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Remarks on global controllability for the Burgers

equation with two control forces

S. Guerrero∗and O. Yu. Imanuvilov†

Abstract

In this paper we deal with the viscous Burgers equation. We study

the exact controllability properties of this equation with general initial

condition when controlling both ends of the interval. In a first result, we

prove that the global exact null controllability does not hold for small

time. In a second one, we prove that the exact controllability result does

not hold even for large time.

1 Introduction

We consider the following control system associated to the one -dimensional
Burgers equation:





yt − yxx + yyx = 0 (t, x) ∈ Q := (0, T ) × (0, 1),

y(t, 0) = v1(t), y(t, 1) = v2(t) t ∈ (0, T ),

y(0, x) = y0(x) x ∈ (0, 1).

(1)

Here, T > 0 is a given final time and v1(t) and v2(t) are control functions which
are acting over our system at both endpoints of the segment (0, 1). Furthermore,
y0 is the initial condition which is supposed to be in H1(0, 1). In the sequel, we
will suppose that our control functions v1 and v2 belong to the space H1/2(0, T ).
Under these assumptions, it is classical to see that there exists a solution y of sys-
tem (1) which belongs to the space X := L2(0, T ; H2(0, 1)) ∩ H1(0, T ;L2(0, 1))
and a continuous function K0 > 0 such that

‖y‖X ≤ K0(‖y0‖H1(0,1) + ‖v1‖H1/2(0,T ) + ‖v2‖H1/2(0,T )). (2)

In general, an exact controllability property for system (1) reads as fol-
lows: given y0 ∈ H1(0, 1) and y1 ∈ H1(0, 1), do there exist controls v1 ∈
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H1/2(0, T ) and v2 ∈ H1/2(0, T ) such that the corresponding solution of (1) sat-
isfies y(T, x) = y1(x) in (0, 1)? When y1 ≡ 0, we will refer to this problem as
the exact null controllability.

Let us now mention the previous works which one can find in the literature
concerning the exact controllability for the Burgers equation.

• We start talking about the non-viscous Burgers equation. As far as we
know, only two works have been dedicated to this issue.

In [8], the author describes the attainable set of the inviscid one-dimensional
Burgers equation. In particular, he proves that by means of a boundary control,
the Burgers equation can be driven from the null initial condition to a constant
final state M in a time T ≥ 1/M . The main tool the author uses is the so-called
return method, which was introduced in [4].

More general results are obtained in [1]. In this reference, the authors pre-
cisely describe the attainable set for general scalar nonlinear conservation laws
with C2 strictly convex flux functions when starting from a null initial data.
In particular, they deduce that as long as the controllability time is lower than
1/M (M > 0 constant), we do not have exact controllability to the state M .

• As long as the controllability of the viscous Burgers equation is concerned,
very few works have been done too. Most of the papers in the literature deal
with the controlled Burgers equation with one control force, which can act over
our system at one endpoint or a small interior open set.

First, in [5], the author proves that for the solutions of the viscous Burgers
equation with y(t, 0) = 0 in (0, T ) and initial data y0 ∈ L∞(0, 1), there exists a
constant C0 > 0 such that, for every T > 0 one has

y(t, x) ≤
C0

1 − x
∀(t, x) ∈ (0, T ) × (0, 1).

From this a priori estimate, the author deduces that the approximate control-
lability to some target states does not hold.

We recall now a result from [7], where the authors prove, roughly, that we
cannot reach an arbitrary target function in arbitrary time with the help of one
control force. Precisely, they deduced the following estimate: for each N > 5,
there exists a constant C1(N) > 0 such that

d

dt

∫ b

0

(b − x)Ny4
+(t, x)dx < C1b

N−5,

where b is the lower endpoint where the control function is supported (for in-
stance, b = 0 if the control function is acting at x = 0). Here, y+(t, x) =
max{y(t, x), 0} is the positive part of y. From this a priori estimate, one can
deduce that we can not get close to some open set of target functions in L2(0, 1).

Next, in [6], the authors prove that the global null controllability does not
hold with one control force. Precisely, for any initial condition y0 ∈ L2(0, 1)
with ‖y0‖L2(0,1) = r > 0, it is proved that there exists a time T (r) > 0 such
that for any control function, the corresponding solution satisfies

|y(t, ·)| ≥ C2 > 0 ∀t ∈ (0, T (r)) in any open interval I ⊂ (0, 1),
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for some C2(r) > 0. Furthermore, this time T (r) is proved to be sharp in
the sense that there exists a constant C3 > 0 independent of r such that, if
T > C3T (r), then there exists a control function such that the corresponding
solution satisfies y(T, x) = 0 in (0, 1). The main tool used in this work is the
comparison principle.

For the Burgers equation with two boundary controls it was shown in [7],
that any steady state solution is reachable for a sufficiently large time.

Finally, in the recent paper [3], the author proved that with the help of two
control forces, we can drive the solution of the Burgers equation with null initial
condition to large constant states. More precisely, for any time T > 0, it is shown
the existence of a constant C4 > 0 such that for any C ∈ R satisfying |C| ≥ C4,
there exist two controls v1(t) and v2(t) such that the associated solution to (1)
with y0 ≡ 0 satisfies y(T, ·) = C in (0, 1). The idea of the proof of this result is
based on the Hopf-Cole transformation, which leads to a controllability problem
for the heat equation.

In the present paper, we have two main objectives. One concerning the
exact null controllability for small time and the other one concerning the exact
controllability for any time T > 0. Both results are of negative nature.

As long as the first one is concerned, we prove that there exists a final time
T and an initial condition y0 such that the solution of (1) is far away from zero.
That is to say, the global null controllability for the Burgers equation with two
control forces does not hold. The precise result is given in the following theorem:

Theorem 1 There exists T > 0 and y0 ∈ H1(0, 1) such that, for any control
functions v1 ∈ H1/2(0, T ) and v2 ∈ H1/2(0, T ), the associated solution y ∈ X
to (1) satisfies

‖y(T, ·)‖H1(0,1) ≥ C5 > 0, (3)

for some positive constant C5(T, y0).

The second main result is a negative exact controllability result:

Theorem 2 For any T > 0, there exists an initial condition y0 ∈ H1(0, 1)
and a target function y1 ∈ H1(0, 1) such that, for any v1 ∈ H1/2(0, T ) and
v2 ∈ H1/2(0, T ), the associated solution y ∈ X to (1) satisfies

‖y(T, ·) − y1(·)‖H1(0,1) ≥ C6 > 0, (4)

for some positive constant C6(T, y0, y1).

In order to prove these results, we first show the equivalence of the controlla-
bility problem for the Burgers equation (1) and some controllability problem for
a one-dimensional linear heat equation with positive boundary controls. This is
carried out in several steps, by applying Hopf-Cole type transformations.

Then, our controllability results for the Burgers equation (stated in Theo-
rems 1 and 2 above) will be deduced from both results for the corresponding
heat equation.
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As a consequence of these two theorems, one can easily deduce the following
corollaries:

Corollary 3 Let us consider the following control system associated to a semi-
linear parabolic equation:





wt − wxx +
1

2
|wx|

2 = v̂1(t) in Q,

w(t, 0) = 0, w(t, 1) = v̂2(t) in (0, T ),

w(0, x) = w0(x) in (0, 1),

(5)

with v̂1 ∈ L2(0, T ) and v̂2 ∈ H1(0, T ). Then, the exact controllability of the
previous system with H2-data does not hold. That is to say, for any T > 0,
there exist w0 ∈ H2(0, 1) and w1 ∈ H2(0, 1) such that

‖w(T, ·) − w1(·)‖H2(0,1) ≥ C7,

for some C7(T, w0, w1) > 0. Furthermore, the exact null controllability does not
hold either.

Corollary 4 Let us consider the following bilinear-control system associated to
a heat equation:





zt − zxx =
v̂3(t) − 1

2
z in Q,

z(t, 0) = 0, z(t, 1) = v̂4(t) in (0, T ),

z(0, x) = z0(x) in (0, 1),

(6)

with v̂3 ∈ L2(0, T ) and v̂4 ∈ H1(0, T ). Then, equivalently as in the previous
corollary, the exact controllability and the exact null controllability of the previ-
ous system with H2-data do not hold.

The paper is organized as follows. In a first section, we reduce the control
system (1) to another one concerning the heat equation. Finally, in the second
section we prove both Theorems 1 and 2.

2 Reduction to a heat controllability problem

In this section, we prove that the exact controllability properties for the Burgers
equation are equivalent to some others for the heat system. All through this
section, we consider T > 0 a fixed final time.

Let us start remembering the control system associated to the Burgers equa-
tion we are working with:





yt − yxx + yyx = 0 in Q = (0, T ) × (0, 1),

y(t, 0) = v1(t), y(t, 1) = v2(t) in (0, T ),

y(0, x) = y0(x) in (0, 1).

(7)
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Next, we formulate the exact controllability problem we are interested in:

For any y0 ∈ H1(0, 1) and any y1 ∈ H1(0, 1), there exist controls

v1, v2 ∈ H1/2(0, T ) such that the solution of (7) satisfies

y(T, x) = y1(x) in (0, 1).

(8)

In a first lemma, we prove that this controllability problem is equivalent to a
controllability problem for a semilinear parabolic equation with time-dependent
controls, one acting in the right hand side of our equation and the other one
acting at x = 1. Let us thus consider the following control system:





wt − wxx +
1

2
|wx|

2 = v3(t) in Q,

w(t, 0) = 0, w(t, 1) = v4(t) in (0, T ),

w(0, x) = w0(x) in (0, 1).

(9)

Assume that w0 ∈ H2(0, 1), v3 ∈ L2(0, T ) and v4 ∈ H1(0, T ). Then, w ∈ X1 :=
L2(0, T ; H3(0, 1)) ∩ H1(0, T ;H1(0, 1)) and there exists a continuous function
K1 > 0 such that

‖w‖X1
≤ K1(‖w0‖H2(0,1) + ‖v3‖L2(0,T ) + ‖v4‖H1(0,T )). (10)

We have:

Lemma 1 There exists a solution of problem (8) if and only if there exists a
solution to the following controllability problem:

For any w0 ∈ H2(0, 1) and any w1 ∈ H2(0, 1), there exist controls

v3 ∈ L2(0, T ) and v4 ∈ H1(0, T ) such that the solution w ∈ X1

of (9) satisfies w(T, x) = w1(x) in (0, 1).

(11)

Proof: Let us first suppose that we have a solution to problem (8). Then, we
denote

w(t, x) =

∫ x

0

y(t, s)ds ∀(t, x) ∈ Q.

Then, it is very easy to check that this function w = w(t, x) solves the control-
lability problem (11) with

w0(x) =

∫ x

0

y0(s) dx ∈ H2(0, 1), w1(x) =

∫ x

0

y1(s) ds ∈ H2(0, 1)

and

v3(t) = v2
1(t) − yx(t, 0), v4(t) =

∫ 1

0

y(t, s)ds ∀t ∈ (0, T ).

From (2) and v1 ∈ H1/2(0, T ), we obtain that v3 ∈ L2(0, T ) and v4 ∈ H1(0, T ).
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On the other hand, suppose that there exists a solution w ∈ X1 to (11).
Then, the function

y(t, x) = wx(t, x) ∈ X

solves problem (8) with

y0(x) = w0,x(x) ∈ H1(0, 1), y1(x) = w1,x(x) ∈ H1(0, 1)

and
v1(t) = wx(t, 0), v2(t) = wx(t, 1) ∀t ∈ (0, T ).

From (10), v1, v2 ∈ H1/2(0, T ). The proof of lemma 1 is completed. ¤

The next step is to prove that the previous controllability result is equivalent
to a controllability problem for a linear heat equation with two time-dependent
controls, one of bilinear nature (multiplying the state function) and the other
one acting at x = 1. Let us thus consider the following control system:





zt − zxx +
v5(t)

2
z = 0 in Q,

z(t, 0) = 1, z(t, 1) = v6(t) in (0, T ),

z(0, x) = z0(x) in (0, 1).

(12)

Analogously than for system (9), we have that for any z0 ∈ H2(0, 1), v5 ∈
L2(0, T ) and v6 ∈ H1(0, T ), the solution z belongs to X1 and there exists a
continuous function K2 > 0 such that

‖z‖X1
≤ K2(‖z0‖H2(0,1) + ‖v5‖L2(0,T ) + ‖v6‖H1(0,T )). (13)

Precisely, we have:

Lemma 2 There exists a solution to the problem (11) if and only if there exists
a solution to the following controllability problem:

For any z0, z1 ∈ H2(0, 1) with z0(x), z1(x) > 0 in (0,1), there exist

controls v5 ∈ L2(0, T ) and 0 < v6(t) ∈ H1(0, T ) such that the solution of (12)

z ∈ X1 satisfies z(T, x) = z1(x) in (0, 1).
(14)

Proof: Let us first suppose that we have a solution w ∈ X1 to the controllability
problem (11). Then, we set z(t, x) = e−w(t,x)/2 for (t, x) ∈ Q which satisfies
z ∈ X1 and solves problem (14) with

z0(x) = exp{−w0(x)/2}, z1(x) = exp{−w1(x)/2} ∀x ∈ (0, 1)

and
v5(t) = v3(t), v6(t) = exp{−v4(t)/2} ∀t ∈ (0, T ).
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Now, let us consider z = z(t, x) a solution of problem (14). We define the
function

w(t, x) = −2 ln z(t, x) ∀(t, x) ∈ Q.

Observe that this is a good definition since z(t, x) > 0 in Q. Again, immediate
computations tell us that w fulfills the controllability problem (11) with

w0(x) = −2 ln z0(x), w(T, x) = −2 ln z1(x) ∀x ∈ (0, 1)

and
v3(t) = v5(t), v4(t) = − ln v6(t) ∀t ∈ (0, T ).

The proof of lemma 2 is complete. ¤

In the last step, we will prove that the previous exact controllability problem
is equivalent to an exact controllability problem for the heat equation with
positive controls acting at both ends x = 0 and x = 1. Let us, thus, introduce
the following control system:





ht − hxx = 0 in Q,

h(t, 0) = v7(t), h(t, 1) = v8(t) in (0, T ),

h(0, x) = h0(x) in (0, 1).

(15)

For the solution of this heat equation with initial data h0 ∈ H2(0, 1) and v7, v8 ∈
H1(0, T ), we have again that h ∈ X1 and there exists a continuous function K3

such that

‖h‖X1
≤ K3(‖h0‖H2(0,1) + ‖v7‖L2(0,T ) + ‖v8‖H1(0,T )). (16)

We have:

Lemma 3 There exists a solution to the exact controllability problem (14) if
and only if there exists a solution to the following one:

For any h0, h1 ∈ H2(0, 1) with h0(x), h1(x) > 0 in (0, 1), there

exists a constant K > 0 and controls 0 < v7(t), v8(t) ∈ H1(0, T )

such that the solution of (15) satisfies h(T, x) = Kh1(x) in (0, 1).

(17)

Proof: We start by assuming that there exists a solution to the controllability
problem (14). Then, we define

h(t, x) = exp

{∫ t

0

v5(s)

2
ds

}
z(t, x) ∀(t, x) ∈ Q.

Then, it is very easy to check that h solves problem (17) with

h0(x) = z0(x), h1(x) = z1(x) ∀x ∈ (0, 1)
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v7(t) = exp

{∫ t

0

v5(s)/2 ds

}
, v8(t) = exp

{∫ t

0

v5(s)/2 ds

}
v6(t) ∀t ∈ (0, T )

and

K = exp

{∫ T

0

v5(s)/2 ds

}
.

Assume now that there exists a solution h of problem (17) for some constant
K > 0. Then, the function

z(t, x) =
1

v7(t)
h(t, x) ∀(t, x) ∈ Q

solves problem (14) with

z0(x) =
1

v7(0)
h0(x), z1(x) =

K

v7(T )
h1(x) ∀x ∈ (0, 1)

and

v5(t) = 2
v7,t(t)

v7(t)
, v6(t) =

v8(t)

v7(t)
∀t ∈ (0, T ).

The proof of this lemma is finished. ¤

Remark 1 Equivalently to the exact controllability problem stated in (8), one
can formulate the null controllability problem taking y1 ≡ 0 and so the null
controllability property

For any y0 ∈ H1(0, 1), there exist controls v1, v2 ∈ H1/2(0, T ) such that

the solution of (7) satisfies y(T, x) = 0 in (0, 1).
(18)

is equivalent (in the sense of the previous lemmas) to

For any h0 ∈ H2(0, 1) with h0(x) > 0 in (0, 1), there exists a constant

K > 0 and controls 0 < v7(t), v8(t) ∈ H1(0, T ) such that the solution

h ∈ X1 of (15) satisfies h(T, x) = K in (0, 1).

(19)

3 Proofs of main results

In this section, we will prove both Theorems 1 and 2.
We first state a technical result which expresses the local results for solutions

of heat equations:

Lemma 4 Let 0 < ξ0 < ξ1 < ξ2 < 1. Then, for each θ > 0 there exists a time
T ∗ = T ∗(θ) > 0 such that the solution of the backwards heat equation





−Ut − Uxx = 0 (t, x) ∈ (0, T ∗) × (0, 1),

U(t, 0) = U(t, 1) = 0 t ∈ (0, T ∗),

U(T ∗, x) = δ(ξ0) − θδ(ξ1) + δ(ξ2) x ∈ (0, 1)

(20)
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satisfies
Ux(t, 0) > 0 and Ux(t, 1) < 0 ∀t ∈ (0, T ∗).

A much more intrinsic result is the one given in the following lemma which
was proved in [2]:

Lemma 5 Let T > 0 and 0 < ξ0 < ξ1 < ξ2 < 1. Then, there exists θ > 0 such
that the solution of the backwards heat equation





−Ut − Uxx = 0 (t, x) ∈ Q,

U(t, 0) = U(t, 1) = 0 t ∈ (0, T ),

U(T, x) = δ(ξ0) − θδ(ξ1) + δ(ξ2) x ∈ (0, 1)

(21)

satisfies
Ux(t, 0) > 0 and Ux(t, 1) < 0 ∀t ∈ (0, T ).

3.1 No null controllability result

In this paragraph, we provide the proof of Theorem 1. We first recall that from
the computations made in the previous section, our control system is reduced
to 




ht − hxx = 0 (t, x) ∈ Q,

h(t, 0) = ṽ1(t), h(t, 1) = ṽ2(t) t ∈ (0, T ),

h(t, x) = h0(x) x ∈ (0, 1),

(22)

where

h0(x) = exp

{∫ x

0

y0(s)/2 ds

}
∀x ∈ (0, 1)

and condition y(T, x) = 0 in (0, 1) now reads h(T, x) = K in (0, 1).
More precisely, we have proved (see lemmas 1-3) that the null controllability

property for system (1) is equivalent to the existence of a positive constant K
and positive controls ṽ1, ṽ2 ∈ H1(0, T ) such that the solution h ∈ X1 of (22)
satisfies h(T, x) = K in (0, 1).

Proof of Theorem 1: We prove Theorem 1 by contradiction. Thus, sup-
pose that for any T > 0 and any ỹ0 ∈ H2(0, 1), there exists a constant K > 0
and two controls 0 < ṽ1 ∈ H1(0, T ) and 0 < ṽ2(t) ∈ H1(0, T ) such that the
solution of (22) satisfies

h(T, x) = K in (0, 1).

Then, let us consider the function U given by lemma 5 for some θ ≥ 2.
Multiplying the equation of h by U and integrating in (0, T ∗)× (0, 1), we obtain

−

∫ T∗

0

(Ux(t, 0) ṽ1(t) − Ux(t, 1) ṽ2(t)) dt

+K(2 − θ) −

∫ 1

0

U(0, x)h0(x) dx = 0

(23)
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for any ỹ0 ∈ H2(0, 1). From the facts that the normal derivative of U is negative
and θ ≥ 2, the two first terms in the previous identity are non-positive.

Now, since the normal derivative of U is negative and U satisfies homoge-
neous Dirichlet boundary conditions, there exists δ > 0 such that

U(0, x) ≥ δ ∀x ∈ (0, δ) ∪ (1 − δ, 1).

Then, we can choose an initial condition ỹ0 such that

−

∫ 1

0

U(0, x) h0(x) dx < 0.

Indeed, on the one hand, from a priori estimates for system (21), we obtain the
existence of a positive constant C∗ = C∗(T, θ) such that

‖U(0, ·)‖L2(0,1) ≤ C∗.

On the other hand, if we choose h0 = h0(x) ∈ (0, 1) for all x ∈ (0, 1) such that

h0(x) = C∗/δ2 ∀x ∈ (0, δ/2) ∪ (1 − δ/2, 1),

we have

−

∫ 1

0

U(0, x) h0(x) dx ≤

−

∫ δ/2

0

(C∗/δ2)U(0, x) dx −

∫ 1

1−δ/2

(C∗/δ2)U(0, x) dx −

∫ 1−δ

δ

U(0, x)h0(x) dx

≤ −(C∗/2 + C∗/2) + (1 − 2δ)C∗ = −2δC∗ < 0.

This is obviously a contradiction when combined with identity (23). ¤

3.2 No exact controllability result

In this paragraph, we prove Theorem 2. Going back again to the previous
section, we consider the following control system:





ht − hxx = 0 (t, x) ∈ (0, T ) × (0, 1),

h(t, 0) = ṽ1(t), h(t, 1) = ṽ2(t) t ∈ (0, T ),

h(t, x) = h0(x) x ∈ (0, 1)

(24)

where now the condition y(T, x) = y1(x) in (0, 1) reads

h(T, x) = Kh1(x) := K exp

{
−

∫ x

0

y1(s)/2 ds

}
in (0, 1).

Proof of Theorem 2: Again, we prove Theorem 2 by contradiction. Thus,
we assume the existence of a final time T > 0 such that for any 0 < h0 ∈ H2(0, 1)

10



and any 0 < h1 ∈ H2(0, 1), there exists a constant K > 0 and two controls
0 < ṽ1(t) ∈ H1(0, 1) and 0 < ṽ2(t) ∈ H1(0, T ) such that

h(T, x) = Kh1(x) in (0, 1).

Let U be the function given by lemma 5. Analogously as we did in the
previous paragraph, by a simple integration by parts we get

−

∫ T

0

(Ux(t, 0) ṽ1(t) − Ux(t, 1) ṽ2(t)) dt

−

∫ 1

0

U(0, x)h0(x) dx + K

∫ 1

0

(h1(ξ0) − θh1(ξ1) + h1(ξ2)) dx = 0

(25)

for any 0 < h0 ∈ H2(0, 1) and any 0 < h1 ∈ H2(0, 1). Again, we have that the
first term in this identity is non-positive.

Using the same construction as in the previous paragraph, one can choose
0 < h0 ∈ H2(0, 1) such that

−

∫ 1

0

U(0, x) h0(x) dx < 0. (26)

That is to say, on the one hand from a priori estimates for the heat equation,
we obtain

‖U(0, ·)‖L2(0,1) ≤ Ĉ.

for some Ĉ > 0. On the other hand, we choose h0 = h0(x) ∈ (0, 1) ∀x ∈ (0, 1)
with the two following properties:

h0(x) = C∗/δ2 ∀x ∈ (0, δ/2) ∪ (1 − δ/2, 1).

Then, splitting the integral in (26) into three terms, we get

−

∫ 1

0

U(0, x) h0(x) dx ≤ −2δĈ < 0.

Finally, we take a function 0 < h1(x) ∈ H2(0, 1) such that

h1(ξ0) − θh1(ξ1) + h1(ξ2) < 0.

For instance, one can take a function h1 whose value in ξ1 is 3/θ, while h1(ξ0) =
h1(ξ2) = 1.

This is a contradiction with identity (25). The proof of theorem 2 is com-
plete.
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