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Summary. Data Mining is characterised by its ability at processing large amounts
of data. Among those are the data ”features”- variables or association rules that
can be derived from them. Selecting the most interesting features is a classical data
mining problem. That selection requires a large number of tests from which arise a
number of false discoveries. An original non parametric control method is proposed
in this paper. A new criterion, UAFWER, defined as the risk of exceeding a pre-set
number of false discoveries, is controlled by BS FD, a bootstrap based algorithm
that can be used on one- or two-sided problems. The usefulness of the procedure is
illustrated by the selection of differentially interesting association rules on genetic
data.
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Introduction

The emergence of Data Mining is linked to the increase in storage capacity
and computing power of computers. It is also linked to the increased number
of information systems and to the automation of data collection. This emer-
gence follows from the development of Tukey’s Exploratory Data Analysis
[17] and of Benzecri’s Analyse des Données [4], while integrating lessons from
databases and artificial intelligence. Whereas statistics organises data collec-
tion and analysis for an objective set a priori, data mining extracts relevant
information a posteriori from the collected data. This creates some difficul-
ties for statistical inference when working in a data mining context. More
specifically, the statistical control of false discoveries when performing a large
number of tests is of interest here.

The paper is organized as follows. First, we analyze the specificities of
Data Mining which impede the application of statistical inference techniques
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(Sect. 1). The problem of controlling the false discoveries with multiple tests
will then be reviewed (Sect. 2), and BS FD, a non parametric method to
control the number of false discoveries will be introduced (Sect. 3). In the last
section, we show how BS FD allows the selection of the most differentially
interesting association rules from a gene expression micro-array data (Sect. 4).

1 Data Mining Specificities and Statistical Inference

Data Mining is typically used on corporate databases, yielding large volumes
of data, individuals or variables. Those databases ore often populated by au-
tomated systems (e.g. transactional databases). Moreover, the complexity of
the data (sound, image, numbers, and text) contributes to the multiplication
of the number of variables (e.g. medical record databases).

The large number of individuals (n) makes algorithms with complexity
linear in n appealing and introduces the problem of selecting individuals.
Selection can be done by mere sampling [5] or by reducing the learning set
[20]. From a theoretical point of view, high-dimensional data present several
weird specificities under the i.i.d hypothesis, as quoted by Verleysen [19]:
curse of dimensionality, concentration of measures, empty space phenomenon.
In most cases, the real data are located near a manifold of smaller dimension
than the number of variables. Variable selection is then an important task of
data mining.

The tools of statistical inference can be used at every step of data mining:
(1) to detect outliers and/or to select the relevant variables during data prepa-
ration; (2) to control the learning process, especially step-wise algorithms; (3)
to validate results under supervised learning, or to assess the stability of the
results under unsupervised learning. These tools, and the p-values, can be
used for statistical testing, or as selection criteria. Given the specificities of
data mining, new problems arise:

• overfitting: When the model fits the learning data too well, in part due to
its complexity, it incorporates some amount of sampling variability, which
reduces its performance when generalising to new data. The reason for the
underperformance is often that standard statistical inference formulae are
used on an optimized empirical result. Cross-validation or using distinct
learning and testing sets often solves that problem.

• status of records: The status of the individuals is not always clear and
this impedes the validation of the inferred results. Are the data a sample?
If so, what sampling plan was used? It is important that the validation
techniques accounts for the sampling plan (see [5] for cross-validation of
results obtained from a cluster sample). Are they rather an exhaustive
population? If so, can it be considered a sample of a super-population?
Rather than working on a population, wouldn’t it be better to work on a
sample (see [5] for the case of decision trees)?
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• large number of records: All usual tests become significant when the
sample is large enough. The null hypothesis is rejected by slightest of
differences. It is just like everything was happening under a microscope.
P-values, particularly, become extremely small, which makes comparisons
difficult. Facing this problem, Lebart et al. [13] suggested to use the test
values instead of p-values, which provide an equivalent information, but
easier to use and interpret. Briefly, the test value associated with a prob-
ability level p is a standardized normal variable u corresponding to this
level: for example, a test value of u = 1.96 will correspond to bilateral prob-
ability level p = 0.05. In a more drastic way, Morineau and Rakotomalala
[14] propose an alternative criterion, TV100, a modification to the test
value. The TV100 test value is calculated as if the empirical results had
been obtained from a sample of size 100.

• multiple testing: The multiplicity of tests inflates the number of Type I
errors (false discoveries). This problem is often encountered when selecting
relevant attributes (e.g. selection of most differentially expressed genes
from micro-array data [6]) or when comparing the efficiency of several
algorithms [8].

The remainder of this paper addresses this latter problem.

2 Validation of Interesting Features

2.1 Searching Interesting Features

The problem of selecting interesting features is encountered in supervised
learning (e.g. selection of discriminant variables) and unsupervised learning
(e.g. selection of interesting association rules). From a sample, m features
(variables or rules) are examined in turn, and a decision must be made with
respect to their selection.

Discriminant variables are those whose behaviour, in the real world,
changes with classification variables. The discriminating power of a variable is
commonly assessed by comparing its mean value conditional to a class (Stu-
dent’s t test for two classes, ANOVA, otherwise), by comparing its average
ranks (Mann-Whitney rank test for two classes, Friedman’s, otherwise), or
using a permutation test. The null hypothesis, noted H0, assumes that the
means are equal, stating the lack of discriminating power of the variable of
interest. For example, the two-class situation is written as H0 : µ1 − µ2 = 0,
where µi is the theoretical mean of the variable of interest in class i, i = 1, 2.

Association rules were originally developed in the context of transactional
databases. Each record is a transaction, where the fields are the possible items
of the transaction. Considering two sets of items (itemset) A and B having no
common item, an association rule A → B means that if somebody buys the
items of A, then they probably will buy the items of B. The rule A → B has
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support s if s% of transactions contain both A and B. The rule A → B holds
with confidence c if c% of transactions that contain A also contain B. Let n
be the number of transactions, nx the number of transactions containing a
given itemset X, px = nx/n the proportion of transactions containing X and
πx the corresponding real world proportion. Then, s = pab and c = pb/a. More
generally, A and B can be conjunctions of binary attributes having no common
attributes. Following Apriori [1], the founding algorithm, support-confidence
extraction algorithms exhaustively seek the association rules whose support
and confidence exceed some user-defined thresholds. A set R of admissible
rules, of cardinality m = #R is then obtained. An admissible rule is interesting
if the consequent occurs more often when the antecedent has in effect occurred.
The null hypothesis of independence between A and B, noted H0 : πb/a = πb,
must be tested against the alternative of positive dependence H1 : πb/a > πb.

In both situations, selecting variables or selecting rules, the selection is
the result of m replications of the test of H0 at the predetermined level α0.
This multiplicity of tests inflates the number of false discoveries (features
wrongly selected). In effect, if m tests are developed, each with a probability
of Type I error set at α0, even if no feature is truly interesting, the procedure
automatically creates mα0 false discoveries.

2.2 Constructing Multiple Tests

Significance Test

The ”interestingness” of a feature f is assessed by a measure M(f). For ex-
ample, the measure may be the difference of means in the case of two-class
discriminant variables selection, or confidence in case of selection of associa-
tion rules. The feature is said to be significant under M with respect to µ0 if
Mobs = M(f) is significantly far from some preset value µ0. The alternative
hypothesis may be bilateral (H1 : µ 6= µ0), or unilateral (the more often right-
sided hypothesis, H1 : µ > µ0). H0 is rejected whenever Mobs is too far from
H0 in the direction of H1, with a Type I error risk set at α = α0. The p-value
for Mobs is computed as the probability of obtaining a value as exceptional
as Mobs in direction of H1, assuming H0 is true. The feature is selected if the
p-value for Mobs is less than α0. Obviously, this requires the knowledge of the
distribution of M(f) under H0 or the estimation of p-values by resampling.

Risk and Type I Error

The identification of the significant features under M among the m features
extracted from a database requires m tests. This raises the problem of false
discoveries, a recurrent problem in data mining. If m uninteresting features
are tested at the level α0, then mα0 features will mechanically be erroneously
selected. For example, with α0 = 0.05, and a base of extracted features com-
prising m = 10, 000 features, even if all were non-significant, 500 features
would mechanically be selected!
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Table 1. Synthesis of the results of m tests
XXXXXXXXXReality

Decision
Acceptation Reject Total

H0 true U V m0

H1 true T S m1

Total W R m

The fundamental idea of Benjamini and Hochberg [2] is to consider the
number of errors over m iterations of the test, rather than the risk of being
wrong on one test. From Table 1 (where an upper case represents observable
random variables and lower case are fixed yet unknown quantities m0 and
m1), one can derive several indicators. The two most common are described
next, FWER (Family Wise Error Rate) and FDR (False Discovery Rate).

FWER is the probability of erroneously rejecting H0 at least once,

FWER = P (V > 0) .

The well-known Bonferroni correction, that is setting the risk at α0
m so that

the FWER be α0, is not a good solution for two reasons:

• FWER is in fact not controlled, α0
m ≤ FWER ≤ α0, and equal to α0 only

when the features are mutually independent;
• FWER is conservative, thus increasing the risk of a Type II error, that is,

not finding an interesting feature.

One needs a criterion less stringent than FWER for a large number of tests
and to exert some form of control, especially when the tests are not indepen-
dent. The authors proposed the User Adjusted Family Wise Error Rate, an
original and more flexible variant [12] which allows V0 false discoveries,

UAFWER = P (V > V0) .

It can be controlled using a bootstrap based algorithm (Sect. 3.3).
Other quantities using the expectation of V , the number of false discov-

eries, possibly standardised, have been proposed to remedy the difficulties
inherent to FWER. The best known is FDR [2], the expected proportion of
erroneous selections among the selected features. When R = 0, define V

R = 0,
that is, FDR = E(Q), where Q = V

R if R > 0, 0 otherwise. Then

FDR = E(
V

R
| R > 0)P (R > 0) .

Benjamini and Liu [3] proposed a sequential method for the control of FDR
under the assumption of independence. The p-values are examined in increas-
ing order and the null hypothesis is rejected if the p-value at hand p(i) is less
than iα0

m . This procedure ensures that FDR = m0
m α0 under independence. It
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is compatible with positively dependent data. Storey [15] proposed the pFDR,
a variation on FDR, using the knowledge that H0 has been rejected at least
once, pFDR = E(V

R | R > 0). At the cost of a fixed proportion of erroneous
selections, these quantities are less severe, thus augmenting the probability of
selecting an interesting feature (increased power). One has FDR ≤ FWER
and FDR ≤ pFDR, hence FDR ≤ pFDR ≤ FWER when m is large, be-
cause P (R > 0) goes to 1 as m increases. The problem of controlling these
criteria is resolved, in the literature, by the use of p-values. A remarkable
summary of can be found in Ge et al. [8].

3 Controlling UAFWER Using the BS FD Algorithm

3.1 Notations

• C: set of cases; n = #C; p: number of attributes;
• F : base of admissible features with respect to some predefined measures;

m = #F ;
• M : measure; µ(f): theoretical value of M for feature f ; M(f): empirical

value of M for f on F ;
• V : number of false discoveries; δ: risk level of the control procedure, with

V0 the number of false discoveries not to be exceeded given δ; F∗ a subset
of F comprising the significant features as determined by M and µ0.

3.2 Objective

The objective is to select the features f of F that are statistically significant
as measured by M , meaning that M(f) is significantly larger than µ0(f),
the expected value of M(f) assuming H0 true. The authors have suggested
various algorithms that use the VC-dimension and other tools of statistical
learning so that 100% of the identified features be significant for a given α
[16]. A bootstrap-based algorithm BS was also proposed for the same purpose
[11]. Experience has shown that this approach might be too prudent, therefore
not powerful enough. Allowing a small number of false discoveries, after Ben-
jamini’s work (Sect. 2.2), the authors propose BS FD, an adaptation of BS
that controls the number of false discoveries. BS FD selects features so that
UAFWER = P (V > V0), which ensures that the number of false discoveries
does not exceed V0 at the level δ. The algorithm guarantees that P (V > V0)
converges to δ when the size of the sample of cases increases.

3.3 Unilateral BS FD

Given C, F , and M , µ(f) > µ0(f) is guaranteed by setting µ(f) > 0, without
loss of generality simply by shifting µ(f) to µ(f)− µ0(f). V0 false discoveries
are allowed at risk δ.
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1. Empirical assessment. All features of F are measured using M on the set
of cases C, creating the M(f), f ∈ F .

2. Bootstrap. The following operations are repeated l times:
a. Sample with replacement and equal probability m cases from C, thus

creating C′, #C′ = #C. Some cases of C will not be in C′ while some
others will be there many times. All features are measured on C′ using
M , creating the M ′(f), f ∈ F .

b. Compute the differences M ′(f) − M(f), then compute ε(V0, i), the
smallest value such that #{M ′(f) > M(f) + ε(V0, i)} ≤ V0. Hence,
ε(V0, i) is the (V0 + 1)st largest element of the M ′(f)−M(f), during
the ith iteration, i = 1, 2...l.

3. Summary of bootstrap samples. There are l values ε(V0, i). Compute ε(δ),
(1− δ)th quantile of the ε(V0, i): that is, ε(V0, i) was larger than ε(δ) only
lδ times in l.

4. Decision. Keep in F∗ all features f such that M(f) > ε(δ).

3.4 Bilateral BS FD

The procedure BS FD can easily be extended to bilateral tests. Let V0l and
V0r, the number of false discoveries tolerated at the left and right, respectively,
be such that V0l +V0r = V0 for a risk δ. The idea behind BS FD is to estimate
using a bootstrap by how much M can move to the left or to the right still
maintaining V0l false discoveries to the left and V0r false discoveries to the
right, at the global level δ. It is then sufficient to modify steps 2.b., 3. and 4.
of BS FD like so :

2.b Set V0l and V0r such that V0l + V0r = V0. At the ith iteration of the
bootstrap, compute ε(V0r, i), the smallest number such that #{M ′(f) −
M(f) > ε(V0r, i)} ≤ V0r. Thus, ε(V0r, i) is the (V0r + 1)st largest element
of the M ′(f)−M(f). Then, compute ε(V0l, i), the smallest number such
that #{M ′(f)−M(f) < −ε(V0l, i)} ≤ V0l. Then, ε(V0l, i) is the (V0l + 1)st

largest element of the M(f)−M ′(f).
3. Summary of bootstrap samples. At the completion of the l bootstrap it-

erations, l pairs have been created, (ε(V0l, i), ε(V0r, i)) , i = 1, 2...l. Com-
pute ε(δ) = (ε(V0l), ε(V0r)), the (1− δ) quantile of the (ε(V0l, i), ε(V0r, i)),
where (a, b) > (c, d) ⇔ (a > c) et (b > d). Only lδ times in l was
(ε(V0l, i), ε(V0r, i)) larger than (ε(V0l), ε(V0r)).

4. Decision. Keep in F∗ all features f of F such that M(f) < −ε(V0l) or
M(f) > ε(V0r).

At step 3., there are many possible maxima as the order is not total.
Among the many maxima, it is suggested to choose that which maximises the
number of discoveries; stated in a different manner, this choice maximises the
power of the test. This solution is both efficient and flexible, but rather hard
to implement.
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A different solution, easier to implement but less powerful, is to execute
step 2. with V0l = V0r = V0

2 and to compute the corresponding ε(V0l, i) and
ε(V0r, i). The quantities ε(V0l) , the 1− δ

2 quantile of the ε(V0l, i), and ε(V0r),
the 1− δ

2 quantile of the ε(V0r, i) are then obtained by bootstrap. There is yet
another possibility for step 3. Define ε(δ) as the (1− δ) quantile of the set of
2l values ε(V0l, i) and ε(V0l, i), where i = 1, 2, ..., l. F∗ retains all features f
of F such that M(f) < −ε(δ) or M(f) > ε(δ). The difficulty is that the same
iteration i can give both ε(V0l, i) and ε(V0r, i) exceeding ε(δ). Applying BS FD
on the |M ′(f)−M(f)| (or on the bilateral p-values when they are known)
can not be considered a solution, as this procedure masks certain variations
between the original sample and the bootstrap replicates.

3.5 Rationale

Bootstrap methods [7] approximate the distance between the empirical and
true distributions by the distance between the bootstrap and empirical distri-
butions. At the ith bootstrap iteration, there are V0 features whose evaluation
augments by more than ε(V0, i). Given the definition of ε(δ), the number of
features whose evaluation augments by more than ε(δ) is larger than V0 in
a proportion δ of the l iterations. Consequently, selecting features for which
M(f) exceeds ε(δ), one is guaranteed to have at most V0 false discoveries at
the risk level δ.

Moreover, bootstrap-based methods have solid mathematical foundations
[9] which require a clearly posed question. Formally, the objective is that the
distribution function of the number of features such that µ(f) < 0 while
M(f) > ε, be at least 1 − δ for V0. One gets #{µ(f) ≤ 0 et M(f) > ε} ≤
#{M(f) ≥ µ(f)+ ε}. Theorems on bootstrap applied to a family of functions
verifying the minimal conditions [18] yield the approximation of this quan-
tity by #{M ′(f) ≥ M(f) + ε}, which serves as a basis for ε(V0, i) and ε(δ)
described in this section.

3.6 Extension to Multiple Measures

In practice, more that one measure will be of interest to evaluate feature inter-
estingness. The extension of BS FD, noted BS FD mm, is achieved by using as
a summary measure the minimum of the various measures. Hence, for 3 mea-
sures M1, M2 and M3, one considers M(f) = min {M1(f),M2(f),M3(f)}.
Using BS FD mm on M at the level δ will select features which comply with
M1, M2 and M3, at level δ. Risk of Type II errors can be optimised by work-
ing with Hadamard differentiable transformations of the Mi that will make
the measures homogenous, for example, p-values or reductions, through stan-
dardisation.
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3.7 Complexity of BS FD

The complexity of BS FD is proportional to l × m × n, assuming that the
random number generator operates in constant time. In effect, the complexity
of the search for the kth largest element of a table is proportional to the size
of the table. The value of l must be large enough so that the finiteness of l
impedes not the global reliability, and be independent of both m and n. The
algorithm is globally linear in m× n, to a constant l linked to the bootstrap.

4 Experimentation

4.1 Introduction

The data used here are from Golub et al. [10]. They represent the level of
expression of 7, 129 genes in 62 tissue samples of Acute Myeloid Leukemia
(AML, 34 tissue samples) or Acute Lymphoblastic Leukemia (ALL, 28 tis-
sue samples), two types of human cancer. They are available as standardised
Affymetrix data. Thus, for a gene and a tissue sample, the level of expression
and its presence or absence in the tissue sample are known. Moreover, the
class of each tissue sample is known. Rules of the type “if gene A is present,
then it is very likely that gene B be present as well” are of interest. Here, we
seek rules that are differentially interesting, that is, relevant to a class and
not for another.

4.2 Notation

• n: the number of tissue samples; ni: the number of tissue samples in class
i; p: the number of genes.

• Di: a ni × p Boolean matrix. Di
jk = 1 if tissue j expresses gene k, 0

otherwise.
• pai : prevalence of the antecedent on Di and pbi the prevalence of the

consequent on Di.
• Supi(r) and Confi(r): the support and confidence for rule r on Di; m: the

number of rules examined.

4.3 Process

Differentially interesting rules are identified by a two-step process:

a. Selection of differentially expressed genes.

These are genes more frequent on average in one class than in another. By
limiting the search for rules to those genes, the number of rules is reduced, and
the search is focused on the best explanatory variables of the class variable.
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These genes are determined by computing for each the p-value of a Student’s
t test. The FDR control procedure [3] (Sect. 2.2) is used to identify the genes
for which the frequency in classes ALL and AML are significantly different,
at the 0.05 level. Then, let p be the number of such genes and Di the matrix
reduced to those only genes.

b. Selection of differentially interesting rules

• Rule extraction. Build Ri, the set of association rules of Di such that
∀r ∈ Ri, Supi(r) > 0.25 and Confi(r) > 0.5, using the Apriori algorithm.

• Filtering admissible rules. Build R = {r ∈ R1 ∪R2 | pa1 > 0.5 and pa2 >
0.5} . This ensures that each rule is meaningful in both D1 and D2 by
assuring that the antecedent is present in at least 50% of the cases for
both classes.

• Measure of interestingness. ∀r ∈ R, M(r) = Conf1(r)−Conf2(r). A rule
is interesting if it has high confidence for the tissue samples of one class
and low confidence on the other class. The rules that characterise a class
are thus privileged.

• Selecting differentially interesting rules. The set R∗ of truly interesting
rules under M is determined by the application of the bilateral BS FD
(V0 = 10, δ = 0.05) on R.

4.4 Results and Interpretation

By applying FDR, the number of genes is reduced from 7, 129 to 980. From
these 980 discriminating genes, 174, 412 admissible rules (as defined above) are
obtained. The bilateral BS FD procedure (equal shares of V0 and δ between
the left and right tails) identifies 799 differentially interesting rules. In our case,
the bilateral BS FD selects the rules for which M(r) < −0.76 or M(r) > 0.74.
Among those, 235 are characteristic of the AML class and 564 of the ALL class.

Inspection of these rules shows that they contain only 26 different conse-
quents (table 2). For each one, the table lists the name, the number of rules
where it appears (#), the class for which the rules are valid (Class), its prob-
ability of occurrence in each class (pb1 and pb2) and its rank when the genes
are sorted by increasing p-values (Rank).

These consequents correspond to differentially expressed genes. For on
the two tissue types, they are strongly co-expressed with genes (the an-
tecedents) themselves differentially expressed (for example, gene M31211-s is
co-expressed with 228 other genes on tissues of the ALL class). Conversely, for
the other tissue type, the co-expressions do not occur, though the antecedents
are still present (rules are such that pa1 > 0.5 and pa2 > 0.5). Their interest is
not only the difference in expression levels between tissue types, but also the
disappearance of the context (the set of co-expressed genes) that allows their
presence. These genes are thus robust and specific indicators of the difference
between ALL and AML cancers. Still, sorting in increasing order of p-values,
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Table 2. Consequent of interesting rules

Name # Class pb1 pb2 Rank

X95735 30 AML 0.09 0.82 1
M23197 4 AML 0.18 0.86 3
M84526 14 AML 0 0.71 4
U46499 2 AML 0.20 0.89 8
S50223 3 ALL 0.66 0.07 14

M31211-s 228 ALL 0.95 0.21 22
U05259-rna1 16 ALL 0.82 0.18 28

M96326-rna1 185 AML 0.05 0.82 30
M92287 30 ALL 0.91 0.25 41
L47738 93 ALL 0.86 0.14 71
U53468 1 ALL 0.59 0.04 73
M83233 19 ALL 0.73 0.07 75
M11722 103 ALL 0.91 0.18 83

Name # Class pb1 pb2 Rank

M89957 2 ALL 0.68 0.11 136
M12959-s 3 ALL 0.93 0.32 183
D88270 8 ALL 0.73 0.11 197
L08895 2 ALL 0.77 0.21 224
L41870 2 ALL 0.84 0.25 258

Z14982-rna1 1 ALL 0.59 0.07 261
U79285 9 ALL 0.73 0.14 277

AB000449 10 ALL 0.77 0.14 298
D21262 11 ALL 0.82 0.18 343
D86983 2 ALL 0.73 0.11 472
X62535 15 ALL 0.86 0.21 581
U37352 1 ALL 0.84 0.32 617
X79865 5 ALL 0.84 0.21 629

these genes do not correspond to the 26 first (table 2). Their discovery adds
some qualitative information (these genes are robust indicators of ALL and
AML cancers and the context in which they are expressed) to quantitative in-
formation (the probability of having different levels of expression between two
tissue types). Proper use of these preliminary results requires further study
in partnership with biologists.

Conclusion and Perspectives

The control of the UAFWER criterion by BS FD is a doubly original solution
to the increased number of false discoveries. Accepting a pre-determined num-
ber of false discoveries, at a pre-determined risk level, this procedure allows
the selection of interesting features without the computation or estimation of
p-values. Bilateral and unilateral tests can be handled by the procedure. The
identification of differentially interesting rules opens up a new field of research
in the domain of rules of association. BS FD offers the further advantage of us-
ing measures of interest more sophisticated than confidence, eventually more
than one measure at once.
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d´association. In Conférence Apprentissage CAp´2001, pages 133–148, 2001.

17. J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
18. A. Van Der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes.

Springer Series in Statistics. Springer-Verlag Publishers, 1996.
19. M. Verleysen. Limitations and future trends in neural computation, chapter

Learning high-dimensional data, pages 141–162. IOS Press, 2003.
20. D. R. Wilson and T. R. Martinez. Reduction techniques for instance-based

learning algorithms. Machine Learning, 38(3):257–286, 2000.


