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Post Processing for the Vector Finite Element
Method: Accurate Computing of Dual Field
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An accurate method to compute dual field in high frequency time harmonic problem is presented. From a primal field obtained
by a vector finite element discretization, the dual field is obtained without numerical derivation by using a least square argument.
The accuracy of the method is compared with the natural method using shape function derivatives.

Index Terms—Edge elements, finite element method, post-processing.

I. INTRODUCTION

E
DGE finite elements (FE) are useful in modeling electro-

magnetic phenomena because of their right physical sense.

Furthermore, it has been shown that a better approximation of

the solution may be obtained compared to the nodal-based FE

[1]–[3]. The incomplete first-order edge FE is commonly used in

high frequency time-harmonic electromagnetic modeling. The

degrees of freedom are path integrals along the edges in the

mesh. The first-order elements are a good compromise between

the precision and the computational time, in particular the time

dedicated to the resolution of the matrix system by an itera-

tive solver. However, the knowledge of the nodal field values

remains necessary for various reasons. Maximal values located

at interfaces can be required to predict possible electric break-

downs. Nodal values may be necessary to achieve some addi-

tional computation: induced currents in the conductors, source

term for coupled problem (magnetothermal). Postprocessors for

visualization are usually based on the nodal representation of the

fields. For vector finite elements, two techniques are commonly

used to compute nodal values from degrees of freedom.

• Only nodal values inside an element are computed from

its edge values. However, this method doesn’t give a

unique value on its boundary, namely on the vertices.

• An average value of the nodal field is evaluated on each

node and for each region by taking into account the con-

tribution of all the elements connected to the considered

node. Previously, a post-processing technique to obtain

an accurate continuous nodal representation of the field

has been proposed by the authors [4]. The proposed tech-

niques were based on a least square formulation leading to

the resolution of a sparse matrix system. They were com-

pared with success in terms of accuracy and CPU time on

a FE formulation for open boundary–frequency domain

problems.

The computation with a good precision of the dual field is

also an important challenge in the modeling of high frequency

problems because it is necessary for the calculation of additional
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sizes such as: power radiated by an antenna, wall Joule losses in

microwave resonant metallic cavities, etc.

In this paper, the computation of the dual field from the circu-

lation of the primal field along the edges of the mesh is investi-

gated. These circulations are given from the edge FE code. Our

method allows the computation of the dual field without numer-

ical derivation with a very low additional computation time. Its

accuracy is evaluated on the scattering of a plane wave by a per-

fect electrical conductor (PEC) sphere and a perfect magnetic

(PM) one. The natural method using the computation of shape

functions derivatives at the mesh nodes is taken as reference.

II. METHOD

Let a complex vector field be obtained from some compu-

tations with curl; )-conforming finite elements on a tetra-

hedral mesh of a bounded domain of . We are seeking

a “good representation” of by a continuous vector

field on . Let us denote the set of faces in the mesh

and for each face in and a normal unit vector with an

arbitrary orientation.

For , a face with an oriented boundary according to the

orientation of , the Stokes’ theorem writes

(1)

Vector field being given by incomplete first-order edge ele-

ments, the flux through any face in

can be deduced from the computed values where are

the edges on the boundary of . A representation of can

be deduced on the whole mesh by

(2)

where is the basis of the div; )-conforming FE

space of first-order with the flux on each face in as degrees

of freedom. Then a continuous approximation of can be ob-

tained by solving the following minimization problem: Find a

vector field which minimizes for all B in

(3)
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where is the nodal conforming FE space of degree 1 defined

on and is a weigth such that .

III. LINEAR PROBLEM TO SOLVE

The unknown field can be decomposed as

where to (the nodal space dimension)

is the nodal vector basis of the FE space and the unknown

vector to contains the values of each

component of the field on the vertices of the mesh .

The minimization problem (3) is a least squares problem with

one solution at least. The components of the solution can be

computed from a linear system with a real symmetric matrix

and a right-hand side , respectively, defined by

(4)

with to

to (5)

and

(6)

with

to (7)

For is a positive definite matrix and the least

squares problem admits an unique solution. The limit case

is investigated in Section IV.

Numbering the unknowns according to the three components

on the axes, the nodal basis can be decomposed as

to to to (8)

where to n is the scalar nodal basis and n the number

of vertices. It induces a partition of the matrix into a 3 3

block matrix with 9 blocks and similarly for with 3

blocks

(9)

From (4) and (8), it is easy to check that is given by

(10)

where is the usual mass matrix defined by

to (11)

is not a block diagonal matrix but one sees from (5) and (8)

that each block is as sparse as .

In order to compute the non zero entries of , it is convenient

to introduce the sets of faces associated to each vertex of the

mesh:

vertex belongs to face

Then denoting by the three coordinates of a normal

unit vector one gets

for (12)

Then according to (5), (8), and (12), the nonzero entries of

are given by

and the entries of the other blocks of defined by (9) can be

easily deduced.

In order to explicit the entries of the right-hand side , we

introduce the notation

vertex belongs to tetrahedron

From (2), (6), and (8), one gets

(13)

By denoting to , the -coordinates of the four

vertices of tetrahedron , from the definition of the local shape

functions, it can be deduced

(14)

with

if

if

if normal is outgoing of

if not

where and are the respective local numbers in of and

the vertex opposite to .

The computation of from (7), (8), and (12) is straight-

forward

(15)

IV. LIMIT CASE AND

In the particular case , the linear system reduces to

. As pointed out before in (10), matrix has a

block diagonal structure with mass matrices on the diagonal.

In order to save some computation time an explicit but approx-

imate solution to the least square problem can be obtained by

a mass-lumping technique [5]. The mass lumping allows to ap-

proximate the mass matrix by a diagonal matrix

with (16)

The components of the approximate solution of the least

squares problem are obtained as

to .
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For , the minimization problem defined in (3) is a pure

discrete least square problem. From (5) it can be verified that

where T is a rectangular matrix ( :

number of faces of ) with entries given by

to (17)

with the index of the face .

Uniqueness of the solution is ensured if there exists no

such that , i.e., if the columns of are linearly indepen-

dent. It requires that the number of lines is larger than

the number of columns, i.e., the number of faces is greater or

equal to three times the number of nodes.

The uniqueness condition of the solution can be also written

as: there exists no such that for any

face in . It can be also translated into the following mesh

characterization: there is no vector field defined on the

nodes of the mesh such that for any face the vector

belongs to . In the numerical experiments

presented later, such a property appears to be satisfied by the

meshes. In particular, the necessary condition greater than

is always satisfied.

V. RESULTS

In the following, method 1 (using shape functions derivatives)

is the reference method. Method 2 concerns the energy approx-

imation . Method 3 is obtained with the flux approxima-

tion . Method 4 mixes both criteria where h is

the length average of the mesh edges. Method 5 corresponds

to (energy criterion) with the mass lumping approxi-

mation. For methods 2–4, a symmetric quasi-minimal residual

solver with symmetric successive over relaxtion (SSOR) pre-

conditioning (PQMR) is used to solve the matrix system.

The accuracy and the time required for each post processing

method are tested on two examples. The numerical results are

compared with analytical solutions of scattering of a plane wave

by a sphere. Analytical solutions can be found in [6] and nu-

merical formulations of scattering problems are given in [7]. A

50-mm radius sphere is meshed with 100 nodes on its surface.

The frequency of the incident plane wave is 1 GHz. For the nu-

merical computation, the absorbing boundary condition (ABC)

(first-order Engquist Majda) is located at a half wavelength from

the sphere (Fig. 1).

The efficiency of the different post processing strategies is

evaluated on the surface of the sphere by means of a relative

error estimator defined by

Error (18)

where is the analytical solution to the magnetic for-

mulation. The nodal values are given by the post

processing methods from the FE edge values obtained in the

electric formulation.

In the first example, the sphere is modeled as a PEC. The

problem is meshed with 4481 nodes (100 nodes on the sphere’s

surface) and 22 108 tetrahedral elements leading to 28 161 edges

Fig. 1. (a) Analytical model and (b) numerical model of scattering by a sphere.

(294 edges on the sphere’s surface). The total solving time in-

cluding assembling and solving of the matrix system for the FE

code is about 300 s on a HP J5000. Observe that the same solver

as in the post-processing is used: 217 iterations of symmetric

PQMR are required to solve the matrix system.

In the second example, the sphere consists of a perfect mag-

netic material with . A discontinuity of the magnetic field

at the surface of the sphere is therefore introduced and the inte-

rior of the sphere (region 1) has to be meshed. The same mesh as

for the PEC sphere (Fig. 1) is used outside of the sphere (region

2). For the whole mesh, one gets 4547 nodes and 22 783 tetrahe-

dral elements leading to 28 805 edges (294 edges on the sphere’s

surface). The total time for the edge FE solving is about 436 s

(537 iterations of the symmetric PQMR). The post processing

is made in the only region 2 (air) according to the analytical

solution [6].

For the analytical model of scattering by the sphere (PEC or

magnetic), the solution in magnetic field [6] is obtained from

an incident plane wave with a magnetic field (

A/m) on the -axis and a propagation of the incident plane

wave across the -axis (Fig. 1).

For the numerical solution (edge FE code) of scattering by the

sphere (PEC or magnetic), the formulation is written in term of

total electrical field . The incident electrical field is on the

-axis with a V/m and a propagation of the

incident plane wave across the -axis (Fig. 1). The dual field

is computed with the five methods.

The proposed methods (methods 2–5) are compared to the

natural method 1 which consists in computing the curl of

on each element of the mesh from the edge values by means of

the local edge basis. As explained by (19), a value of the curl

of at a node nd is obtained as an arithmetic mean involving

the elements containing the node. For a node at the interface

between two regions, two values are obtained by averaging the

field values separately in each region

with

(19)

where is the local edge shape function associated to edge

in and

Table I presents the errors computed with (18) for the problem

of scattering by the PEC and PM spheres. The number of itera-

tions required by the symmetric PQMR and the total additional

CPU time for each post-processing method are also presented.
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TABLE I
ERROR ON THE SPHERES

VI. CONCLUSION

As shown in Table I, methods 2–4 allow us to obtain a more

accurate dual field. Method 2 (energy approximation) is less

CPU consuming. Method 3 (flux approximation) is the most

CPU time consuming. Method 4 (both criteria) gives the best

precision with an acceptable additional CPU time. Method 5

(energy criterion with mass lumping approximation) is the less

CPU time consuming but gives a poor precision. The additional

CPU time for the post processing (all methods) remains small

compared to the total edge FE solving time (300 s for the PEC

sphere and 436 s for the PM sphere).
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