ℓη̃, u =
√

gℓ ũ, t =
√

ℓ/g t̃, c2 = (h + η)/ℓ.

After dropping the tildes, the dimensionless system of equations (34)-(36)
becomes

ut + uux + ηx = 0,

ηt + [u(−x tan θ + η)]x = 0.

In terms of the variable c, these equations become

ut + uux + 2ccx + tan θ = 0,

2ct + cux + 2ucx = 0.

The equations written in characteristic form are
[

∂

∂t
+ (u + c)

∂

∂x

]

(u + 2c + t tan θ) = 0,

[

∂

∂t
+ (u − c)

∂

∂x

]

(u − 2c + t tan θ) = 0.

The characteristic curves C+ and C− as well as the Riemann invariants are

C+ :
dx

dt
= u + c, u + 2c + t tan θ = r,

C− :
dx

dt
= u − c, u − 2c + t tan θ = s.

Next one can rewrite the hyperbolic equations in terms of the new variables
λ and σ defined as follows:

λ

2
=

1

2
(r + s) = u + t tan θ,

σ

4
=

1

4
(r − s) = c.

One obtains

xs −
[

1

4
(3r + s) − t tan θ

]

ts = 0,

xr −
[

1

4
(r + 3s) − t tan θ

]

tr = 0.

3In fact there is no obvious characteristic length in this idealized problem. Some authors
simply say at this point that ℓ is specific to the problem under consideration.
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The elimination of x results in the linear second-order equation for t

σ(tλλ − tσσ) − 3tσ = 0. (49)

Since u + t tan θ = λ/2, u must also satisfy (49). Introducing the potential
φ(σ, λ) such that

u =
φσ

σ
,

one obtains the equation

(σφσ)σ − σφλλ = 0

after integrating once. Two major simplifications have been obtained. The
nonlinear set of equations have been reduced to a linear equation for u or φ
and the free boundary is now the fixed line σ = 0 in the (σ, λ)−plane. The
free boundary is the instantaneous shoreline c = 0, which moves as a wave
climbs a beach.

The above formulation has been used by several authors to study the
run-up of various types of waves on sloping beaches Carrier et al. [2003],
Tadepalli and Synolakis [1994], Tinti and Tonini [2005]. For example, it has
been shown that leading depression N -waves run-up higher than leading
elevation N -waves, suggesting that perhaps the solitary wave model may
not be adequate for predicting an upper limit for the run-up of near-shore
generated tsunamis.

There is a rule of thumb that says that the run-up does not usually exceed
twice the fault slip. Since run-ups of 30 meters were observed in Sumatra
during the Boxing Day tsunami, the slip might have been of 15 meters or
even more.

Analytical models are useful, especially to perform parametric studies.
However, the breaking of tsunami waves as well as the subsequent floodings
must be studied numerically. The most natural methods that can be used are
the free surface capturing methods based on a finite volume discretisation,
such as the Volume Of Fluid (VOF) or the Level Set methods, and the family
of Smoothed Particle Hydrodynamics methods (SPH), applied to free-surface
flow problems Gomez-Gesteira et al. [2005], Gomez-Gesteira and Dalrymple
[2004], Monaghan [1994]. Such methods allow a study of flood wave dynam-
ics, of wave breaking on the land behind beaches, and of the flow over rising
ground with and without the presence of obstacles. This task is an essential
part of tsunami modelling, since it allows the determination of the level of
risk due to major flooding, the prediction of the resulting water levels in the
flooded areas, the determination of security zones. It also provides some help
in the conception and validation of protection systems in the most exposed
areas.
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6 Direction for future research

A useful direction for future research in the dynamics of tsunami waves is
the three-dimensional (3D) simulation of tsunami breaking along a coast. For
this purpose, different validation steps are necessary. First more simulations
of a two-dimensional (2D) tsunami interacting with a sloping beach ought
to be performed. Then these simulations should be extended to the case of
a 2D tsunami interacting with a sloping beach in the presence of obstacles.
An important output of these computations will be the hydrodynamic load-
ing on obstacles. The nonlinear inelastic behaviour of the obstacles may be
accounted for using damage or plasticity models. The development of Boussi-
nesq type models coupled with structure interactions is also a promising task.
Finally there is a need for 3D numerical simulations of a tsunami interact-
ing with a beach of complex bathymetry, with or without obstacles. These
simulations will hopefully demonstrate the usefulness of numerical simula-
tions for the definition of protecting devices or security zones. An important
challenge in that respect is to make the numerical methods capable of han-
dling interaction problems involving different scales: the fine scale needed for
representing the damage of a flexible obstacle and a coarse scale needed to
quantify the tsunami propagation.
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nales Scientifiques de l’Ecole Normale Supérieure, 24(3):401–517, 1907. 4,
5

H. M. Westergaard. Bull. Amer. Math. Soc., 41:695, 1935. 6


	Introduction
	Tsunami induced by near-shore earthquake
	Introduction
	Volterra's theory of dislocations
	Dislocations in elastic half-space
	Finite rectangular source

	Propagation of tsunamis
	Classical formulation
	Dimensionless formulation
	Shallow-water equations
	Boussinesq equations
	Classical Boussinesq equations
	Korteweg--de Vries equation

	Energy of a tsunami
	Tsunami run-up
	Direction for future research

