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Purpose 

Propose post processing methods for the edge finite element method on a tetrahedral mesh.  

They make it possible to deduce vector values on the vertices from scalar values defined on 

the edges of the tetrahedra. 

 

Approach 

The new proposed techniques are based on a least squares formulation leading to a sparse 

matrix system to be solved. They are compared in terms of accuracy and CPU time on a FE 

formulation for open boundary – frequency domain problems. 

 

Findings 
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A significant improvement of vector values accuracy on the vertices of the tetrahedra is 

obtained compared to a classical approach with a very small additional computation time. 

 

Originality 

This work presents techniques allowing: 

- To obtain the values at the initial nodes of the mesh and not inside the tetrahedra 

- To take into account the discontinuity to the interface between two media of different 

electromagnetic properties. 

 

Keywords 

Edge elements, finite element method, post processing 

 

Research paper 
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Introduction 

 

Edge-based finite elements (FE) are useful in modeling electromagnetic phenomena because 

of their correct physical sense. Furthermore, it has been shown that better approximation of 

the solution may be obtained compared to nodal-based FE [Webb, 1993]. The incomplete first 

order edge finite element is commonly used in electromagnetic modeling. The degrees of 

freedom are line integrals along the edges in the mesh. However, knowledge of the nodal field 

values remains necessary for various reasons. Maximal values located at the interfaces can be 

required to predict possible electric breakdowns. Nodal values may be necessary to achieve 

some additional computation: induced currents in the conductors, dual field, source term for 

coupled problem (magneto thermal), … [Zhao et al, 2000, Sekkak et al, 1994]. Post 

processors for visualization are usually based on the nodal representation of the fields. 

For vector finite elements, two techniques are commonly used to compute nodal values from 

degrees of freedom [Volakis et al, 2000]:  

- Only nodal values inside an element are computed from its edge values. However, this 

method doesn’t give a unique value on its boundary, namely on the vertices.  

- An average value of the nodal field is evaluated on each node and for each region by 

taking into account the contribution of all the elements connected to the considered 

node [Dibben et al, 1997]. 

The objective of this paper is to propose a method to compute accurate nodal values at the 

vertices of a tetrahedral mesh. Our approach is validated on a FE formulation for open 

boundary frequency domain problems. Spatial discretization is achieved using incomplete 

first order tetrahedral edge elements [Yao Bi, 1996]. 

 

Reference method 
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A first and simplest method consists in computing local node values on each element of the 

mesh from the edge values by means of the local edge basis. As explained by (1), a value at a 

node is then obtained as an arithmetic mean involving the elements containing the node. For a 

node at the interface between two regions, two values are obtained by averaging the field 

values separately in each region. It is taken as reference in the following (method 1). 

 

T 6T m
T i i

T i 1

E (m)

E(m) with E (m) p (m) 
n

∋

=
= =
∑

∑α  (1) 

 

m is a node which belongs to nT elements. Associated to edge ei of tetrahedron T, pi is the 

local shape function with  as degree of freedom. iα

 

New approach 

 

Let a complex vector field  be obtained from some computations with H(curl;E Ω )-

conforming finite elements on a tetrahedral mesh τh of a bounded domain  of . We are 

seeking a "good representation" of  by a continuous vector field E* on τ

Ω 3IR

E h. This problem 

may be formalised by introducing the minimization problem: 

 

Find a vector field E*∈ hV  which minimizes E E−  for all E in  (2) hV
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hV  is the nodal conforming FE space of degree 1 defined on τh and ||  || is a norm induced by 

a scalar product in H(curl; Ω ). Vector field  being given from incomplete first order edge 

elements, it can be decomposed in the edge basis denoted 

E

he e(w ) ∈ε , as: 

 

h

e e
e

E w
∈

= α
ε
∑   with e

e
E.tα = ∫ : circulation of  along edge e (3) E

 

hε  denotes the set of the edges in τh and t is an oriented tangent unit vector on edge e. So it 

seems appropriate to introduce a norm deduced by the following scalar product:  

 

he  e e
E , E (1 ) E E E.t E .tθ Ω

∈

⎛ ⎞ ⎛
′ ′ ⎜ ⎟ ⎜= − θ + θ

⎜ ⎟ ⎜ε ⎝ ⎠ ⎝
∑

⎞
′ ⎟
⎟
⎠

∫ ∫ ∫.  (4) 

 

θ is a weight such that 0 . The limit case 1≤ θ < 1θ = , for which the bilinear form , θ  does 

not remain a scalar product on H(curl;Ω ), is tackled in the later. 

By definition of the norm deduced by (4), the gap between vector fields  and E is  E

 

h

1/ 22
2

e e
E E (1 ) E E (E E).t

θ
∈Ω

⎡ ⎤
⎢− = − θ − + θ −⎢ ⎥ε⎢ ⎥⎣ ⎦

∑∫ ∫ ⎥  (5) 

 

By minimizing E E
θ

− , according to the choice of the weight θ, good approximation E* of 

 as well as preserving of the “circulation” along the edges may be expected.  E
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The linear system to solve 

 

For the norm defined by (5) with 0 1≤ θ < , the minimization problem (2) is a least squares 

problem with a unique solution E*. Moreover vector field E* is the orthogonal projection of 

 into the space VE h for the scalar product (4). The unknown field E* can be decomposed as: 

 

E* =  (6) 
hN

i i
i 1

v
=
ξ∑

 

where (vi), i=1 to Nh (the nodal space dimension) is the nodal vector basis of the FE space Vh 

and the unknown vector = , i=1 to Nξ ( )iξ h contains the values of each component of the field 

E* on the vertices of the mesh τh. Writing that  is orthogonal to any test function v*E - E i 

gives ξ as solution to a linear system: A bθ θξ = . The matrix Aθ , the Gram matrix associated 

to the scalar product , θ , is given by: 

 

ij i j(A ) v ,vθ θ
=  i,j=1 to Nh (7)  

 

Then,  is real symmetric and positive definite for 0Aθ 1≤ θ < . The right-hand side bθ  is 

given by: 

( bθ )i= iE,v
θ

, i=1 to Nh (8) 

Numbering the unknowns according to the 3 components on the axes, the nodal basis can be 

decomposed as 
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0
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i

0
0
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where , i=1 to n is the scalar nodal basis and n the number of vertices. It induces a partition 

of the matrix  into a 3 by 3 block matrix with 9 (n

iϕ

Aθ n)× blocks: 

 

XX XY XZ

YX YY YZ

ZX ZY ZZ

A A A

A A A A

A A A

θ θ θ

θ θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥  (10) 

 

and similarly for bθ and  with 3 (n blocks: ξ 1)×

 

bθ=

X

Y

Z

b

b

b

θ

θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ξ =

X

Y

Z

⎡ ⎤ξ
⎢ ⎥
⎢ ⎥ξ
⎢ ⎥
ξ⎢ ⎥⎣ ⎦

 (11) 

 

Entries of the matrix 

 

It is convenient to split the system as 

 

Aθ= +0(1 )A− θ 1Aθ  and bθ= 0(1 )b− θ + 1bθ  (12) 

 

Then from (4) and (7), it comes 
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0 ij(A ) = i jv .v
Ω
∫ , i,j=1 to Nh (13) 

1 ij i j
e e eh

(A ) ( v .t)( v .t)
∈ε

= ∑ ∫ ∫ , i,j=1 to Nh (14) 

 

and from (4) and (8) 

0 i i(b ) E.v
Ω

= ∫  , i=1 to Nh (15) 

1 i i
e e eh

(b ) ( E.t)( v .t)
∈ε

= ∑ ∫ ∫ , i=1 to Nh (16) 

 

From (9) and (13), it is easy to check that  is given by: 0A

 

0

M 0 0
A 0 M

0 0 M

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

0 ⎟
⎟  (17) 

 

where M is the usual  mass matrix defined by: (n n)×

 

ij i jM
Ω

= ϕ ϕ∫ , i,j=1 to n (18) 

 

1A  is not a block diagonal matrix but it is easy to see from (19) that each block is as sparse as 

M. Associated to each vertex  of the mesh, we introduce the sets of edges ia
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i
hε ={ }h ie / vertex a  is an extremity of edge e∈ε . Then denoting by ex, ey, ez the 3 

components on the axes of an oriented edge e, from 

 

ix
i x h

e

et  if e
2

ϕ = ∈ε∫  , (19) 

 

one gets 

 

x yXY
1 ii

ie h

e e
 (A )

4
∈

=
ε
∑  (20) 

and 

 

for x yXY
1 ij

e e
i j           (A )

4
≠ =               if e ji

h h∈ ∩ε ε  (21) 

 

The entries of the other blocks of  can be easily deduced. 1A

 

Entries of the right hand side 

 

For each vertex ai of the mesh, let us introduce the associated set of edges: ={ / edge 

e and vertex a

% i
hε he∈ε

i belong to the same tetrahedron } and the set of elements: =support of vi
hτ i 

={T / ah∈τ i is a vertex of tetrahedron T} and for each edge he∈ε , =support of 

w

e
hτ

e={T /e is an edge of tetrahedron T}. Then from (3),(9) and (15), it comes h∈τ
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( )
e i
h h

X
e0 i e ix

i T Te h

(b ) w
∈ ∩∈

⎡ ⎤
⎢ ⎥= α ϕ
⎢ ⎥
⎣ ⎦ε τ τ

∑ ∑ ∫
%

, i=1 to n (22) 

 

For T , the value of 
h
e∈ ∩τ τ

h
i

i( )e x
T

w ϕ∫ can be computed as follows. 

For e = ab where a and b are vertices of tetrahedron T and denoting by  the respective 

associated barycentric co-ordinates, one gets: 

a b,λ λ

 

( )e ix
T

w ϕ∫ = mes(T)
20

η  with 

i
b a x h i

i
b a x h i

i
b a x h

( 2 )  if e  and a a

(2 )  if e  and a b

( )  if e  

⎧ ∇λ − ∇λ ∈ =
⎪⎪η = ∇λ − ∇λ ∈ =⎨
⎪
∇λ − ∇λ ∉⎪⎩

ε

ε

ε

  (23) 

 

Because of equality , an explicit expression of the components of e
e

E.t = α∫ X
1b  is more 

easily obtained from (9) and (16) as: 

 

( )X
e1 i xi i ee h

.t
∈

= α ϕ
ε
∑ ∫ =b xe

ie h

e
2

∈

α
ε
∑  (24) 

 

Limit cases θ = 0 and θ = 1 

 

In the particular case where θ = 0, the linear system reduces to *
0A ξ = 0b . As pointed out 

before, matrix  has a block diagonal structure with mass matrices on the diagonal. To save 0A
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some computation time an explicit but approximate solution to the least squares problem can 

be obtained. Mass-lumping technique can be implemented to obtain an explicit solution of the 

least squares problem. The mass lumping allows to approximate the mass matrix by a 

diagonal matrix [Zienkiewicz, 1970]: 

 

∫
Ω

β
=

4
v2

i  with  (25) 
i
hT

mes(T)
∈

β =
τ
∑

 

The components of the approximate solution are given by:  

 

X
i 0

4( ) (b )ξ =
β

X
i   i=1 to n (26) 

 

For , the minimization problem defined by (2),(5) is a pure discrete least squares 

problem with one solution at least. The solutions satisfy the linear system  

where S is the rectangular matrix defined by: 

1θ =

t
1 1A S S bξ = ξ =

 

for k=1 to cardinal ( hε )  =kiS i
e

v .t∫  i=1 to Nh  e edge of number k (27)  

 

Uniqueness of the solution is ensured if there exists no ξ { }hNIR 0∈ −  such that S =0. i.e. if 

the columns of S are linearly independent. It requires that the number of lines 

ξ

hcard( )ε  is 

larger than (Nh) the number of columns. 

From (27), the uniqueness condition of the solution can be also written as  
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there exists no E { }hV 0∈ −  such that 
e

E.t 0=∫  for  any   he∈ε

 

It can be translated into the following mesh characterization: 

there is no vector field defined on the nodes such that E(c) 0≠  for some node c and 

(E(a)+E(b)).e=0 for any edge e=ab. 

In the numerical experiments presented above such a property appears to be satisfied by the 

meshes. In particular, the necessary condition hcard( ) N≥ hε  is always satisfied. 

 

Results and discussions 

 

In the following, method 1 (local averaging) is the reference method, method 2 (energy 

approximation) is obtained with θ=0, method 3 (circulation approximation) corresponds to 

θ=1, method 4 (combination of circulation approximation with energy approximation) is 

obtained for θ=1/2 , and method 5 corresponds to θ=0 with the mass lumping approximation. 

For methods 2, 3, 4, a symmetric quasi-minimal residual method with SSOR preconditioning 

(PQMR) is used to solve the matrix system Aθ ξ= bθ . 

The accuracy and the time required for each post processing method are tested on 3 examples. 

In the first two examples, numerical results are compared with analytical solutions of 

scattering of a plane wave by a sphere. Analytical solutions can be found in [Harrington, 

1968] and numerical formulations of scattering problems are given in [Yaobi, 1996]. A 50 

mm radius - sphere is meshed with 100 nodes on its surface. The frequency of the incident 

plane wave is 1 GHz. Absorbing Boundary Condition (ABC) (1st order Engquist Majda) is 

located at a half wavelength from the sphere. In order to estimate the influence of the Finite 
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Element discretization, a relative error estimator on the sphere’s surface (denoted by S) is 

computed as 

 

  Error = 

anal num
e e

e S

anal
e

e S

∈

∈

α −α

α

∑

∑
 (28) 

 

The edge values  are those obtained from the FE-code. Denoting by Hnum
eα

anal the analytical 

solution to the magnetic formulation, the values  are approximations of  

computed for an oriented edge e=ab with nodes a and b as: 

anal
eα

anal

e

H .∫ t

 

anal anal
anal
e

H (a) H (b) e.
2 e
+

α =  (29) 

 

The efficiency of the different post processing strategies is also evaluated on the surface of the 

sphere by means of relative error estimators. For each of the five methods, 3 relative errors 

concerning the nodal vector field, its normal component and its tangential component are 

computed as 

 

anal num

a S

anal

a S

H (a) H (a)
Error

H (a)

∈

∈

−

=
∑

∑
 (30) 
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Where  indicates either the vector (3 components), or its normal component or its 

tangential component. Nodal values  are given by the post processing methods from 

the F.E. edge values . 

H

numH (a)

num
eα

 

 Scattering by a perfect electric conductor sphere: 

In the first example (figure 1), the sphere is modeled as a perfect electrical conductor (PEC). 

The problem is meshed with 4481 nodes and 22108 tetrahedral elements leading to 28161 

edges (294 edges on the sphere’s surface). The edge values error, computed with (28), is 

about 0.067. The total solving time (assembling and solving of the matrix system) with the FE 

code is about 300s on a HP J5000. Note that the same solver as in the post processing is used 

(217 iterations of PQMR).  

 

Figure 1 

Various relative errors are given in Table I which also contains the post processing costs. 

 

Table I: relative errors (30), number of iterations of the PQMR and CPU time for the post 

processing for the PEC sphere. 

Method Relative error on 3 

components 

Relative error on 

tangential  

component 

Relative error 

on normal 

component 

Iterations Time 

( in s) 

1 0.238  0.120 0.200 / 2 

2 0.190 0.080 0.173 7 11 

3 0.130 0.072 0.100 22 21 

4 0.133 0.069 0.113 19 20 
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5 0.255 0.161 0.200 / 1 

 

On this first example, the methods with circulation approximation (mixed with energy 

approximation in method 4, pure in 3) give close results and appear to be the most accurate. 

From the reference method (method 1) the increase in precision on the nodal vector field is 

about 0.1. The increase in time (about 21 s) is reasonable as compared with the time required 

to solve the FE problem (436 s). With method 2 (pure energy approximation), the accuracy 

gain is roughly divided by 2 (0.048) and disappears when the mass lumping is introduced 

(method 5). The costs behave in similar ways. 

  

Scattering by a magnetic sphere: 

In the second example, the sphere is magnetic with µr = 3. A discontinuity of the magnetic 

field at the surface of the sphere is therefore introduced and the interior (region 1) has to be 

meshed. The same mesh as for the PEC sphere (figure 1) is used outside of the sphere (region 

2). For the whole mesh, one gets 4547 nodes and 22783 tetrahedral elements leading to 28805 

edges (294 edges on the sphere’s surface). The total time for FE solving is about 436 s (537 

iterations of the PQMR). The edge values error, computed with (28), is about 0.149. The post 

processing is made in the only region 2 (air) according to the analytical solution (Harrington, 

1968). 

Similarly as in Table I, Table II gives the results we obtain for each five methods. Compared 

to the reference method, the least squares methods behave as in the PEC case. 

 

Table II: relative errors (30), number of iterations of the PQMR and CPU time for the post 

processing for the magnetic sphere. 
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Method Relative error on 3 

components 

Relative error on 

tangential  

component 

Relative error 

on normal 

component 

Iterations Time  

(in s) 

1 0.265 0.133 0.230 / 2 

2 0.188 0.098 0.163 7 9 

3 0.127 0.092 0.087 20 19 

4 0.129 0.089 0.090 18 19 

5 0.289 0.129 0.260 / 1 

 

 

 Academic example: 

In order to eliminate the error due to FE discretization, the performances of the post 

processing methods are finally evaluated on an academic example on the same spherical 

geometry. The same geometry and the same mesh as for the problem of scattering by the 

dielectric sphere (example 2) are used. The vector field to post process is no longer the 

solution to some scattering problem but a radial field analytically defined as (figure 2): 

 

20r in region 1; 2000r in region 2 (31) 

 

with r the radial component in spherical coordinates (r, θ, ϕ). 

 

Figure 2 

 

Approximate edge values are then evaluated as in (29). From these data, nodal values are 

computed with the different post processing methods independently in both regions (table III). 
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Table III: nodal values, number of iterations of the PQMR of the post processing for the 

academic problem. 

Method Normal 

component 

(region 1) 

Normal 

component 

(region 2) 

Tangential  

component 

(region 1) 

Tangential  

component 

(region 2) 

Iterations 

1 1.2 71 0.019 0.081  

2 1.1 87 0.002 0.177 8 

3 1.0 100 3.10-14 8.10-12 23 

4 1.0 98 1.10-5 0.004 20 

5 1.2 70 0.003 0.108  

 

Taking into account the starting field (31), the awaited results on the sphere surface should 

be : 

region 1: tangential component = 0; normal component = 1 

region 2: tangential component = 0; normal component = 100 

The results confirm an important increase of accuracy obtained with pure or mixed circulation 

approximation methods. In particular exact results are given by method 3. 

 

Conclusion 

 

As shown from tables I, II and III, the most accurate vector fields are obtained with the 

methods where some circulation approximation is satisfied. Theses methods are the most CPU 

consuming. However, the time required for the post processing remains reasonable compared 
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to the total FE solving time. A significant improvement of the accuracy is so obtained with a 

small additional computation time. 

 

References 

 

Dibben, C. D., Metaxas, R., (1997), "A Comparison of Errors Obtained with Withney and 

Linear Edge Elements," IEEE Transaction on Magnetics, vol. 33, No. 2, pp. 1524-1527. 

 

Harrington, R. F., (1968), Field Computation by Moment Methods, MacMillan, New-York. 

 

Sekkak, A., Pichon, L., Razek, A. (1994), "3-D FEM Magneto-Thermal Analysis in 

Microwave Ovens," IEEE Transaction on Magnetics, vol. 30, No 5, pp. 3347-3350. 

 

Volakis, L. J., Davdson, D. B., (2000) "Implementation Issues for Three Dimensional Vector 

FEM Programs", IEEE Antennas and Propagation Magazine, vol. 42, No. 6, pp. 100-107. 

 

Webb, J. P. (1993), “Edge element and what they can do for you,” IEEE Transaction on 

Magnetics, vol. 29, No. 2, pp. 1460-1465. 

 

Yao Bi, J. L., Nicolas, L., Nicolas, A (1996), "Vector absorbing boundary conditions for 

nodal or mixed finite elements," IEEE Transaction on Magnetics, vol. 32, No 3, pp.848-853. 

 

Zhao, H., Turner, I. W. (2000), "The Use of Coupled Computation Model for Studying the 

Microwave Heating of Wood," Applied Mathematical Modelling, No 24, pp. 183-197. 

 

Zienkiewicz, (1970), O. C., The Finite Element Method, Mc Graw-Hill Book Company. 

 

Figures 

 

 18



k
H E

Absorbing Boundary Condition
(1st order Enquist Majda)

λ/2

 
Figure 1 : H field modulus on a PEC sphere 
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Figure 2 : radial field of magnitude 20r in region 1 and 2000r in region 2 
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