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An Efficient Preconditioner for Linear Systems
Issued From the Finite-Element Method

for Scattering Problems
Ronan Perrussel, Laurent Nicolas, and François Musy

Abstract—An efficient preconditioner for systems issued from
the finite element discretization of time harmonic Maxwell’s equa-
tions with absorbing boundary conditions is presented. It is based
on the Helmholtz decomposition of the electromagnetic field and its
discrete counterpart. It is compared to a classical preconditioner
on both simple and realistic problems. Its behavior is also evalu-
ated on meshes showing different characteristics.

Index Terms—Electromagnetic fields, finite-element methods,
numerical analysis, scattering.

I. INTRODUCTION

E
LECTROMAGNETIC scattering problems are classically
modeled using time harmonic Maxwell’s equations

with Silver–Müller conditions [1]. The numerical solution of
these equations leads to complex and symmetric matrices. To
solve these systems, Krylov subspace methods may be used:
BiCGCR [2], symmetric QMR [3], or COCG [4]. Classical
preconditioning methods are implemented in order to accel-
erate the convergence of these iterative algorithms: SSOR,
incomplete Cholesky factorization [5], etc. An efficient precon-
ditioner based on the Helmholtz decomposition was previously
proposed for simple eddy-current problems [6]. The aim of this
paper is to test its efficiency on realistic scattering problems
and its robustness on meshes with different characteristics. The
problem formulation is first given. The preconditioner based
on the Helmholtz decomposition is then described. Numerical
results are finally presented.

II. PROBLEM FORMULATION

This work deals with time harmonic Maxwell’s equations and
Silver–Müller conditions. The following finite element formu-
lation, with the incomplete first order edge elements [7] on the
domain (space ), can be written (for the electric field )

Find in such that:

with

(1)
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where denotes the angular frequency, the wave vector, the
boundary normal direction, the complex-valued permittivity,
the permeability, the source term (incident plane wave),

the absorbing boundary, the perfect electric conductor
boundary ( on ). The formulation space of the
problem is defined as

on

Essential characteristics of this formulation are:

— the kernel of the curl operator is
of infinite dimension;

— the sesquilinear form is not hermitian;
— the operator’s spectrum has eigenvalues with positive

and negative real parts, the sesquilinear form is there-
fore indefinite.

The linear system to be solved is complex-valued,
symmetric, and indefinite. These characteristics are essential for
the choice of solving methods.

III. AN EFFICIENT PRECONDITIONER

Classical solving methods are adapted to the operator gra-
dient and deal badly with the kernel of the curl operator. Fol-
lowing the Helmholtz decomposition, the electric field or the
magnetic field can be decomposed into two components [7]

(2)

where:

— means the orthogonal sum for the scalar product in
the square-integrable functions space;

— is a static component with a scalar potential.
It belongs to the kernel of the curl operator; it is the
orthogonal projection on the kernel;

— is a propagation component called solenoidal com-
ponent. It is divergence-free, because the decomposi-
tion is orthogonal.

The curl operator has a dissymmetric behavior on these com-
ponents [7]. The decomposition’s discrete counterpart in is
of practical importance

(3)

where:

— belongs to the first incomplete order edge element
space ;

— belongs to the first order nodal element space .
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Fig. 1. One iteration of the preconditioning algorithm using the Helmholtz
decomposition. Generally 1 or 2.

Since (1) with and gives

(4)

the existence of the scalar potential enables to consider an

auxiliary problem. The SSOR preconditioner has shown to be

efficient for this secondary problem (issued from the laplacian

operator with specific boundary conditions) [8].

For the implementation, a practical operator to transfer po-

tential representation in the space to the field space is

required. Its construction uses the definition of the degrees of

freedom (dof) which are: on each edge of the

mesh for the space , the values on each vertex for the space

. The expression of this operator for a mesh is then is-

sued from the relation for an edge

(5)

where and are the extremities of the edge and the

tangential vector to . The global relation

defines the searched operator as a sparse matrix

with exactly 2 nonzero elements per line: 1 and 1 respectively

for the last and first node of each edge.

With this operator, the matrix for the auxiliary problem can

be assembled by a Galerkin product: where is

the edge elements matrix. The numerical cost of this assembly

is roughly equivalent to four matrix/vector products with . It

can be neglected in comparison with the numerical solving cost

(Table II).

Once these elements defined, the algorithm of the precondi-

tioning method can be written (Fig. 1). Note that this method

should be incorporated in an iterative solver (COCG, QMR,

BiCGCR, etc.). The preconditioning operation simply consists

in transforming the residual into a preconditioned one by

solving a linear system of reduced numerical costs

( is not necessarily assembled like here).

The cost of one Gauss–Seidel iteration with a matrix is di-

rectly linked to its number of nonzeros entries (nnz). The cost

of our preconditioner is then a direct function of the nnz of the

and matrices.

TABLE I
NUMBER OF NONZERO ENTRIES FOR EACH MATRIX. NB OF NODES

The approximative nnz in each matrix is given in Table I.

It is evaluated with [9] and practical estimations with the test

problems

with and (6)

and are respectively the number of nodes,

edges, faces, and tetrahedral elements in the mesh. It indicates

the overcost in terms of memory requirement and supplemen-

tary matrix/vector products due to and . Compared to

classical SSOR, it roughly doubles the preconditioning time.

IV. MESH QUALITY

An intrinsic mesh quality cannot be defined, since it depends

on the physical problem being modeled [10]. Different criteria

can be considered: good precision, well-conditioned problem,

etc.

For the Poisson equation, it was previously shown that the

conditioning number of the matrix is linked to the shape of each

element and the mesh uniformity [11]. By extension, two pa-

rameters to qualify tetrahedron shape and mesh uniformity are

used for this formulation.

— The ratio of inscribed over circumscribed

sphere radius with a normalizing factor is used to eval-

uate tetrahedron shape:

(7)

This ratio equals 1 if the tetrahedron is regular and de-

creases to zero if the tetrahedron is fully degenerated.

— The ratio between the largest and the smallest volume

of tetrahedra is used to measure the uniformity.

V. NUMERICAL RESULTS: EFFICIENCY AND ROBUSTNESS

Three kinds of comparisons with classical solvers are imple-

mented to test the efficiency of the Helmholtz decomposition

preconditioner:

— by increasing the number of degrees of freedom of a

given problem;

— by analyzing the influence of the mesh quality;

— by computing two realistic problems.

A. Number of Degrees of Freedom

A 1-GHz plane wave scattered by a 3-D cylinder is studied

(Fig. 2). From Fig. 3, it is shown how the number of iterations

evolves with the number of degrees of freedom (dof) for the four

implemented solving methods: three solvers (COCG, BiCGCR,

QMR) with SSOR preconditioning, and a COCG solver with
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Fig. 2. Incident plane wave on a 3-D cylinder.

Fig. 3. Number of iterations against the number of dof.

TABLE II
COMPARISON OF CPU TIME (s) FOR THE 3-D CYLINDER

the Helmholtz decomposition preconditioner. Table II gives the

corresponding CPU times. Here, COCG is the fastest classical

solver with SSOR preconditioning. Consequently in the fol-

lowing, only the results with a COCG solver are analyzed. The

Helmholtz decomposition preconditioner needs roughly three

times fewer iterations and half the CPU time.

B. Quality of the Mesh

The influence of the quality of the mesh is tested on the 3-D

cylinder problem. Mean shape ratio and uniformity of two dif-

ferent meshes are evaluated on this problem (Table III). The

TABLE III
SHAPE RATIO AND UNIFORMITY FOR TWO MESHES

Fig. 4. Lack of uniformity for mesh 2.

TABLE IV
CPU TIME AND ITERATIONS FOR TWO MESHES

ratio is also given, where is the wavelength and

the length of the longest edge in the mesh.

The mean shape ratio is equivalent for both meshes. The main

difference is concerning uniformity: mesh 2 (Fig. 4) is less uni-

form than mesh 1.

In Table IV, the influence of the quality of the mesh on the

convergence is illustrated. The convergence is greatly slowed

for mesh 2. The effect is significant even with the Helmholtz

decomposition preconditioner. However, it is largely more ro-

bust than the SSOR preconditioner, which does not converge

after 8000 iterations.

The ratio is less than 1 in mesh 2. However, a mean

of 10 nodes per wavelength is necessary to correctly discretize

the wave equation. Note that the physical validity of this dis-

cretization is doubtful. The influence of this ratio is tested on the

mesh 2 by reducing the frequency of the incident wave, which

leads to increase the ratio . Fig. 5 shows the number of

iterations as a function of the frequency for both solvers. Table V

presents corresponding CPU times. In the considered frequency

band, both solvers converge. Obviously, the Helmholtz decom-

position preconditioner performs better than the SSOR precon-

ditioner and is less sensitive to the ratio .
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Fig. 5. Number of iterations against the frequency.

TABLE V
CPU TIME (s) FUNCTION OF FREQUENCIES—MESH 2

Fig. 6. Hyperthermia RF (27 MHz) for treating deep tumors; magnitude of the
electric field.

C. Realistic Problems

The efficiency of the Helmholtz decomposition precondi-

tioner is observed on two realistic problems. In the first problem

(Fig. 6), the electric field due to a RF source is computed inside

a human body during an hyperthermia treatment [12]. The

second problem models (Fig. 7) an airplane illuminated by a

plane wave [13]. The Helmholtz decomposition preconditioner

shows its efficiency in both cases (Table VI), more particularly

in the hyperthermia case, for which COCG-SSOR did not

converge after 8000 iterations.

Fig. 7. Illumination of a plane by a 100 MHz plane wave; magnitude of the
current density.

TABLE VI
CPU TIME AND ITERATIONS FOR TWO REALISTIC PROBLEMS

VI. CONCLUSION

A preconditioner based on the Helmholtz decomposition has

been developed for scattering problems. This method is efficient

because well adapted to the curl operator. The robustness has

been tested on a nonuniform mesh. Its efficiency has been eval-

uated on realistic problems. Furthermore, it is simple to imple-

ment and requires only a light overcost.
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