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ABSTRACT

We present a one-dimensional model of the formation and viscous evolution of protoplanetary disks. The formation of the early disk is mod-
eled as the result of the gravitational collapse of an isothermal molecular cloud. The disk’s viscous evolution is integrated according to two
parameterizations of turbulence: the classical α representation and a β parameterization, representative of non-linear turbulence driven by the
keplerian shear. We apply the model to DM Tau and GM Aur, two classical T-Tauri stars with relatively well-characterized disks, retrieving the
evolution of their surface density with time. We perform a systematic Monte-Carlo exploration of the parameter space (i.e. values of the α-β
parameters, and of the temperature and rotation rate in the molecular cloud) to find the values that are compatible with the observed disk surface
density distribution, star and disk mass, age and present accretion rate. We find that the observations for DM Tau require 0.001 < α < 0.1 or
2 × 10−5 < β < 5 × 10−4. For GM Aur, we find that the turbulent viscosity is such that 4 × 10−4 < α < 0.01 or 2 × 10−6 < β < 8 × 10−5. These
relatively large values show that an efficient turbulent diffusion mechanism is present at distances larger than ∼10 AU. This is to be compared
to studies of the variations of accretion rates of T-Tauri stars versus age that mostly probe the inner disks, but also yield values of α ∼ 0.01.
We show that the mechanism responsible for turbulent diffusion at large orbital distances most probably cannot be convection because of its
suppression at low optical depths.

Key words. accretion, accretion disks – solar system: formation – planetary systems: formation –
planetary systems: protoplanetary disks

1. Introduction

The presence of circumstellar disks has been proposed long
ago as a necessary preliminary of star formation, simply be-
cause the decrease of the moment of inertia of a collapsing
molecular cloud core by a factor 1016 prevents the direct for-
mation of a central compact object (the star) without a signifi-
cant loss of angular momentum. These disks are now routinely
discovered, and both statistical information of disk properties
obtained from the spectral energy distributions and character-
ization of individual disks from direct measurements can be
obtained (see Protostars & Planets IV for detailed reviews on
the subject).

The basic principle yielding the formation of a disk around
a protostar also governs its evolution: material is allowed to be
accreted from the disk onto the protostar only by decreasing
its specific angular momentum. The conservation of mass and
total angular momentum implies that some of the material in
the disk must be transported outward in order for accretion to
be possible (e.g. Lynden-Bell & Pringle 1974; Pringle 1981;
Cassen 1994).

One of the major puzzles in understanding circumstellar
disks remains the mechanism by which angular momentum is
transported. It is easy to show that viscosity on a microscopic
scale is unable to explain the dissipation of disks on any reason-
able timescale. Beyond that, the problem resides not in finding
a mechanism of angular momentum transport but rather on de-
ciding which one is appropriate and what are the magnitudes
of the resulting angular momentum transport & associated heat
dissipation (see e.g. Cassen 1994; Lin & Papaloizou 1996;
Stone et al. 2000). It is generally believed that disks of rela-
tively small masses transport their angular momentum by tur-
bulence and that their evolution can be calculated using an
effective turbulent viscosity. The parameterization of this vis-
cosity then allows the calculation of the evolution of circum-
stellar disks to be performed over the timescales of inter-
est (Myr).

In this paper, we confront a 1-dimensional theoretical
model of the formation and evolution of circumstellar disks
to direct observations of the disks around the T-Tauri stars
DM Tauri and GM Aurigae. These disks have the par-
ticularity that their outer surface densities (between ∼50
and 800 AU) are constrained by millimeter-wavelengths
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observations (Guilloteau & Dutrey 1998; Dutrey et al. 1998),
continuum IR emission from the dust (Kitamura et al. 2002),
and observations of star light scattered by the disk (Schneider
et al. 2003). We use two different parameterizations of the tur-
bulent viscosity (named α and β, see Sect. 3 hereafter) and two
models of molecular cloud collapse.

The simplicity of our model allows for an exten-
sive exploration of the space of parameters. In total more
than 10 000 models were run. We can therefore constrain the
magnitude of the turbulent viscosity necessary to produce disks
of the observed age, mass, and surface density. The observa-
tional constraints however are subject to very large uncertain-
ties and instead of one simple scenario of formation and evo-
lution for each disk we find several kind of solutions to the
current state of DM Tau and GM Aur. Our results can be used
to address the questions of the source of the turbulence, the ini-
tial conditions and the type of collapse of the molecular cloud.
They are also helpful in providing a framework for planet for-
mation, as all the important quantities such as densities and
temperatures can be calculated as a function of time and dis-
tance to the central star.

The structure of this article is as follows: in Sect. 2 we
present the observational characteristics of the DM Tau and
GM Aur systems, and in particular the parameters that must
be fitted by the models. The numerical model itself and the
physics behind it (including the possible sources of angular mo-
mentum transport) are presented in Sect. 3. Section 4 presents
some model examples and the strategy employed to fit the ob-
servations. We present our selected sets of models in Sect. 5
and discuss the consequences for the disks global evolution,
the turbulent angular momentum transport and the initial type
of collapse. Finally, Sect. 6 summarizes the main results of the
article.

2. Observations of circumstellar disks: DM Tau
and GM Aur

DM Tau and GM Aur are both located in the Taurus-Auriga
region, a young stellar association relatively close to Earth,
∼140 pc (Kenyon et al. 1994), with a low abundance of
massive stars and a relatively cold (∼10−20 K) environment
(van Dishoeck et al. 1993). These stars have been chosen for
this study because their disks have been characterized at mil-
limeter to ultraviolet wavelengths, and because the emission
of CO and its isotomers has been detected by millimetric inter-
ferometers to large distances (500 to 800 AU) to the stars. For
these disks, we thus have access to observations sensitive to
the presence of dust (spectral energy distribution in the infrared
and at millimetric wavelength, visible images of reflected stel-
lar light, images in the millimetric continuum), to the presence
of hot inner gas accreted by the star (excess emission mainly
in the U band) and to the presence of cold gaseous CO in the
outer parts of the disks (interferometric 12CO and 13CO emis-
sion maps).

2.1. DM Tau
DM Tau is a low mass (0.50 M�) relatively old T-Tauri star
(∼5 × 106 yr). Its gas disk was discovered by Guilloteau
& Dutrey (1994) with the IRAM 30-m telescope and

independently by Handa et al. (1995). Further observations
and a χ2 analysis (Guilloteau & Dutrey 1998) allowed the
determination of the disk inclination and showed a rotation
rate consistent with a keplerian profile. More recently, Dartois
et al. (2003) combined observations of CO lines of different C-
isotopes to better infer the surface densities and also estimate
the disk vertical temperature profile. Their study confirmed the-
oretical expectations that the disk mid-plane at ∼100 AU is
colder (T ∼ 15 K) than 2−3 scale heights higher (T ∼ 30 K).
The disk radius, 850 AU, and the slope of the density profile,
p = 1.5 derived by Guilloteau and Dutrey differ from a pre-
vious study by Saito et al. (1995) who derived 350 AU and
p = 2.0 ± 0.3. The discrepancy can probably be attributed to
the lower resolution (5′′ compared to 3′′) and sensitivity of the
observations by Saito et al.

The outer disk radius measured for DM Tau either from
the mm continuum emission (Kitamura et al. 2002) or
from HST near IR coronographic images (Grady et al. 2002)
is assumed to be a lower limit because of the systematically
smaller lower sensitivities (in terms of equivalent surface den-
sities) of these techniques compared to the CO observations.

Recent observations of DM Tau in the near- to mid-infrared
(2.9−13.5 µm) and preliminary radiative transfer models by
Bergin et al. (2004) seem to indicate that the inner region of
the disk consists of three parts: (i) close to the star, and up
to ∼4 AU, a flat, optically thin disk, cleared of most of its dust
(and probably gas); (ii) At 4 AU, a “wall”, heated by direct stel-
lar irradiation to ∼120 K, and extending vertically to ±0.5 AU
relative to the midplane; (iii) A “standard” optically thick disk
beyond that distance.

2.2. GM Aurigae

The evidence of the presence of a disk around GM Aur was
first obtained from radiometric observations by Koerner et al.
(1993). Higher resolution interferometric maps were later ob-
tained by Dutrey et al. (1998), and Kitamura et al. (2002) using
the same techniques as for DM Tau. Depending on the inclina-
tion of the disk, two solutions can be found for the star mass,
i.e. M∗ = 0.5 or 0.9 M� with most probable values close to 0.9.
Its disk appears to be slightly smaller than that of DM Tau, and
have an outer radius ∼525 AU, as determined from 12CO obser-
vations. High-resolution coronographic HST images of scat-
tered near-infrared light (Wood et al. 2002; Schneider et al.
2003) indicate that the disk is outwardly flared and extends at
least to 300 AU.

As for DM Tau, the near- to mid-infrared observations indi-
cate the presence of an inner disk clearing within 6.5 AU, with a
120 K “wall” at that distance and an optically thick disk beyond
(Bergin et al. 2004). The presence of such a gap (but a slightly
smaller, i.e. ∼4 AU one) was also an outcome of the modeling
of a less accurate SED (Chiang & Goldreich 1999; Wood et al.
2002), and attributed to the presence of a ∼2 MJ planet orbiting
at 2.5 AU (Wood et al. 2002; Rice et al. 2003). This explanation
remains mostly speculative at this point, however.
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Table 1. Physical parameters for DM Tau and GM Aur: stellar pa-
rameters are from Simon et al. (2001), CO constraints from Dartois
et al. (2003) and Dutrey et al. (1998), dust emission constraints from
Kitamura et al. (2002) (with an additional 1/3 to 3 uncertainty fac-
tor – see text) and accretion rates from Hartmann et al. (1998) and
Gullbring et al. (1998).

System: DM Tau GM Aur

Distance: 140 pc ± 10% 140 pc ± 10%

Age: 1.5−7 Myr 1−10 Myr

Spectral type: M 1 K7

Star mass: 0.4−0.6 M� 0.5−1.0 M�
Luminosity: 0.25 L� 0.74 L�
Temperature: 3720 K 4060 K

Star radius: 0.0065 AU 0.0085 AU

Constraints from CO emission lines:

Rout ∼ 850 ± 20 AU 525 ± 20 AU

Σ(100 AU) > 0.05 g cm−2 −
Σ(Rout) > 1.6 × 10−3 g cm−2 3.0 × 10−3 g cm−2

Constraints from continuum dust emission:

Rout > 500 AU 280 AU

Σ(100 AU) < 4.3 g cm−2 23.0 g cm−2

Σ(100 AU) > 0.23 g cm−2 1.4 g cm−2

β̃ 0.48−1.03 1.11−1.34

Accretion rate:

Log Ṁ = −7.95 ± 0.54 −8.02 ± 0.54

[M� yr−1]

2.3. Inferred constraints

We detail hereafter the observational constraints that are di-
rectly relevant to the disk evolution calculations and that are
summarized in Table 1. We choose to adopt relatively con-
servative constraints. (More restrictive constraints may be ob-
tained from SED fitting and direct analysis of the emission
maps which is beyond the scope of the present article.)

Stellar masses: they are inferred from the keplerian rotation
rates measured in 12CO (Simon et al. 2001). The uncer-
tainty on this parameter is essentially due to that of the
distance given by Hipparcos to an accuracy ∼10%. The in-
ferred stellar masses depend also on the the disk inclination.

Ages: this is a crucial, but unfortunately very uncertain pa-
rameter entering the models. The uncertainty on the stellar
masses propagates into that on the inferred age. Taking that
into account, and using evolution tracks from Baraffe et al.
(1998, 1998), we derive for both stars a range of ages that
covers ages published by different groups (e.g. Guilloteau
& Dutrey 1998; Hartmann et al. 1998).

Accretion rates: as discussed by Hartmann et al. (1998), an ac-
cretion luminosity Lacc can be derived from the measured
excess emission observed in the U band. It is then turned
into an accretion rate following the relation:

Ṁ =
1
γ

R�
GM�

Lacc,

where R� and M� are the radius and mass of the star, re-
spectively, and γ is a factor that accounts for the distance
from which the material free-falls onto the star. This pa-
rameter is expected to be ∼0.8 due to the presence of a mag-
netic cavity inside 5 R�. The uncertainties on Ṁ stem both
from those linked to the determination of the bolometric
accretion luminosity, and those related to the uncertain γ.
Hartmann et al. estimate the uncertainty on Ṁ to be within
a factor 3, with more optimistic error estimates leading to a
factor ∼2, given the likely presence of the magnetic cavity.

Surface densities from measured CO emission maps: in the
case of DM Tau, measurements of 12CO, 13CO and
C18O lines allow for a direct determination of the density
profile of gaseous CO from orbital distances ∼100 AU
to the outer disk (Dartois et al. 2003). Interestingly, the
outer radius of the disk is different depending on the
molecular species that is considered, which is interpreted
as selective photodissociation in the outer disk. 12CO being
the most abundant isotomer, it is also the most resistant to
photodissociation and yields the largest radius (used for
this work). Because CO furthermore tends to condense in
these cold regions (e.g. Aikawa et al. 1999), the gas mass
can only be thought as a lower limit to the outer disk mass.
A comparison of CO and dust emission in DM Tau indeed
yields a disk mass that is smaller by a factor ∼5 when in-
ferred from the CO measurement than when inferred from
the dust (Dartois et al. 2003). This appears to be consistent
with CO condensation, but may also be partially explained
by a larger continuum opacity. The same conclusions hold
for GM Aur, but the set of observations is more limited,
because it is based on 13CO J = 1 → 0 (Dutrey et al.
1998) and 12CO J = 2 → 1 (Dutrey et al. 1998) emission.
In Table 1, the minimum values of the surface density
required to explain the CO emission are derived from
Dartois et al. (2003) for DM Tau and Dutrey et al. (1998)
for GM Aur. Conservatively, we assumed that all CO was
in gaseous form and with a solar abundance to derive these
minimum densities.

Surface densities from continuum emission maps: because cont-
inuum millimetric and sub-millimetric emissions are opti-
cally thin, their measurements inform us on the surface den-
sity and global masses of the disks. However, for a given
flux, the surface density (or equivalently disk mass) derived
is inversely proportionnal to an uncertain opacity coeffi-
cient κν. Following Beckwith et al. (1990), this opacity is
often approximated by:

κν = κ0

(
ν

1012 Hz

)β̃
, (1)

where κ0 ≈ 0.1 cm2 g−1 and β̃ are parameters that depend on
the grain composition and size (e.g. Beckwith et al. 1990).
κ0 is the opacity per total mass (gas+dust) and therefore de-
pends on an assumed dust to gas ratio. The β̃ parameter can
be obtained from the slope of the spectral energy distribu-
tion in the mm region (e.g. Beckwith et al. 1990; Chiang
& Goldreich et al. 1997). Uncertainties on κ0 are often ne-
glected in the calculation of disk masses and surface densi-
ties although they are probably large (Beckwith et al. 1990;
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Pollack et al. 1994; Hartmann et al. 1998; D’Alessio et al.
2001).
In this work, we adopt the matches to the SEDs and 2 mm
emission maps obtained by Kitamura et al. (2002) to con-
strain the surface density at 100 AU. We choose not to
use their constraints on the disk masses and radii and on
the slope of the surface density profile because the loss
of sensitivity of the observations at large orbital distances
and the limited spatial resolution imply that these are very
model-dependant. Kitamura et al. do include a range of al-
lowed β̃ values to estimate the characteristics of the disks,
but do not allow for variations in κ0. In pratice, the val-
ues of β̃ for DM Tau are smaller (by ∼0.45) than those for
GM Aur. Given the standard opacity law (Eq. (1)), this im-
plies that the assumed 1.3 mm opacity is about twice larger
for DM Tau than for GM Aur. On the other hand, models of
grain growth indicate that low values of β̃ <∼ 1 are consistent
with the presence of large grains, and also generally lead to
smaller opacities in the millimetric (Miyake & Nakagawa
1993; D’Alessio et al. 2001). This implies that the larger
disk masses derived for GM Aur may be (at least partly) an
artefact of the opacity law.
In order to account for the uncertainty on κ0 we hence con-
sider cases for which the 100 AU gas surface density is ei-
ther multiplied or divided by a factor 3 compared to the
values obtained by Kitamura et al. (2002).

3. Model description

Our aim in this paper is to obtain evolutionary models able
to satisfy the observational constraints provided by Table 1
and perform a sensitivity analysis of the model parameters
for DM Tau and GM Aur. This requires solving the evolu-
tion of the gas disk for ∼10 Myr and searching not only for
the “best” models but for the ensemble of parameters com-
patible with the observations and their uncertainties. With cur-
rent (and near-future) computing facilities we must restrict our-
selves to a relatively simple system of 1D radial equations in
which all quantities have been vertically averaged and radia-
tive transport is approximated. Consequences of this averag-
ing appear to be relatively mild in terms of accuracy (Huré &
Galliano 2000; see also Ruden & Lin 1986). This is certainly
not a concerning problem, given that we are seeking order-
of-magnitude constraints on the turbulent viscosity and other
relevant parameters.

We hereafter describe our system of equations in the frame-
work of a simple, but relatively complete model including –
hopefully – most relevant physical mechanisms. We also dis-
cuss its limitations in Sect. 3.5.

3.1. Viscous evolution of the surface density

The evolution of a disk follows conservation of angular mo-
mentum and mass. As mass is accreted into the inner region of
the disk and finally onto the central star, part of the disk mate-
rial must migrate outwards to conserve angular momentum. If
the disk is axisymmetric and geometrically thin, the dynamics
are only radially dependent and an effective turbulent viscosity,

ν, can be postulated as the angular momentum transport mech-
anism. In this case, the equation giving the evolution of the disk
surface density, Σ, can be written as,

∂Σ

∂t
=

3
r
∂

∂r

(√
r
∂

∂r

[
νΣ
√

r
])
+ S (r, t), (2)

where we have introduced S (r, t), a source term accounting for
the accretion from the molecular cloud core onto the circum-
stellar disk (see Sect. 3.3).

The general solution of (2) is a disk that progressively ac-
cretes mass inwards while redistributing a part of the outermost
material further away to conserve angular momentum until all
of the material is accreted and all of the angular momentum
has been transported away (Lynden-Bell & Pringle 1974). This
process is modulated by the value of the (turbulent) viscosity ν.

3.2. Two parameterizations of turbulence:
α and β models

A prescription for the turbulent viscosity was originally postu-
lated by Shakura & Sunyaev (1973) and has been extensively
used in models of turbulent disks known since then as alpha
disk models. According to this prescription,

ν = αcsH. (3)

The free parameter α controls the amount of turbulence in a
turbulent medium where the scale height H, and the isothermal
sound speed cs, are upper limits to the mixing length and tur-
bulent velocity, respectively. Accretion rates inferred in T Tauri
stars are compatible with α ≈ 10−2 (Hartmann et al. 1998). As
a caveat, one should note that it is difficult to imagine any phys-
ical process that would yield a viscosity obeying strictly to this
parameterization, with α being spatially uniform and tempo-
rally constant. In this sense, any value of α that can be retrieved
has to be considered as an undefined average over both time and
space of the adimensional quantity ν/(csH).

A possible source of angular momentum transport that can
be approximately parameterized in the α-framework is due to
the so-called magnetorotational instability (Balbus & Hawley
1991, 1998, 2000). The instability arises from the fact that
ionized elements in a magnetized environment tend to con-
serve their velocity. In a keplerian magnetized disk, an ele-
ment being displaced inward will have a lower velocity than
other elements at the same location. Therefore, it will also
have a smaller angular momentum and it will tend to sink fur-
ther in (see Terquem 2002, for a nice description of the pro-
cess). The result is an inner transport of material and an out-
ward transport of angular momentum. Numerical calculations
of rotating magnetic disks indicate that a magnetorotational in-
stability can effectively yield a viscosity with α between 10−3

and 0.1 (Brandenburg et al. 1995; Stone et al. 2000; Papaloizou
& Nelson 2003). The suppression of the instability in neutral
regions of the disk could imply rapid spatial variations of α
(Gammie 1996).

Another mechanism initially proposed to be responsible
for angular momentum transport is thermal convection (Lin
& Papaloizou 1980; Ruden & Lin 1986). The mechanism had
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largely fallen out of favor after direct hydrodynamical simula-
tions of thermal convection in disks by Stone & Balbus (1996;
see also Stone et al. 2000) had resulted in very small angu-
lar momentum transport, mostly inward instead of outward.
However, these results are challenged by recent simulations
of convection in a baroclinically unstable disk that yield an
outward angular momentum transport and corresponding val-
ues of α between 10−4 and 10−2 (Klahr et al. 1999; Klahr &
Bodenheimer 2001). Turbulent angular momentum transport
due solely to thermal convection can be tested by our mod-
els because of the particularity that it will cease in an optically
thin medium. As proposed by Ruden & Pollack (1991), turbu-
lent viscosity can then be modeled by a value of α which is
uniform in the optically thick part, and goes to zero when the
disk becomes optically thin.

Another potential source of angular momentum transport is
that due to shear instabilities (e.g. Dubrulle 1993). This mech-
anism was claimed to be inadequate on the basis of numerical
simulations (Balbus et al. 1996; Hawley et al. 1999). However,
the disappearance of turbulence in the hydrodynamical simula-
tions may be an artifact due to the limited resolution of the sim-
ulations (Longaretti 2002). Indeed, turbulence has been shown
to be sustained in Couette-Taylor experiments with outward de-
creasing angular velocity (Richard & Zahn 1999). A different
prescription for the turbulent velocity may then be applied:

ν = β
∂Ω

∂R
R3, (4)

where Ω is the disk rotation rate. Richard & Zahn found β ∼
2 × 10−5. Huré et al. (2000) further showed that disk models
using this prescription and β ∼ 10−5 are as capable of explain-
ing the observed accretion rates and disks lifetimes as α mod-
els. A convenient feature of this turbulent parameterization is
that ν does not depend on the temperature: the disk’s evolution
then becomes independent of complex issues related to radia-
tive transfer and opacities.

Other mechanisms can yield angular momentum transport
in circumstellar disks without necessarily being amendable to
the calculation of a turbulent viscosity. This is for example
the case of gravitational instabilities and density waves (e.g.
Laughlin & Różyckza 1996; Laughlin et al. 1998), which may
be an important source of disk evolution early on, when the
disk/star ratio is still relatively large. It is also the case of bipo-
lar outflows (e.g. Konigl 1989; Casse & Ferreira 2000). These
probably also have an important role during the cloud collapse
phase. Although the ejection is limited to ∼10% of the material
accreting onto the central star (Calvet 1997), this could nev-
ertheless represent a substantial sink of angular momentum so
that Eq. (2) would not be valid in the central region affected by
the outflow. Since both of these effects are of importance only
during the early evolution phases, neglecting them yields very
limited quantitative changes to our results (see Sect. 5.1).

3.3. Gravitational collapse of an isothermal molecular
cloud core and disk growth

The formation and early evolution of the star+disk system is
governed by the collapse of its parent molecular cloud core.

This process remains poorly known (e.g. André et al. 2000),
and we choose to model it using several simplifying assump-
tions. First, we assume that the cloud envelope is isothermal
and spherically symmetric. Any given shell of radius 	 and
angular velocity ω(	) will collapse onto the disk within the
centrifugal radius (the point at which the maximal angular mo-
mentum in the shell is equal to the angular momentum in the
disk):

Rc(t) =
	(t)4ω(	)2

GM(t)
, (5)

where M(t) is the mass that has been accreted onto the
star+disk system at time t. (In the formalism of the self-similar
solutions, t = 0 corresponds to the formation of the central con-
densation). Formally, Eq. (5) is valid only in the limit when the
disk’s gravitational potential can be neglected. However, given
our lack of knowledge of the collapse phase, this simplification
is perfectly justified.

We further assume that angular momentum is conserved
during the collapse and that material falling onto the disk finds
its way to a location where its angular momentum is equal to
that of the (keplerian) disk. With that hypothesis, and given Ṁ,
the accretion rate onto the disk, we derive the following source
term:

S (r, t) =
Ṁ

πR2
c

1
8

(
r

Rc

)−3/2 1 −
(

r
Rc

)1/2
−1/2

· (6)

Departures from a central gravitational potential during the
collapse phase imply that Eq. (2) does not perfectly conserve
the angular momentum of the disk+envelope system. However,
once again, the effect is negligeable.

This expression of S (r, t) differs from that obtained from
ballistic integrations by Cassen & Moosman (1981) who
showed that the envelope material that encounters the disk
has in fact a subkeplerian rotation rate (see also Nakamoto
& Nakagawa 1994). This yields a small additional, outward,
angular momentum transport that we choose to ignore in this
simulation: as shown in Fig. 1 below, the effect would tend
to decrease the surface density in the outer regions by 40%
at most. The turbulent viscosities that are considered have a
much more significant effect. Furthermore, this is also rela-
tively small compared to most sources of uncertainties, in par-
ticular those related to the cloud collapse itself.

The values of Ṁ and Rc(t) depend on the mechanisms that
led to the collapse of the molecular cloud. A simple and widely
used solution is that of Shu (1977). In that case, a self-similar
approach to the problem with ω(	) = ωcd, a constant rotational
speed of the molecular cloud, shows that the collapse may pro-
ceed from inside-out, with a constant mass accretion:

Ṁ = 0.975
c3

s

G
, (7)

where cs is the isothermal sound speed. Because the collapse
solution yields 	 = cst/2 and using a mean molecular weight
µ = 2.2, one can show that the centrifugal radius can be written:

Rc(t) 	 53
(
ωcd

10−14 s−1

)2 ( Tcd

10 K

)−4 (
M(t)
1 M�

)3

AU. (8)
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Fig. 1. Surface density obtained at the end of the collapse of a 0.3 M0

disk, assuming a centrifugal radius Rc = 100 AU, and no viscous
stress. The plain line corresponds to the collapse of a molecular
cloud core in solid rotation. The dotted line shows the same solution
when accounting for the outward angular momentum transport due to
the subkeplerian momentum of the incoming envelope material (see
Cassen & Moosman 1981). The dashed line corresponds to the col-
lapse of magnetized cloud core with a rotation rate ω(	) ∝ 1/	.

Observations of hot cores indicate that the accretion rate is not
constant over time but enhanced in the very first stages of cloud
collapse and progressively diminishing after a more or less long
time span of accretion rate close to the one predicted by the Shu
theory (Bontemps et al. 1993). However, observations of some
very young protostars like IRAM 04191 in the Taurus molec-
ular cloud (Belloche 2002) point to the presence of differen-
tial rotation and hence different initial conditions. Indeed, in
the presence of a substantial magnetic field, the collapse phase
can begin in a cloud whose rotation rate is ω(	) ∝ 1/	. In
that case, accretion proceeds much faster, and a self-similar ap-
proach shows that the centrifugal radius then evolves linearly
with the accreted mass (Basu 1998):

Ṁ 	 10
c3

s

G
, (9)

Rc(t) 	 15
(
ωb

10−14 s−1

)2
(

Bref

30 µG

)−2 (
M(t)
1 M�

)
AU, (10)

where ωb is the ambient rotation rate of the cloud and Bref is a
background reference magnetic field. The numerical factor in
front of the accretion rate is one possible value among many
but all models imply it is of order 10 (e.g. Foster & Chevalier
1993; Basu 1998; Hennebelle et al. 2003). Because the accre-
tion rate also depends on the poorly-known c3

s , this uncertainty
is ignored.

In the absence of a viscous stress, it can be shown that
the collapse of the cloud core yields a profile density Σ(r) =∫

S (r, t)dt that is approximately proportional to r−7/4 in the
case of a cloud core in solid rotation and to r−3/2 in the case
of our magnetized, differentially rotating cloud core. The re-
sulting profiles are compared in Fig. 1. Because the centrifugal
disk radius at the end of the collapse is fixed in this comparison,
the magnetized cloud core has initially more angular momen-
tum: the disk that forms therefore has more mass in its outer
regions.

3.4. Calculating disk properties

Solving Eq. (2) necessitates the calculation of quantities such
as the mid-plane temperature, Tc, the vertical scale height, H,
and the keplerian rotational frequency Ωk. This has been car-
ried out in many papers (see e.g. Ruden & Lin 1986; Ruden
& Pollack 1991; Reyes-Ruiz & Stepinski 1995, to cite only
a few), but the detailed expressions may differ slightly from
one work to another. Generally, these works have consid-
ered disks of small masses and sizes, and have neglected the
gravitational potential of the disks themselves. Because this
effect may be important for the evolution of DM Tau and
GM Aur, we rederive here vertically averaged equations includ-
ing autogravitation.

3.4.1. Autogravitation and general disk properties

We follow Ruden & Pollack (1991) in expressing the isother-
mal sound speed, cs, and the mid-plane density, ρc as

c2
s =
R
µ

Tc, (11)

ρc =
Σ

2H
· (12)

Here R is the gas constant, µ the molecular weight of the gas,
supposed to be 2.2, and H is a measure of the vertical scale
height, which is a well defined parameter only in non autograv-
itating disks. The mass of the disk also affects the keplerian
rotational frequencies of the disk:

Ωk(r, t) =

[
GM∗(t)

r3
+

1
r

dVd

dr

]1/2

, (13)

where Vd is the gravitational potential of the disk. This potential
can be calculated by

Vd(r) =
∫ ∞

R∗

∫ 2π

0

−GΣ(r1)r1√
(r1 sin θ)2 + (r − r1 cos θ)2

dr1dθ. (14)

It is convenient to express Eq. (14) in terms of the radial coor-
dinate alone by using the elliptic integral of the first kind K[m]:

Vd(r) =
∫ ∞

R∗
−G

4K
[
− 4(1+r/r1−1))

(r/r1−1)2

]

|(r/r1 − 1)| Σ(r1)dr1. (15)

Generally, the incorporation of Vd does not play a major role
in the evolution of the disk. Its effect is to slightly increase Ωk

decreasing the turbulent viscosities through the definitions of H
and ν. Its influence is greater in massive and extended disks
with an inner low mass star.

The vertical scale height, H, is calculated assuming vertical
hydrostatic equilibrium, considering the vertical component of
star gravity and the local gravitation of the disk. This is ap-
proximated from the infinite and R-homogeneous slab approx-
imation, which considers the locally equivalent limits Σ= cte
or z→ 0 (Paczyński 1978; Huré 2000):

1
ρ

dP
dz
= −Ω2

kz − 4πGΣ ≡ gz, (16)

where g is the effective gravity from both star and disk.
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An important simplification is to approximate the disk’s
vertical structure by an isotherm (the departures from an
isotherm yield only second order effect). In that case, the disk
pressure and density decrease exponentially:

(P, ρ) = (P0, ρ0) exp
(
−

(
z/H0 + (z/H1)2

))
, (17)

where the H0 term comes from the autogravitation term and H1

is the classical scale height coming from the vertical compo-
nent of the radial gravity of the star. They are defined as

H0 =
c2

s

4πGΣ
, (18)

H1 =

√
2cs

Ω
· (19)

The first one is dominant for large distances and large values
of Σ, where the disk gravitation dominates over the vertical
component of the central star gravitation. The second one is
the scale height in absence of autogravitation. Consistency with
our definition of ρc through Eq. (12) requires that H has the fol-
lowing form:

H = H1

√
π

2
exp

(
H1

2H0

)2 (
1 − Erf

(
H1

2H0

))
· (20)

When autogravitation is negligible, H0 is large and H →√
π/2H1. When the disk’s gravity is significant, H0 is small

and H < H1. The role of the disk gravity is mainly restricted to
produce a slight vertical flattening of the outer disk.

The assumption of vertical isothermal structure is gener-
ally accurate only close to the disk mid-plane and values of H
should be considered only as reasonable estimates instead of
exact calculations. This factor yields a slight uncertainty on the
magnitude of ν in the case of the α parameterization.

3.4.2. Temperature calculation

In order to calculate mid-plane temperatures the following
assumptions are made:

– the disk is geometrically thin;
– it is heated by the star’s illumination but also by the dissi-

pation of viscous energy by turbulence;
– it is assumed to be optically thick in the radial direction

everywhere so that heat can be transported efficiently only
in the vertical direction.

In thermal equilibrium, the disk’s cooling flux is equal to the
sum of the heating fluxes due to viscous dissipation and exter-
nal sources: we define Tl as the effective temperature at which
the disk is being heated by the central star and external sources
and Te as the emission temperature at which the disk cools
down. These quantities are then related by the following ex-
pression:

2σBT 4
e = Σνr

2Ω2
r + 2σBT 4

l , (21)

where σB is Stephan-Boltzmann’s constant, Te is the effective
temperature of the disk, and Tl is an effective temperature to
which an inert disk would be heated by external sources. Tl will
be discussed in the next section.

Obtaining the mid-plane temperature Tm from the effec-
tive temperature Te is generally a complex radiative transfer
problem. However, in both the optically-thick and optically-
thin regimes, analytic expressions can be found (assuming that
the opacities behave correctly). In the present work, we adopt
the expression derived by Nakamoto & Nakagawa (1994), who
approximate the mid-plane temperature as a sum of optically-
thick and optically-thin contributions:

σBT 4
c =

1
2

(
3
8
τR +

1
2τp

)
Σνr2Ω2

r + σBT 4
l , (22)

where τR and τP are the Rosseland and Planck mean optical
depths respectively. The optical depth from the midplane to the
surface of the nebula, τR, is defined in terms of the Rosseland
mean opacity κR(ρc, Tc) by

τR =
κRΣ

2
· (23)

To evaluate κR, we used the Rosseland mean opacity of dust
grains provided by Pollack et al. (1986) in the form of a power
law: κR(ρc, Tc) = K0ρc

mTc
n. Note that the rapid changes of the

opacities in different regimes (e.g. due to the evaporation of wa-
ter,... etc.) imply that a robust autoconsistent numerical method
must be used to solve the temperature equation. More recent
opacities provided by Hartmann & Kenyon (1996) and Bell &
Lin (1994) seem to be in general agreement with the values of
Pollack et al. As Nakamoto & Nakagawa (1994), we further
assumed τP = 2.4τR.

Since the intensity of the turbulence viscosity is determined
by the disk temperature and determines itself part of the heating
the set of nonlinear equations must be solved simultaneously in
an autoconsistent manner once a value of α is given. A time-
forward integration of the density surface distribution is then
possible. The problem is more straightforward in the case of the
β prescription because ν is then independent of temperature.

3.4.3. Irradiation from the central star

Stellar photons reprocessed by the accretion disk constitute a
significant contribution to the disk’s thermal budget, especially
in regions where dissipation by viscous processes is small, i.e.
mostly in the external regions of the disk. Again, a proper treat-
ment of stellar irradiation is beyond the scope of this work, but
we attempt to capture the essential underlying physics under
our 1D approach.

At distances much larger than the stellar radius, it can be
shown that stellar irradiation implies an effective temperature
that is a function of the star’s effective temperature T∗ and
radius R∗ (Adams et al. 1988; Ruden & Pollack 1991):

Tl1 = T∗
[

2
3π

(R∗
r

)3
+

1
2

(R∗
r

)2(H
r

)(d ln H
d ln r

− 1
)]1/4

. (24)

The first term inside the brackets is the contribution due to the
finite-sized star irradiating a flat disk. The second term, propor-
tional to (d ln H/d ln r − 1) accounts for the flaring of the disk.
We find numerically that this factor becomes significant only
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Fig. 2. Surface density as a function of orbital distance for three dif-
ferent times, corresponding to accretion rates onto the central proto-
star of 10−7, 10−8 and 10−9 M� yr−1. Plain lines show the results of
our model. These are compared to similar calculations by D’Alessio
et al. (2001) for a standard α-disk with α = 0.01, M∗ = 0.5 M�,
R∗ = 0.0093 AU and T∗ = 4000 K (dotted lines). We further used:
M0 = 0.2 M�, ωcd = 3 × 10−3 s−1 and Tcd = 10 K implying a total
accretion time of the cloud core of 0.3 Myr and an outer maximum
centrifugal radius of 60 AU.

for radii r > 50 AU. However, this factor is a significant source
of numerical instabilities. This is an interesting problem that
certainly requires further work. At present, we choose to avoid
it by imposing

d ln H/d ln r = 9/7,

which corresponds to the (approximate) equilibrium solution
for a disk whose temperature is dominated by the flaring term
(Chiang & Goldreich 1997). We verified that this hypothesis is
autoconsistent, i.e. our disks are close to H ∝ r9/7 in regions
where the flaring term dominates.

We additionally considered that the disk is heated by its en-
vironment which radiates at the same temperature as the molec-
ular cloud, Tl2 = Tcd. The true irradiation temperature Tl is then
computed as

T 4
l = T 4

l1
+ T 4

l2
. (25)

3.5. Comparison to an α-disk model with detailed
radiative transfer

Our model was tested against a calculation by d’Alessio et al.
(1999, 2001) for a 0.5 M� T-Tauri star. Their calculation of the
density profile is based on a standard α-disk model, in which
a static solution to Eq. (2) with no source term is found by
imposing a constant mass flux throughout the disk. As shown
in Fig. 2, the resulting surface densities for a given accretion
rate onto the star differ slightly. This is not unexpected, due to
the fact that we included the collapse phase, because assumed
opacities are different, and because the static solution is not
necessarily a good estimate of the disk’s structure, especially
at large orbital distances.

Despite these differences, the midplane temperatures in-
ferred in our model compare well to the more elaborate
2D calculations by D’Alessio et al. Figure 3 shows that the

Fig. 3. Midplane temperatures as a function of orbital distance calcu-
lated in this work (plain lines) and by D’Alessio et al. (2001) (dotted
lines), in the same conditions as in Fig. 2.

comparison is good in two regimes: (i) In the inner parts of the
disk (R <∼ 10 AU), where the release of gravitational energy
by viscous dissipation dominates over the star’s irradiation and
governs the disk’s temperature structure; (ii) In the intermedi-
ate and outer parts of the disk, where irradiation from the cen-
tral star is the dominant source of heating and the temperature
profile tends towards T (r) ∝ r−1/2.

3.6. Limitations of the model

3.6.1. Structure of the inner disk

In the calculations that are presented, we assume that the
disk extends from an arbitrary inner boundary at 0.1 AU and
beyond. The exact location of this inner boundary is of lit-
tle importance for the evolution of the outer disk (say, be-
yond 10 AU). However, the exact structure of the inner disk
and the fact that recent observations seem to point to a clear-
ing of the region inside ∼5 AU (Bergin et al. 2004) can affect
the constraints derived from the accretion rate. For example, it
can be noticed that the presence of a Jupiter-mass planet would
lower the accretion rate onto the star, because part of the ma-
terial from the outer disk would be accreted by the planet (e.g.
D’Angelo et al. 2002; Bate et al. 2003), and part of the disk’s
gravitational energy would be used to push the planet inward.
Clearly, in the absence of detailed models of this and because of
other possible explanations (photoevaporation, grain growth) it
would be unrealistic to try to also fit the observed structure of
the inner disk with our simple model. Last but not least, the
error bar on Ṁ is relatively large and is presumably larger than
this source of uncertainty.

3.6.2. Thermal vertical structure

In models with an α-viscosity, the temperature determines the
sound speed cs, the scale height H and hence the viscosity ν it-
self. We use the midplane temperature because the gravity near
the midplane is low (∼ωz) and vertical temperature variations
should be small in these regions. However, radiative transfer
models (Malbet & Bertout 1991; Chiang & Goldreich 1997;
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D’Alessio et al. 1999, 2001) show that in regions where the
stellar irradiation is significant, the temperature in the outer
layers of the disk is expected to be larger than at the midplane.
This was verified by (Dartois et al. 2003) who found that in
DM Tau’s outer disk, the central temperature is Tc ∼ 15 K
while Tphotosphere ∼ 30 K.

Another aspect of the problem is that in the tenuous at-
mosphere of the outer disk, the gas may not be in thermal
equilibrium and may therefore be heated more than the dust
disk, i.e. by absorption of FUV photons. Altogether, this should
introduce a maximum of a factor of 2 indetermination on the
temperatures and α-viscosities of the outer optically thin disk.

3.6.3. Non-viscous processes affecting the disk
evolution

Our model assumes that the present disks around DM Tau and
GM Aur are solely the result of the collapse of a molecu-
lar cloud core and of the subsequent viscous evolution of the
disk. May these disks be altered by other physical processes?
Following Hollenbach et al. (2000), we identify five possible
sources of disk dispersal:

– wind stripping;
– photoevaporation due to an external source;
– photoevaporation due to the central star;
– tidal stripping due to close stellar encounters;
– planet formation.

Wind stripping may indeed affect the disk thickness, but ac-
cording to Hollenbach et al. (2000), the associated timescales
for disk dispersal are, in the regions of interest, well
over 10 Myr and can be neglected.

Unlike in Orion (e.g. O’Dell et al. 1993), photoevaporation
due to external sources should not be a concern in the Taurus-
Auriga association due to the small number of massive stars
present.

Photoevaporation due to the central star may be estimated
from the work of Hollenbach et al. (1994; see also Shu et al.
1993). The authors estimate that the total mass loss due to
UV photoevaporation of disk material is:

ṀUV = 4.1 × 10−10 Φ
1/2
41 M1/2

∗ M� yr−1, (26)

where Φ41 is the ionizing photon luminosity of the central star
in units of 1041 s−1. There is no precise value of this param-
eter, but Alexander et al. (2005) advocate using the observed
He II/C IV line ratio to derive the hardness of the ultraviolet
spectrum and obtain Φ41 ≈ 1−1000 for five classical T-Tauri
stars. As shown by Clarke et al. (2001) and Matsuyama et al.
(2003), photoevaporation alters significantly the inner disk’s
structure when ṀUV ∼ Ṁ∗, where Ṁ∗ is the accretion rate onto
the star. This implies that photoevaporation may play a role
even in DM Tau and GM Aur if the UV photon rate is in the
upper range of that estimated by Alexander et al. Even in that
case however, we expect the effect on the structure of the outer
disks to be relatively modest.

Tidal stripping may be important for the evolution of
accretion disks in relatively dense environments. A simple es-
timate for the timescale of truncation of a disk to a radius rd

assumes that the disk is stripped to about 1/3 the impact param-
eter (Clarke & Pringle 1991; Hollenbach et al. 2000); hence:
tSE ≈ 1/(n�σv), where n� is the density of stars, σ ≈ π(3rd)2

is the collision cross section and v is the velocity dispersion
of stars. In our case, assuming tSE <∼ 107 yr, v ≈ 1 km s−1

and rd ≈ 1000 AU implies that stellar encounters could become
important for star densities n� >∼ 50 pc−3. Values n� ≈ 100 pc−3

appear to be typical of the central Taurus cloud (Clarke et al.
2000). Moreover, both DM Tau and GM Aur are relatively iso-
lated in this cloud and consequently this mechanism has proba-
bly not affected their disks. This is probably unlike other young
stars, which may explain why young stars with very extended
disks remain relatively rare.

Last but not least, planet formation is a mechanism suscep-
tible of greatly modifying the structure of disks, particularly
when giant planets form. However, planets are thought to form
closer to the central star than can be probed by the present ob-
servational techniques. Their effect on the disks can be thought
as a surface density sink, and should hence be relatively modest
at large orbital distances.

3.6.4. Gravitational stability of the disk

The local gravitational stability of a rotating disk against
axisymmetric perturbations is measured by the Toomre-Q
parameter, which is defined by

Q =
kcs

πGΣ
, (27)

where k is the epicyclic frequency given by k2 =

(1/r3)[∂(r4Ωk
2)/∂r] (Toomre 1964; Goldreich & Lynden-Bell

1965). Disks are gravitationally stable if Q > 1 all over the disk
(the rotation gradient dominates and the disk follows axisym-
metric evolution) and are unstable if Q ≤ 1 anywhere (gravi-
tation may dominate locally and break out the axisymmetry).
In this case disks may produce a direct gravitational collapse
of particles into planetesimals (Goldreich & Ward 1973), giant
planet cores (Boss 2003) or may develop spiral density waves
able to redistribute the angular momentum in a non local way
until stability is reached again (Laughlin & Różyczka 1996;
Laughlin et al. 1997, 1998). This last case is the generally ac-
cepted scenario for the evolution of massive disks.

Nakamoto & Nakagawa (1994) showed that disk instabili-
ties are more likely to appear in disks with low values of α and
high values of ωcd. Laughlin & Różyczka (1996) found that
in most of the situations the global transport of angular mo-
mentum by spiral arms in gravitationally unstable disks may
be roughly in agreement with axisymmetric models with val-
ues of αs of 0.02−0.03.

Although both DM Tau and GM Aur disks are at present
gravitationally stable (Q > 1 everywhere), they may have gone
through an early unstable phase. In order to account for this ef-
fect, we adopted α = Max(0.03, α) when the condition Q < 1
was met somewhere in the disk. A limited number of models
with α ≥ 0.03 went through an unstable phase without any
artificial increase in their viscosity. We did not modify the vis-
cosity of β-models, whatever the value of Q.
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We observed a posteriori that the gravitational instability
phase was generally limited in time to less than 0.1 Myr. An
incorrect handling of gravitational instabilities hence yields a
negligible error on the age of the system. An effect that is po-
tentially more significant, and ignored in the present study, con-
cerns the fact that the advection of disk material can depart
from a diffusive solution. To the extreme, this process may lead
to the formation of stellar or planetary companions. Clearly, a
more consistent treatment of gravitational instabilities would
be desirable.

4. Fitting the observations

4.1. Setting of the calculations

The equations described in the previous section are solved nu-
merically using an explicit finite-difference scheme. Each cal-
culation begins at time t = M0/Ṁ. The inner disk boundary
is set to Rin = 0.1 AU, and the maximum computational space
ends at Rout = 104 AU. In order to solve numerically Eq. (2) we
follow the method described by Bath & Pringle (1981). This
requires the radial points to be equally spaced on a X =

√
r

space. The stability condition required to solve Eq. (2) is that
the time-step ∆t obeys

∆t ≥ Min

(
X2∆X2

24ν

)
· (28)

An adaptive time-step scheme taking into account this condi-
tion is used. A grid resolution of 250 points is adequate for
disks with a centrifugal radius that is always larger than 4 AU.
To calculate the evolution of disks with smaller values of jcd

so that 2 <∼ Rc <∼ 4 AU, we use 500 points, corresponding to a
resolution in the inner regions ∼0.15 AU.

The model parameters are:

– α or β, which characterize the magnitude and functional
form of the turbulent viscosity;

– ωcd, the angular velocity of the molecular cloud core;
– Tcd, the temperature of the molecular cloud (which is equiv-

alent to a characteristic accretion velocity from the molec-
ular cloud onto the circumstellar disk);

– M0, the initial mass of the protostar;
– Mcd, the total amount of material initially in the molecular

cloud and eventually in the star+disk system.

These parameters reflect either uncertainties in the physics
of star formation (α-β, M0) or unknown initial conditions
(ωcd, Mcd), or both (Tcd through the accretion rate of the molec-
ular cloud, see Eq. (7)).

Our approach is to constrain these parameters by extensive
numerical simulations and comparison with observations. Four
sets of calculations are performed for DM Tau and GM Aur,
using either the α or β parameterizations and considering the
Shu (1977) classical cloud collapse model. To explore the sen-
sitivity of the results to the cloud collapse model, we calculate
a fifth set of model for the DM Tau α case and the collapse
scenario derived from Basu (1998).

In order to efficiently explore the space of parameters we
use a Monte-Carlo procedure to chose the values of the model

Table 2. Explored parameter space.

DM Tau GM Aur

M0 [M�] 0.05 and 0.30 0.05 and 0.40

Mcd [M�] 0.4−1.0 0.4−1.5

ωcd [s−1] 10−15−10−11 10−15−10−11

Tcd [K] 3.0−30.0 3.0−30.0

Accretion Time(∗) [yr] 45 000−5 × 106 49 000−5 × 106

α 10−5−1 10−5−1

β 10−6−0.1 10−6−0.1

Number of models 2000 α 2000 α

1500 β 1500 β

Magnetic cloud core 2000 α

(∗) Here the accretion time refers to the time it takes for the molecular
cloud core to entirely collapse onto the disk (see Eq. (7)).

parameters within the range given in Table 2. Two values of M0

are chosen. A small value is representative of cases in which
the central condensation grows relatively slowly, and gravita-
tionnal instabilities dominate the early disk evolution. A large
value is representative of an initially evolved situation in which
the proto-star forms rapidly, and the disk grows significantly
only at later times. This could occur if ambipolar diffusion and
jets allow an efficient outward transport of angular momentum
early on during the collapse of the molecular cloud.

Cases for which the initial centrifugal radius Rc (see
Eq. (5)) is larger than ∼5000 AU are disregarded, as well as
those with final centrifugal radius too small to solve accurately
the building-up of the disk. For numerical reasons models that
require a time-integration with a step smaller than 0.5 yr are
not calculated. Table 2 provides a summary of the different
sets of calculations run and the coverage of the space of pa-
rameters. Table 3 provides the numerical limitations imposed
by the two different grid resolutions, the minimum time-step
required, and the resulting limits on jcd and ν0. The values
of jcd bracket inferred values for Class I protostellar envelopes,
1020 <∼ jcd <∼ 1021 cm2 s−1 (Ohashi et al. 1997). The upper limit
on ν0 is relatively large and limits us only for extreme values of
the β-parameter in the case of DM Tau (see Fig. 14 hereafter).

The calculations were performed on an 8PCs
Linux/Beowulf cluster over several months. The low ∆t
required by the stability criterion imply total computation
times for each model that range between minutes to several
hours for the most computationally expensive models (specif-
ically, these correspond to 500-points, β models of GM Aur).
The large database of resulting models is then compared to
the various observational constraints in order to extract the
possible values of the main physical parameters.

4.2. Selecting models from observational constraints
The observational constraints characterizing DM Tau and
GM Aur have very different origins. Three independent con-
straints are used (see Sect. 2):

(a) The fact that the disks are optically thick in 12CO at 100 AU
and the outer disk radius requires that Σ be larger than a
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Table 3. Numerical limitations of the calculation

Npoints = 250 Npoints = 500

∆R0 = 0.4 ∆R0 = 0.15

2.3 < Rc < 5000 0.8 < Rc < 5000

19.0 < Log10 ( jcd) < 21 18.8 < Log10 ( jcd) < 21

∆t > 0.5⇒
Log10 (ν0) < 17.2 Log10 (ν0) < 16.5

∆R0 is the spatial resolution of the model at the inner disk boundary
and Rc is the centrifugal radius, both are given in AU, jcd is the specific
angular momentum of the molecular cloud and is given in cm2 s−1,
∆t is the minimum allowed computational time-step in yr and is re-
lated with ν0 the value of the disk viscosity at the inner boundary given
in cm−2 s−1. The inner disk boundary is located at 0.1 AU.

minimal value. This value is calculated by assuming that
all C is in form of vapor CO and translates into a minimal
value of Σ at Rout.

(b) Values of Σ at 100 AU have to be consistent with those
inferred from dust emission, allowing for uncertainties in
the opacity coefficient, grain size and dust to gas ratio.

(c) The accretion rate onto the star has to fit constraints ob-
tained from the star’s excess luminosity. A conservative
error bar of 0.54 in Log10(Ṁ) is assumed.
In order to further narrow the possible solution ensemble,
we choose to add the following reasonable constraints:

(d) At the outer 12CO radius, the value of Σ cannot be larger
than 20 times the lower limit. This value is inspired by the
discrepancy between the CO and dust emission observa-
tions at 100 AU.

(e) The inferred accretion rate is supposed to be known within
a realistic but model dependent error bar of only 0.3
in Log10(Ṁ).

These constraints are schematically shown in Fig. 4. They
should be further refined by combining observational and theo-
retical studies. In this work, we purposely use rather unrestric-
tive interpretations of the observations to obtain robust con-
straints on the desired physical parameters.

Together with the constraints on the star’s mass and age,
we thus derive five sets of solutions, from weaker to stronger
constraints:

{1}: (a)
{2}: (a)+(b)
{3}: (a)+(b)+(c)
{4}: (a)+(b)+(c)+(d)
{5}: (a)+(b)+(c)+(d)+(e).

We will mostly discuss the results obtained with sets {4}
and {5}.

4.3. Examples of models behavior: disk history
and surface density-temperature evolution

Before analyzing our global results, it is useful to describe
the general behavior of the models in terms of two specific

Fig. 4. Illustration showing the different observational constraints used
in this work, in terms of surface density and orbital distance. The la-
bels “c” and “e” correspond to constraints on the accretion rate onto
the central star. Constraints “e” and “d” are reasonable expectations of
the mass accretion rate and outer disk maximum surface density.

examples. We explain here how the observational constraints
are used to select a model as a successful fit to the data. We
consider two examples based on an α-model of DM Tau. The
parameters for both examples are listed in Table 4

In all cases, our story starts with a protostar of mass M0,
no disk and a reservoir of cloud material with mass Mcd − M0.
Material falls from the molecular cloud at a constant rate inside
a disk of growing size Rc, a consequence of angular momentum
conservation and the inside-out collapse of a molecular cloud
core in solid rotation. Because viscous diffusion is more effi-
cient than the increase of Rc with time, the disk spreads be-
yond the centrifugal radius. The disk can be quite hot in this
early phase, especially when Rc is small and the accretion rate
is large (large Tcd). The disk grows in mass until all of the avail-
able mass in the molecular cloud core has been accreted to the
disk. After that, the central star continues to accrete disk mate-
rial while the disk expands and cools.

Starting with Example 1, Fig. 5 illustrates the evolution of
the star mass, disk mass, centrifugal radius and star accretion
rate. Figure 6 shows the evolution of the surface density of the
disk. The disk construction phase (dotted lines) appears as a
quick phase in which the disk density increases by orders of
magnitude with a relatively sharp outer edge. When the molec-
ular cloud has collapsed entirely (at t = 0.18 Myr), the disk
has already spread further than the maximum centrifugal ra-
dius (11 AU), a consequence of the relatively large ν. The later
evolution of the system is characterized by the inner accretion
of disk material and the outer diffusion of angular momentum.
After 3 Myr, the diffusion of material proceeds much more
slowly due to the lower density, temperature and viscosity of
the inner disk.

The midplane temperatures are shown in Fig. 7 for the
same time-sequence. The disk heats up considerably during the
molecular cloud collapse phase (the first 0.2 Myr) and cools
down gradually when the collapse ceases. The sharp transitions
in the temperature curves arise from the different regimes of
Rosseland opacities at different temperatures (Ruden & Pollack
1991). The outer disk beyond 50 AU is optically thin, vertically
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Table 4. Model parameters for examples 1 and 2.

Parameters Example 1 Example 2 Units

(fixed)

α 0.01 0.025 –

ωcd 2.3 × 10−14 2.6 × 10−13 (s−1)

Tcd 14 17 (K)

M0 0.05 0.05 (M�)

Mcd 0.515 0.585 (M�)

(derived)

Log10(Jcd) 52.3 53.4 (g cm2 s−1)

Log10( jcd) 19.3 20.3 (cm2 s−1)

Rc 11 830 (AU)

Accretion time 0.18 0.15 (Myr)

Fig. 5. Example 1. Evolution of star mass M∗ and disk mass Mdisk as a
function of time with masses in solar units (corresponding axis to the
left) for the model parameters of Table 4. The accretion rate onto the
central star is shown as a dotted line (corresponding axis: first to the
right). The evolution of the centrifugal radius Rc (see Eq. (5)) is shown
as a dash-dotted line (corresponding axis: far-right). Gray curves and
the hashed region indicate time sequences when selected observational
constraints are verified (see text).

extended, flared, and its thermal structure is determined solely
by stellar irradiation and a diffuse heat source of Tcd.

In Example 1, the disk is always stable to gravitational per-
turbations (Q > 1) and the disk mass is never a large fraction
of the star mass. This model evolves smoothly with values of
the initial parameters in good agreement with expected values
in the Taurus Aurigae region. The question then is: does this
model satisfy the observational requirements for DM Tau? And
in that case, what other values of the set of parameters represen-
tative perhaps of very different initial conditions or turbulence
in the disk, would also agree with the observations?

Figure 5 shows thick grey lines superimposed on each plot-
ted quantity. Each one shows the range of time for which that
quantity agrees with the available observations. For MDisk, the
grey line represents the period of time when the Σ surface den-
sity satisfies the observational error bars discussed in Sect. 2.
This period is easily identified in Fig. 6. The accretion rate is re-
produced either within large error bars (thick grey line), or with

Fig. 6. Example 1. Surface density versus orbital distance at different
times for the model parameters of Table 4. Dotted lines correspond to
the early formation of the disk. The collapse of the molecular cloud
ends after 0.18 Myr. The dashed line at 10 Myr corresponds to the
end of the simulation. The error bars represent the Σ values at 100 AU
and in the outer radius that are used as observational constraints for
DM Tau. The gray area shows the ensemble of models fitting those
constraints. The dark-shaded region shows the Σ distribution at the
time-lapse when all observational constraints are satisfied (see text).

Fig. 7. Example 1. Same as Fig. 6, but for the midplane temperature
as a function of orbital distance.

small error bars (thick black line) (see Sect. 2). The uncertainty
over the star age for DM Tau is marked as a light-grey box.
Figure 5 hence shows that the model is a good fit to the data
from 1.5 to 2.8 Myr (surface densities and star age), from 1.5
to 2.6 Myr (Ṁ with its large error) or from 1.5 to 1.6 Myr (small
error bars on Ṁ). The latter is shown as a dashed region.

This model hence does fulfill the “strict” observational con-
straints (set {3}) and also the reasonable additions (sets {4}
and {5}). This example shows how DM Tau’s 800 AU disk
can be formed by viscous diffusion of an initially much smaller
disk, with a centrifugal radius Rc = 11 AU.

Let us now examine our second example. Here the disk is
assumed to form in 0.15 Myr with a maximum centrifugal ra-
dius of 800 AU. Most of the disk material falls so far from the
central star that the disk gets more massive than the central star
at the end of the collapse (Figs. 8 and 9). Yet, the disk diffuses
outwards and gets accreted into the central star. For a certain
period of time (4−5.4 Myr) it also satisfies all the observational
constraints we have considered.
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Fig. 8. Example 2. Evolution of star mass M∗ and disk mass Mdisk as a
function of time. See Fig. 5 and Table 4 for details.

Fig. 9. Example 2. Surface density versus orbital distance at different
times. See Fig. 6 and Table 4 for details.

Observationally it may be very difficult to distinguish be-
tween these two scenarios at a late and evolved age but each
one has very different implications for the formation of plane-
tary systems. In the first case, a massive, relatively small disk
forms. This may allow a rapid build-up of planetesimals and
protoplanetary cores, but may induce a fast inward migration.
In the second example, planetesimals could still be formed in
an extended disk on longer timescales. If massive cores were
to be formed late in the system their inner migration could be
damped. The possibility of forming planetesimals and planets
in this variety of scenarios will be studied in a forthcoming
paper.

As we will see in the next section, solutions matching the
observed surface densities and other constraints are far from
being limited to these two cases; a variety of initial conditions
and values of the turbulent viscosity can yield satisfactory mod-
els. We now turn to an analysis of the ensemble of models that
match the observations.

5. Results: allowed models and derived theoretical
constraints

5.1. General

For the most of this section we discuss results on the basis of
only 2 parameters representative of the disk physics (α or β)
and of the initial conditions ( jcd), respectively. We thus derive

Fig. 10. Example 2. Midplane temperature versus orbital distance. See
Fig. 7 and Table 4 for details.

constraints on these parameters depending on the chosen set of
observational constraints. Since given values of (α or β, jcd)
may be obtained from different combinations of the initial con-
ditions, we also plot the fraction of models that fit the ob-
servations. We further checked that the global results are not
dependent on the value of M0 or on the numerical resolution.

Figure 11 constitutes a summary of our global results for
DM Tau and GM Aur for both parameterizations of turbu-
lence. Results are shown for three sets of observational con-
straints ({3}, {4} and {5}). The most extended light-grey con-
tours correspond to the envelope in the (ν, jcd) space covered
by models matching the CO and dust observations, and the star
accretion rate with the large error bar (set {3}). This results in
relatively weak constraints on the physical parameters. Less re-
strictive observational constraints are therefore not shown: for
DM Tau α models, 30% of all launched models satisfy the
CO data alone (set {1}) and 18% satisfy the CO+dust data
(set {2}). If we include the accretion rate information we are
able to slightly reduce the number of fitting models to 15%
(set {3}). These constraints are quite unrestrictive because they
do not limit the outer radius of the disk and unreasonably mas-
sive and extended disks can result.

Adding a reasonable maximum value for the density of the
disks at their outer edge (set {4}) yields a significant reduction
of the permitted (ν, jcd) space, either for the DM Tau βmodel or
for the GM Aur α and βmodels. This is shown as a dashed con-
tour and grey color in Fig. 11. A still narrower set of solutions
can be achieved by restricting the range of allowed accretion
rates (set {5}). The final ensemble of solutions is plotted as a
thick colored contour in Fig. 11. We consider that this set of
solutions provides the most realistic constraints on ν and jcd

for DM Tau and GM Aur.
Figure 11 also shows that a right value of α, β and jcd is

not a sufficient condition to match the observations. The pres-
ence of other initial parameters imply that only a fraction of the
models really fit the imposed conditions. This fraction peaks
to 60% for the central region in the DM Tau α panel, 40% for
the β case and 50% and 30% for GM Aur α and β respectively.

The detailed values of the space of parameters allowed for
sets {2} to {5} are given on Table 5. We list the maximum,
minimum and statistic mean value of the model parameters that
fit each set of conditions.
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Table 5. Summary of the Monte-Carlo exploration for different sets of constraints. The minimum, maximum and mean value of the successful
fitting models are given. Symbols: AT Accretion time or molecular cloud collapse time. Units: jcd in cm2 s−1, Rc in AU, ωcd in units of 10−14 s−1,
Tcd in K, Mcd and Mdisk in solar masses, Jcd in g cm2 s−1, and AT, Age and ∆Age in Myr.

System Param. Model results obtained for the different observational constraints

{2}: CO + Dust {3}: {2} + Ṁ {4}: {3} + Outer Limit {5}: {4} + Accurate Ṁ

Min Mean Max Min Mean Max Min Mean Max Min Mean Max
DM Tau α 5× 10−4 0.03 0.6 5× 10−4 0.02 0.15 5× 10−4 0.02 0.15 8× 10−4 0.02 0.08

jcd 19.0 20.1 20.8 19.2 20.1 20.7 19.2 20.0 20.7 19.3 20.0 20.7
Rc 2.4 1090 4900 4.6 980 4900 4.6 720 4900 7.3 750 4900
ωcd 0.14 22 218 0.14 23 218 0.14 22 218 0.14 23 218
Tcd 2 15 30 2 16 30 2 16 30 2 16 30
Mcd 0.41 0.59 1.0 0.41 0.56 0.87 0.41 0.53 0.69 0.41 0.53 0.69
Jcd 52.0 53.5 54.1 52.2 53.1 54.0 52.2 53.0 53.9 52.3 53.0 53.7
AT 0.05 0.5 4.4 0.05 0.4 4.0 0.05 0.3 4.0 0.05 0.3 3.7
Age 1.5 3.7 7.0 1.5 3.9 7.0 1.5 3.5 7.0 1.5 3.5 6.8
∆Age 0.05 2.6 5.5 0.05 2.3 5.5 0.05 2.0 5.5 0.05 1.0 2.8
Mdisk 0.006 0.05 0.42 0.009 0.036 0.38 0.009 0.025 0.10 0.014 0.036 0.097
Nmodels 371 313 225 166

DM Tau β× 105 1.1 31 390 1.1 24 160 1.1 8.5 50 2.2 8.5 50
jcd 19.1 20.0 20.8 19.3 20.1 20.8 19.3 19.7 20.1 19.4 19.7 20.0
Rc 5 752 4800 9 810 4800 9 74 328 15 71 170
ωcd 0.05 14 140 0.1 15 140 0.1 8 36 0.1 8 36
Tcd 2 14 30 2 15 30 2 15 30 2 15 30
Mcd 0.413 0.65 0.97 0.42 0.65 0.97 0.42 0.56 0.72 0.43 0.55 0.65
Jcd 52.1 53.1 54.1 52.4 53.2 54.1 52.4 52.8 53.1 52.5 52.8 53.1
AT 0.06 0.7 4.9 0.06 0.6 4.9 0.06 0.4 2.6 0.06 0.5 2.6
Age 1.5 4.0 7.0 1.5 4.0 7.0 1.5 3.2 7.0 1.5 2.7 4.5
∆Age 0.05 2.7 5.5 0.05 2.0 5.5 0.05 0.8 3.4 0.05 0.4 1.3
Mdisk 0.01 0.15 0.57 0.01 0.20 0.50 0.01 0.06 0.13 0.02 0.07 0.13
Nmodels 277 235 75 44

GM Aur α 2× 10−5 0.02 0.3 2× 10−5 0.005 0.03 1× 10−4 0.003 0.02 4× 10−4 0.002 0.01
jcd 19.2 20.2 20.9 19.2 20.2 20.9 19.2 19.6 20.1 19.2 19.6 20.1
Rc 4.1 1000 4900 4.1 915 4900 4.1 45 233 4.1 36 199
ωcd 0.04 12 125 0.04 11 125 0.04 3.7 16 0.04 3.6 12
Tcd 2 16 30 2 16 30 2 17 30 2 17 30
Mcd 0.55 1.0 1.5 0.55 1.0 1.5 0.55 0.8 1.3 0.55 0.8 1.1
Jcd 52.3 53.5 54.4 52.3 53.5 54.4 52.3 52.9 53.4 52.3 52.8 53.3
AT 0.07 0.6 4.9 0.07 0.6 4.7 0.07 0.4 3.7 0.07 0.5 3.7
Age 1.0 4.5 10.0 1.0 5.5 10.0 1.0 3.4 9.8 1.0 3.2 8.6
∆Age 0.05 4.8 9.0 0.05 4.3 8.9 0.05 2.4 8.8 0.05 1.5 5.4
Mdisk 0.03 0.30 0.90 0.03 0.25 0.80 0.03 0.11 0.34 0.03 0.10 0.28
Nmodels 785 563 159 88

GM Aur β× 105 0.1 13 180 0.1 4.8 25 0.2 2.2 10 0.2 1.8 8
jcd 19.2 20.2 20.9 19.3 20.2 20.9 19.3 19.8 20.7 19.3 19.8 20.3
Rc 4 920 4900 5 930 4900 5 105 1900 5 85 500
ωcd 0.02 10 120 0.02 10 120 0.02 4.5 30 0.1 4.3 20
Tcd 2 15 30 2 16 30 2 15 30 2 15 30
Mcd 0.55 1.0 1.5 0.55 1.0 1.5 0.55 0.9 1.3 0.55 0.9 1.2
Jcd 52.4 53.5 54.4 52.5 53.5 54.4 52.5 53.0 54.1 52.5 52.9 53.5
AT 0.08 0.7 5 0.08 0.6 5 0.08 0.6 4.8 0.08 0.5 4.3
Age 1 4.4 10 1 5.1 10 1 4.5 10 1 4.4 10
∆Age 0.05 4.9 8.9 0.05 3.8 8.9 0.05 1.6 6.1 0.05 1.0 3.9
Mdisk 0.023 0.3 0.87 0.023 0.3 0.80 0.023 0.14 0.80 0.028 0.12 0.35
Nmodels 569 426 136 77
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Fig. 11. Viscosity and initial specific angular momentum of models fitting DM Tau and GM Aur for both parameterizations of turbulence. The
contour colored plot represents the fraction of models fitting the strongest observational constraints (set {5}). The light-shaded region around,
contoured by a dotted line, represents the additional area covered by models assuming an uncertain accretion rate (set {4}). The light grey filled
region surrounding this area corresponds to models with no upper limit on the surface density in the disk’s outer region (set {3}).The spatial
resolution for each panel is shown as an empty circle. The circle in each figure shows the approximate spatial resolution of the figure obtained
by the Monte-Carlo procedure for an accuracy in the fraction of models of 10%. Features in the plots smaller than each circle are not well
resolved.

Our first conclusion is that it is possible to use the esti-
mated current state of observed disks to get information about
their formation and evolution using relatively simple models.
Globally the constraints on the parameters are not very strong,
but they anyway provide useful information and ask for further
detailed observations of these objects. For instance, a reduction
of the star age uncertainty and/or the star accretion rate error
bar would be especially useful. Another important conclusion
to be drawn is that both α and β models provide a satisfac-
tory evolutionary scenario for the disks around DM Tau and

GM Aur. This does not mean that either of these parameteriza-
tions are correct but that none of them can be excluded on the
basis of these results.

The current disks around DM Tau and GM Aur can be ob-
tained from very different values of the angular momentum in
the molecular cloud, corresponding to values of the centrifu-
gal radius spanning the entire range (4 to 5000 AU) allowed
by our numerical approach. A very small value of Rc requires
large values of the viscosity to yield an efficient outward dif-
fusion of the disk to match its outer radius. A very large Rc
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also requires a large viscosity, but this time so as to yield a
large enough accretion rate. As expected, no useful constraint
on Tcd can be derived. Constraints on the initial rotation of the
disk ( jcd or ωcd) are weak although models with relatively low
values of jcd seem to be favored.

The mean derived value for the model parameters together
with the minimum and maximum allowed values are given on
Table 5. The mean value of α inferred from this study is 0.02
for DM Tau and 0.002 for GM Aur, both close to the standard
value of α = 0.01 generally found in the literature (Hartmann
et al. 1998). In the β parameterization of turbulence the mean
values obtained are 9 × 10−5 and 2 × 10−5 for DM Tau and
GM Aur respectively. The β value for GM Aur agrees with the
prediction that β ≈ 2 × 10−5 from Richard & Zahn (1999). The
mean value of β for DM Tau is a factor of five larger but lower
values close to the theoretical prediction are allowed. These
conclusions apply to set {5}, but remain valid for sets {2}
to {4}.

A significant part of all models developed gravitational in-
stabilities near the end of the disk-formation era and mostly for
a relatively short time span of 1−2 × 105 yr in systems with
ages less than 3 × 105 yr. These thus have a limited impact
on the results. We also tested the importance of outflows in
the DM Tau α case by arbitarily imposing an inner boundary
at 10 AU. The extra series of 500 models show no statistically
significant difference with the results presented here, except for
models with very low values of jcd.

5.2. Inferred structures of DM Tau and GM Aur

The selected sets of models provide information not only on
the regions where we have observational constraints but also on
the general structure of the disks around DM Tau and GM Aur.
Figure 12 shows the totality of surface density distributions for
the four cases studied and different sets of constraints. The set
of models {3} and {5}, are represented as light- and super-
imposed dark-shaded regions, respectively. Fitting the absolute
outer radii of the disks would provide an additional powerful
constraint. This may be difficult to obtain since dust obser-
vations lack sensitivity and CO is affected by photodissocia-
tion and condensation at low temperatures (Aikawa et al. 1999;
Dartois et al. 2003). Unfortunately, at present it is not clear
what exactly the outer radii inferred from the millimeter and
optical observations imply: they could either be interpreted as
an abrupt or as a steady decrease of the density profile. Without
assuming a sharp outer edge for GM Aur, models with un-
reasonable large disk masses become possible fits to the ob-
servations (set {3}). On the other hand, sharp outer edges of
circumstellar disks would be in better agreement with the β pre-
scription of turbulence, as shown by Fig. 12.

Temperature is another important quantity whose evalua-
tion has important implications for planet formation processes.
In the α cases it also affects the intensity of the viscous turbu-
lence, ν, and the disk evolution. The envelopes of all possible
radial profiles of temperatures for the fitted models are shown
in Fig. 13. These are the thermal profiles of our calculated mod-
els at the time when they verify the selected constraints. As in

the previous figure, two constraints, {3} and {5}, are shown
as light- and dark-shaded regions, respectively. At small radial
distances, the temperature is mostly due to viscous dissipation.
At large radial distances, the disk becomes optically thin and
the temperatures are essentially controlled by the stellar flux.
The β models are significatively cooler than the α models be-
cause they have less mass in the inner disk, implying lower
optical depth and lower central temperatures for a given effec-
tive (photospheric) temperature. For the same reasons, GM Aur
appears to be warmer than DM Tau.

Turbulent viscosity is the key variable to understand the
disk evolution. Figure 14 shows the envelope of possible ν pro-
files as a function of stellar distances for the solutions that fit
the observations of DM Tau and GM Aur (set {5}). At first
glance, the solutions for the α and β models may appear to be
relatively similar, a consequence of the constraint on the den-
sity profile provided by the observations. However, marked de-
partures between the two profiles in the [10−1000 AU] region
are apparent. Globally, να varies as r3/4, while νβ varies as r1/2,
meaning than the α models are diffused more efficiently in the
outer disk. This explains why, at large distances from the star,
the density profile decreases less sharply in the α models than
in the β models.

5.3. Global evolution of the disk and gravitational
instabilities

Figure 15 shows the envelope of possible star and disk mass
evolution for the models matching conditions {3} and {5}, re-
spectively. Up to 15% of our selected models (set {5}) were
gravitationally unstable, though generally only over a short
fraction of their evolution, near the end of the disk formation
era. These correspond to the models for which the mass of the
disk is close to or exceeds the central star mass. The gravita-
tional instability arises at 30±10 AU and times 1.0±0.6×105 yr
and typically lasts for 104−105 yr for DM Tau and less than 2×
105 for GM Aur due to the larger amount of mass the disk has
to process. Because we compare observations and models at
ages larger than 106 yr, gravitational instabilities should not
affect signficantly our analysis. In sets {4} and {5}, models
with α > 0.03 were never gravitationally unstable. Models with
lower values of α had an imposed α = 0.03 during gravitational
instable periods (see Sect. 3.6.3).

The problem of the evolution of the mass of accretion disks
as a function of viscosity and initial angular momentum Jcd was
also studied by Nakamoto & Nakagawa (1995). These authors
derived a criterion on the viscosity parameter α which guar-
antees that at any given time, the disk to star mass ratio never
exceeds 0.1:

logα ≥ −2.0 + 4.5 log Jcd − 3.9(log Jcd)2, (29)

with Jcd in units of 1053 g cm2 s−1. Their study is relevant for
systems of ∼1 M� collapsing in ∼6 × 105 yr. They considered
the parameter range Jcd = [6 × 1052−1053] g cm2 s−1 and α =
[10−5−0.1].

For our simulations of DM Tau α we plot in Fig. 16,
the regions of the parameter space that have lower masses
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Fig. 12. Radial surface density profile of successful models of DM Tau and GM Aur. The dark-shaded regions correspond to the models fitting
the constraints {5}. The light-shaded regions represent the additional solutions when the constraints are only the CO + dust + Accretion rate
with large error bar (set {3}). The error bars are the constraints on Σ imposed by {5}.

than 0.1 M∗ at the end of the disk formation period (and hence,
at the moment of maximum disk mass). Our results compare
well with those of Nakamoto and Nakagawa, though their re-
sult is strictly valid for systems collapsing in 0.6 Myr years and
ours extend to systems forming in 0.05 to 5 Myr. A comparison
with Fig. 11 shows that most solutions for DM Tau and GM Aur
are to the left of the critical line, i.e. the disk to star mass ratio
has been, or in some cases is still, larger than 0.1. This seems
to contradict the fact that most observed disks appear to have
values of this ratio smaller than 0.1 (e.g. Beckwith et al. 1990;
Kitamura et al. 2002). However, this contradiction may only
be apparent, given the fact that the dust absorption coefficient
at millimeter wavelengths may have been overestimated (see
Sect. 2.3), and/or that the time spent with a large disk mass
is generally relatively short. It is also possible that DM Tau
and GM Aur are, among protoplanetary disks, exceptions, and
that most other disks have suffered more from either tidal in-
teractions with nearby stars and/or photoevaporation from ex-
ternal, relatively massive stars. Alternatively, our assumptions
regarding the uncertain opacity factor may be too conservative
and allow for unrealistically large values of the disk mass. This
would imply that stronger constraints can be derived from the
observations presently available.

5.4. Results for the collapse of magnetized molecular
clouds

In order to assess the importance of the collapse model in the
final results, we also study an α model of DM Tau in which
the molecular cloud is assumed to collapse under the influence

of a strong magnetic field. Figure 17 shows the final charac-
teristics of models fitting the observational constraints when
Eqs. (9), (10) are used. Table 6 shows a summary of our results
when fitting the observational constraints {2} to {5}.

Compared with the hydrodynamical collapse models, these
are characterized by lower values of the initial rotational ve-
locity (6 × 10−14 s−1 vs. 23 × 10−14 s−1) and similar values of
the specific angular momentum (Log10( jcd) = 20.3 vs. 20.0).
This is because differential rotation yields a faster rotation of
the inner molecular cloud core. Furthermore, the final centrifu-
gal radii of the disks are smaller than in the non-magnetic case
for a given rotational velocity. The only possible scenario for
the formation of DM Tau is an inner disk of intermediate size
(Rc ∼ 50 AU) that expands in time while it diffuses. This is true
even if one considers only the weak constraints {2}.

The distribution of surface densities for the successfully fit-
ting models is shown in Fig. 18. Appart from the fact that high
values of the initial angular moment in the cloud core are al-
lowed, the results are similar to those obtained for the non-
magnetic case (Fig. 13), confirming that a strong, sustained vis-
cous evolution of the system is required to fit the observations.
In particular, the values of α derived are almost identical re-
gardless of the collapse scenario.

The global evolution of the star and disk masses is shown
in Fig. 19. Compared to the non-magnetic case (Fig. 15),
the 10 times faster accretion implies that the disks grow
very rapidly and are likely to become gravitationally unstable
early on.
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Fig. 13. Ensemble of possible mid-plane disk temperatures for two different sets of observational constraints: {3}, light-shaded and {5},
dark-shaded.

Fig. 14. Viscosities of successful models of DM Tau and GM Aur. Shadowed regions correspond to models calculated with the α parameteri-
zation. Lines represent the upper and bottom limit of viscosities for the β cases.

5.5. Turbulence driven by vertical convection?

One of the advantages of our Monte-Carlo approach is that we
can test if some of the different theoretical mechanisms able to
produce turbulence in the disk can explain the observations of
extended disks. Here we test if the simplest characteristics of
thermal convection (Lin & Papaloizou 1980) can explain the
current state of DM Tau. If thermal convection is the domi-
nant source of turbulence in circumstellar disks, the instability
should be essentially limited to the inner optically thick disk
with a more or less sharp transition in the outer optically thin
disk (Ruden & Pollack 1991).

It is useful to consider some order of magnitude figures.
In the outer region the opacities are dominated by ice grains.

For typical temperatures T ∼ 10 K, the Rosseland opacity
(gas+dust) is κR ∼ 0.02 cm2 g−1 (Pollack et al. 1986). The
disk is unable to sustain a convective vertical transport of heat
at an optical depth τ <∼ 1 implying a critical surface density
Σcrit ∼ 2/κR ∼ 100 g cm−2. A circumstellar disk of mass 0.1 M�
could then be convective up to a maximum limit of ∼50 AU. If
we consider higher temperatures and disk masses (T = 30 K
and Md = 0.3 M�) this limit extends to 280 AU. Therefore, it
would be extremely difficult to produce the extended structures
of disks like DM Tau and GM Aur by the outward diffusion of
initially smaller disks. If turbulent convection is the dominant
source of viscosity, these systems should have been formed es-
sentially as they are observed now.
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Fig. 15. Star mass and disk mass as a function of time for models succefully fitting selected observational contraints. The light- and dark-shaded
regions show the evolution of the disk mass with constraints {3} and {5}, respectively. The dotted and plain lines represent the envelopes of
possible star masses with the same constraints. The star symbols mark the mean values of the ages and disk masses of models fulfilling set {5}.

Fig. 16. Regions of the parameter space where massive disk and non-
massive disks can be found. The constraint given by Nakamoto and
Nakagawa traces a region (dashed) where massive disks at the end
of the molecular cloud collapse are to be found. The dotted box is
the area of the space of parameters covered by their study. The grey
shaded area represents the region where we found models with disks
less massive than 0.1 M∗ at the end of the collapse period. The spatial
resolution of our calculations is shown by the lower right circle.

In order to test this possibility we launched a new set of
calculations for DM Tau following the same range of values as
in the previous cases and considering an α constant in the inner

Fig. 17. Distributions of models fitting the sets of constraints {3}, {4}
and {5} for DM Tau α in the case of an initially magnetized molecular
cloud. See Fig. 11 for details.

disk but decreasing in the outer part of the disk as a function of
the optical depth to a given power:

α = α0

(
τ

τcrit

)n

; τ ≤ τcrit. (30)
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Table 6. Summary of Monte-Carlo exploration in the case of an initial collapse of a magnetized molecular cloud core. For each set of constraints
described in the text {2}, {3} {4} and {5} the minimum, maximum and mean value of the successful fitting models are given. Symbols: AT
Accretion time or molecular cloud collapse time. Unities: jcd in cm2 s−1, Rc in AU, ωcd in units of 10−14 s−1, Tcd in K, Mcd and Mdisk in solar
masses, Jcd in g cm2 s−1, and, AT, Age and ∆Age in Myr.

System Param. Model results obtained for the different observational constraints

{2}: CO + Dust {3}: {2} + Ṁ {4}: {3} + Outer Limit {5}: {4} + Accurate Ṁ

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

DM Tau α 7× 10−4 0.03 0.2 7× 10−4 0.02 0.1 8× 10−4 0.03 0.1 0.004 0.02 0.1

jcd 19.6 20.5 21.2 19.6 20.5 21.2 19.6 20.3 21.1 19.6 20.3 21.1

Rc 5.4 80 240 5.4 70 240 5.4 55 200 5.4 50 200

ωcd 0.7 9 26 0.7 8 26 0.7 7 26 0.7 6 25

Tcd 2 14 30 2 13 30 2 15 30 2 15 30

Mcd 0.41 0.60 0.97 0.41 0.58 0.86 0.41 0.54 0.67 0.42 0.54 0.67

Jcd 52.5 53.6 54.5 52.5 53.5 54.4 52.5 53.4 54.2 52.5 53.4 54.2

AT 0.05 0.9 9.5 0.05 0.8 9.3 0.05 0.5 9.3 0.05 0.5 9.3

Age 1.5 3.8 7.1 1.5 4.0 7.1 1.5 3.5 7.0 1.5 3.4 7.0

∆Age 0.05 2.3 5.6 0.05 2.1 5.6 0.05 1.7 5.5 0.05 1.0 2.7

Mdisk 0.002 0.10 0.44 0.008 0.08 0.44 0.008 0.04 0.11 0.01 0.03 0.11

Nmodels 332 277 184 129

Fig. 18. Σ surface density distributions at different times for the
successful models in the magnetic cloud case, fulfilling the con-
straints {3} (light-grey) or {5} (dark-grey). See Fig. 12 for details.

Here α0 characterizes the viscosity in the optically thick disk,
n is an integer number that measures the transition of the turbu-
lent active to non active region and τcrit = 1.8 following Ruden
& Pollack (1991). We launched 900 models with n = 8 (sharp
transition) and 500 with n = 1 (smooth transition) for DM Tau.

In the first case, n = 8, we obtained 4 models able to si-
multaneously satisfy the CO and dust constrains (set {2}) with
centrifugal radius around 1300 AU. These models were typi-
cally far too massive and could not satisfy simultaneously the
observed accretion rate.

In the second case, we chose n = 1. This situation corre-
sponds to a slow decrease of turbulence proportional to the op-
tical depth. It is probably unrealistic but could possibly model
a hybrid case in which convection is active at τ >∼ 1 and an-
other undefined, weaker, turbulent source sets in at lower op-
tical depths. In this case, material can be transported from the
optically thin to the optically thick regions.

Fig. 19. Star and disk mass evolution for the successful models in the
magnetic cloud case. See Fig. 15 for details.

We found that 19% of all models are able to fit the CO +
dust requirements (set {2}) and that 13% also fit the accretion
rate constraint (set {3}). This is similar to the results obtained
previously with a uniform α value. However, the models fit-
ting the constraints {3} are now characterized by larger values
of the centrifugal radius (Rc = [45, 4900] AU), specific angu-
lar momentum (Log10( jcd) = [19.7−20.8]) and hence viscosity
(α = [0.002, 0.6]) than those listed in Table 5. These disks are
generally massive, they develop gravitational instabilities and
are formed basically as they are observed. We found that only a
tiny fraction ∼2% of all models also fit constraints {4}. These
are characterized by: Rc = [45, 300] AU; α = [0.003, 0.07];
Log10( jcd) = [19.7−20.1]. Finally, only one single model was
able to also fit simultaneously the strict accretion rate we have
considered on set {5}.

The global evolution of this model together with the ra-
dial distributions of its surface density and the disk effective
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Fig. 20. Global evolution of the star and disk mass. This was the only
case found where turbulence of convective origin was found to satisfy
the most retrictive set of constraints {5}. See Fig. 5 for details.

viscosity are shown in Figs. 20–22. The model is character-
ized by α = 0.07, jcd = 19.73, Rc = 62 AU and total ac-
cretion time 0.22 Myr. The molecular cloud parameters are
also found to agree reasonably well with those inferred for the
Taurus formation region (ωcd = 4.38 × 10−14 s−1, Tcd = 12 K,
M0 = 0.05 M� and Mcd = 0.527 M�). It must be stressed how-
ever that this chance result requires initial conditions that are
very close to those listed here.

We conclude that it is extremely unlikely that convective
instabilities could have been the dominant source of angular
momentum transport in DM Tau and GM Aur.

6. Conclusions

We presented a (relatively) simple model of evolution of cir-
cumstellar disks and applied this model systematically to two
well-characterized objects: DM Tau and GM Aur. We chose to
survey extensively a rather large parameter space, using various
observational constraints from CO observations of these disks,
dust emission properties, derived accretion rates and age and
masses of the central stars. Two viscosity parameterizations,
α and β, and two cloud collapse models were used.

We showed that the current state of DM Tau and GM Aur
can be understood as resulting from the collapse of a molec-
ular cloud core, the formation of an accretion disk and its
spreading due to angular momentum conservation and tur-
bulent diffusive transport. This scenario is consistent with a
specific angular momentum initially in the cloud core ( jcd ∼
1020−1021 cm2 s−1) similar to measurements in class I proto-
stellar cores (Ohashi et al. 1997), and values of the viscosity
that are within an order of magnitude of the standard α ∼ 0.01
derived from measured ages and accretion rates (e.g. Hartmann
et al. 1998). The significant outward diffusion implies that most
of the material has been reprocessed and lies far from the posi-
tion where it had originally fallen onto the disk.

More specifically, the values of α that can be inferred
from this study range within 0.001−0.1 for DM Tau and 4 ×
10−4−0.01 for GM Aur. In the case of the β models, the likely
values of this parameter are 2 × 10−5−5 × 10−4 for DM Tau
and 2 × 10−6−8 × 10−5 for GM Aur.

Fig. 21. Σ surface density distributions at different times for the same
model as the previous figure. See Fig. 6 for details.

Fig. 22. Radial distribution of turbulent viscosity in the disk as a func-
tion of time. As the disk spreads it is able to develop viscosity even
in regions far beyond the final centrifugal radius Rc = 62 AU. This
is because this case corresponds to n = 1 (see Eq. (30)), implying
that the transition between the convective to non-convective regime is
extremely smooth (and probably unrealistically so).

Unfortunately, the still relatively large error bars on obser-
vationally determined quantities (in particular the age of the
system and the star accretion rate) prevent inferring tight con-
straints on parameters characterizing the systems. We cannot
argue in favor of either the α or β parameterizations of turbu-
lent viscosity. Similarly, our results are consistent with both a
relatively slow (hydrodynamic) or a fast (magnetic) collapse of
the primordial molecular cloud core. We can however rule out
thermal convection as the main source of turbulence in the disk:
the observed disks of DM Tau and GM Aur are too large and
extend too far in the optically thin regime in which convection
would be suppressed. On the other hand, they cannot be formed
directly from the molecular cloud. Convection could still play
a role in the inner disk, but another source of turbulence is re-
quired in the optically thin regime.

The current state of both systems could be explained by a
wide variety of evolutionary histories. In most cases, the disks
were always gravitationally stable. However, for low- and high-
values of the initial angular momentum jcd (corresponding to
Rc <∼ 10 AU or Rc >∼ 2000 AU), disks can become gravitation-
ally unstable for ∼105 yr or less. In the case of DM Tau and
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GM Aur, gravitational instabilities thus appear to have had a
limited role.

The relatively large values of the viscosity that we derive
both for DM Tau and GM Aur imply that an efficient turbu-
lent diffusion mechanism is present throughout these disks. As
a consequence, any giant planet forming in these disks will be
in risk of migrating rapidly into its star, except if (i) it is pro-
tected by an inner dead zone characterized by a low viscosity
or (ii) it forms late, i.e. when the local disk mass is comparable
to the mass of the planet itself. We regard the second possibility
as more likely, but this requires more specific studies. In any
case, the presence of extended viscous disks around DM Tau
and GM Aur has consequences on how we should apprehend
planet formation and should be included in future studies of
this problem.

Several improvements to this work are possible. Obviously,
our sets of constraints {1} to {5} should eventually be replaced
by a global assessment of the compatibility of the derived den-
sity profiles with the different observations (SED, dust emis-
sivity, CO observations, reflected light observations). This is
not trivial because of possible variations of the dust to gas ra-
tio (dust migration due to gas drag, condensation at different
temperatures), of radial and vertical variations of the size dis-
tribution of solid particles, and of variations in the chemical
composition (in particular due to CO condensation and its pho-
todissociation). Another improvement would be to include the
thermal evaporation of the disks at large orbital distances (hun-
dreds of AU).

In any case, we believe that meaningful constraints on
physical processes leading to the formation of extended disks
can now be derived. These critically depend on the inferred
surface density profiles at 100 AU and beyond. High sensitiv-
ity observations able to detect small amounts of gas or dust in
the outer regions of the disks such as forseen for ALMA are
of course highly desirable. A better understanding of the inner
disk regions and constraints on the rate of accretion onto the
star would also be very valuable. Ongoing programs (in par-
ticular observations with the Spitzer telescope, but also from
ground-based facilities) should ensure a rapid progress towards
understanding the formation and evolution of protoplanetary
disks.
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