N
N

N

HAL

open science

Why Simulation-Based Approachs with Combined
Fitness are a Good Approach for Mining Spaces of
Turing-equivalent Functions

Olivier Teytaud

» To cite this version:

Olivier Teytaud. Why Simulation-Based Approachs with Combined Fitness are a Good Approach for

Mining Spaces of Turing-equivalent Functions. 2006, 12 p. hal-00113370

HAL Id: hal-00113370
https://hal.science/hal-00113370
Submitted on 21 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00113370
https://hal.archives-ouvertes.fr

Why Simulation-Based Approachs with Combined
Fitness are a Good Approach for Mining Spaces of
Turing-equivalent Functions

O. Teytaud

Abstract—We show negative results about the automatic
generation of programs within bounded-time. Combining re-
cursion theory and statistics, we contrast these negativeesults
with positive computability results for iterative approachs
like genetic programming, provided that the fitness combine
e.g. fastness and size. We then show that simulation-based
approachs (approachs evaluating only by simulation the quigty
of programs) like GP are not too far from the minimal time
required for evaluating these combined fithesses.

I. INTRODUCTION

@ nProceedi ng{teytrice,

aut hor={ O Teyt aud},

title={Why Simul ati on-Based Approachs

wi th Combi ned Fitness are a Good Approach
for Mning Spaces of Turing-equival ent
functions},

booktitl e={12 pages,
year =2006 }

proceedi ngs of CEC},

Inspired by the genetic programming (GP) paradigm [9],
[13], [15], we investigate conditions under which the auto- *
matic generation of programs is possible. Precisely, weystu
programs aimed at generating programs for a given target-
task, where the target-task might be provided by the user
to the automatic generator as a black-box or as a Turing-
machine number. In this spirit, we compare results derived
from recursion theory applied to finite-time computations,
and results on iterative algorithms derived from statssdod
optimization in a spirit close to GP:

« we show universal lower bounds on the possible ef-
ficiency of (possibly randomized) programs aimed at
optimizing in finite time i) the size, ii) the time com-
plexity or iii) the space complexity. These results hold
even within arbitrary large tolerance functions allowing
strong sub-optimality. The uncomputability results are
in particular stronger for the size of programs (i.e. they
remain in the iterative case also, what does not happen®
for speed), what is related to the phenomenon of bloat
(see below), which is an important issue in GP.

« we then turn our attention to "blind” algorithms, that use
only the target-task as a black box, and converge itera-
tively as in GP. Whenever previous negative results hold *

Equipe TAO (INRIA Futurs), LRI, UMR 8623 (CNRS - Universiféaris-
Sud), Bat. 490, Université Paris Sud, 91405 Orsay CEDEAné&. Contact
author: olivier.teytaud@lIri.fr. O. Teytaud is partiallygported by the Pascal
Network of Excellence.

for bounded-time algorithms, we show positive results
in an iterative convergence sense classical in optimiza-
tion. Moreover, the positive results are proved thanks
to population-based methods (keeping in memory a
population of programs with their associated fitnesses)
very related to GP methods. We then show lower bounds
on the time complexity of iterative automatic program
building, that are close to the simulation cost, thanks to
a modified version of Kolmogorov's complexity ; this
shows that the computational cost of simulation cannot
be avoided ;

we then show drawbacks that hold for fithesses taking
into account size alone or speed alone, and that do not
hold for combined fithesses using both ([29], [33], [17],
[19]).

We will need the following concepts in the paper:

programming-programs are programs that output pro-
grams.

finite-time algorithms take something as input, and
after a finite-time (depending upon the entry), give an
output. This is usually what we call an "algorithm”.
The opposite concept igerative algorithms, which
take something as input, and during an infinite time
provide outputs, that are e.g. converging to the solu-
tion of an equation. Of course, the set of functions
that are computable in finite time is included in (and
different from) the set of functions that are the limit
of iterative algorithms (see also [24]). The (time or
space) complexity of iterative algorithms is the (time
or space) complexity obne computatiomf the infinite
loop with one entry and one output. Therefore, there
are two questions quantifying the overall complexity:
the convergence rate of the outputs to a nice solution,
and the computation time for each run through the loop.
generalization is the process by which a function,
calibrated in order to work on some entries, work also
on other entries. The study of generalization is the main
topic of statistical learning. A survey can be found in
[10], [32], [18].

genetic-programming([9]) is the research of a program
realizing a given target-task roughly as follows:

1) generate (at random) an initial population of algo-
rithms ;
2) select the ones that, after simulation, look the most

relevant for the target-task (this is dependent of &with a small abuse of notation as it depends orand z
distance between the results of the simulation andnd not only onf(x)) time(f(x)) (resp.space(f(z))) the
the expected results, that is called fitees3 ; computation time (resp. the space complexity) of progfam
3) create new programs by randomly combining an@n entryz. We note< z1,...,x, > an-uple encoded as a
randomly mutating the ones that remain in theunigue number thanks to a given recursive encoding.
population ; E is the expectation operataProba(.) is the probability
4) go back to step 2. operator ; by abuse, depending on the context, it is somstime

« bloat is the unexpected increase of the size of automafith respect to(z,) and sometimes with respect to a sample
ically generated programs. Bloat is an important issuét1, 2, - - - Zm, Y1, ¥2, - - -, Ym). lid is a short notation for
in GP [11], [1], [14], [25], [22], [30], [2], [12]. "independent identically distributed”.

« the absolute Kolmogorov complexity ([27], [28], [8]) Overview of the paper 3 S
of z is the size of the shortest program outputtingn Se_ct|on 1] presents uncomputab|_llty results for _f|_n|tmda
the entry0. We study in this paper a modified version,algorithms. Section IV presents mainly computability iesu
inspired by [3], [6], [26], which is the size of the shortestfor_ th_e specialization on.f|n|te samples ; this section ptesi
program that outputs on entry0 and that works in time Puilding blocks for section V which shows positive results
< T'. This modified version is computable, and we showpr GP-like iterative algorithms. Section VI concludes.

lower bounds on its complexity. I11. FINITE TIME ALGORITHMS

We consider the existence of prografié.) such that:

« the user providesr, which is a Turing-computable
For the sake of clarity and without loss of generality, we function ;

consider Turing-machines [31], [23] (TM) with one (read- « P(z) =y, wherey = x andy is not too far from being

only) input tape, where the head moves right if and only if optimal (for size, space or time).

the bit under the reading head has been read, one internalrheorem 1 shows that for reasonable formalizations of

tape (read and write, without any restriction on the alloweghijs problem, such programs do not exist. This result is

moves), one (write-only) output tape, which moves of ongn extension of classical uncomputability examples (the

and only one step to the right at each written bit. The|assical case i€ (a) = a).

restrictions on the moves of the heads on the input and onTheorem 1 (Undecidability)Whatever may be the func-

the output tapes do not modify the expressive power of theon C(.) in NV, there does not exisP such that for any

TMs as they can simply copy the input tape on the interngbtal functionz, P(z) is equivalent tar and P(z) has size

tape, work on the internal tape and copy the result on th?(xﬂ < C(inf =, |yl).

output tape. The space complexity is with respect to the Moreover, for anyC(.), for any such non-computable

internal tape (number of visited elements of the tape$the p(.), there exists a Turing-machine usifj.) as oracle, that

size of the program. All tapes’ alphabets are binary. Thesslves a problem i, the jump of the set of computable

Turing-machines can work on rational numbers, encoded &$nctions.

2-uples of integers. Thanks to the existence of Universal Proof: Assume, in order to get a contradiction, that such

Turing Machine, we identify TM and natural numbers ina P(.) exists.

a computable way (one can simulate the behavior of the Step 1: we study the behavior &f(.) on 1.

TM of a given number on a given entry in a computable Then, defing; as the shortest program such thét) = 1

manner). We use capital letters for programming-programfsr any entrye, andY = {z;z =y and|z| < C(|y|)}. Y is

i.e. programs that are aimed at working on programse If finite.

is a program and an entry, thenz(e) is the output of the Then, consider a programthat always halts. Necessarily,

application ofz to the entrye. x(e) =L is the notation P(z)c Y if and only if z = y.

for the fact thatz does not halt on entry. We also note Step 2: show that thanks B (if it exists), we can decide

1 a program such thate; L (e) =L1. A programp is a 1 (the class of programs that always replyamong deciders

total computable function i’e € N;p(e) #L. A decider (indeed, more generally among computable total functions)

Il. DEFINITIONS & NOTATIONS

is a total computable function with values if0,1}. We As Y is recursive (as it is finite), there exists a program
note D the set of all deciders. We say that a functin @ such thatQ(e) =1 if e € Y andQ(e) = 0 otherwise.
recognizes a sef’ among deciders if and only ife; (e € Therefore, thanks to step IR = @ o P has the fol-

FND— f(e)=1ande € D\ F — f(e) =0) (whatever lowing property for anyxz that always halts:R(z) =
may be the behavior, possibly(e) =1, for e ¢ D). 1 wheneverz =y andR(z) =0 in other cases

We say that two programs and y are equivalent if and Step 3: we now show that recognizidlgamong programs
only if Ve € N;z(e) = y(e). We note thisx = y. We that always halt is as difficult as the domain-emptyness
note =,= {z;x = y}. We notel = {p;Ve,p(e) = 1}. problem (that is known undecidable since Turing’s funda-
The definition of the sizéx| of a programx is any usual mental paper [31]). Formally, we show that with an oracle
definition such that the number of states is upper-boundeedcognizingl among deciders, there exists a Turing-machine
by an increasing computable function of the size. We notenly feeding the oracle with deciders that recognizes.

Consider the following progrant working on entry< dy €=, and

x, < a,b>>: . .
« simulatea steps ofr on entryb ; Vz; time(P(2)(2)) 2 Ctime(y(2)))

« if it halts during this simulation then replg. and3z; time(P(z)(2)) > C(time(y(z)))
« if it does not halt, replyl.
This programsS' always halts.

Then consider the following program working on engry ©Ptimal function exist. o _
using an oracle?(.). It recognizesl among deciders: Proof: The proof is very similar to the previous proof.
« if R(k — S(z,k)) = 1, then replyl The only Pareto-optimal time complexity faris a constant

K (the time required to output in the chosen encoding).

Therefore, for any entry: € 1, P must generate a program
i& Y, whereY is the class of programs always outputing
and halting within time complexity< C'(K).

The result is also true when restrictedit@uch that a Pareto-

« otherwise, reply0.
This program repliesl if and only if z never halts on
any entry. Therefore, this program solves the emptyness

the domain of & Turing-machine (it recognizes,). This Y is not finite, but is recursive (lemma below). Within

IS 'kn(_)wn /as an.uncomputable task, anq more premse{xis modification, steps 2 and 3 of the proof of theorem 1
it is in 0 (the jump of the set of Turlng-computable?ti" hold a

problems). Therefore, we have shown that no computable
R(.) recognizingl among deciders can exist. As step 2
shows that the existence of a suitable computaBle)
implies the existence of such a computabit¢.), such a
computableP(.) does not exist. O

We now prove the following lemma, useful in the proof
above.

Lemma 4 (Computability for bounded-timejor any
(k,C) € N, the set of computable functions such that
We now show that using a random generator does nd time(f () <k andVz; f(z) = C is computable.
change the result. Proof: Consider the program that works as follows on a

Corollary 2 (No size optimization)Whatever may be the programp:) o]
functionC/(.), there does not exist any progra even pos- ~ * Write the tree of all the possible runs within thefirst
sibly using a random oracle providing independent random Steps. .
values uniformly distributed if{0, 1} such that for any total ~ * If at least one of these runs does not halt withint the

function z, with probability at lease/3, P(z) is equivalent steps, then reply "no”. . _

to and P(z) has size[P(z)| < C(inf,=. |y]). « if at least one of these runs replies something else than
Proof: We only simulate all the possible runs and modify €, then reply "no”,

the decision method in step 2 of the previous proof. « otherwise else, reply "yes”. O
In the new second step, we simulate on a Turing machine,

simultaneously, all the possible behaviors aP until we After size (corollary 2) and time (corollary 3), we now

reach a total probability> % of halting with P(z) € Y consider space complexity (5):
1

or a probability > 3 of halting with P(z) ¢ Y. One of Corollary 5 (Space complexity)Whatever may be the
these two cases must necessarily occur by definitioR.afl ~ functionC(.), there does not exist any prograf even pos-
sibly using a random oracle providing independent random

The extension from size of programs to time complexityalues uniformly distributed iq0, 1}, such that for any total
of programs requires a more tricky formulation than a simpléunction x, with probability at leas®/3,
total order relation "is faster than” ; a program can be faste P(x) = x and there’s nay = = such thaty dominates
than another for some entries and slower for some otherB(z) (in space complexity) withirC(.), i.e., Ay,y = « and
A natural requirement is that a program that suitably works

Vz; space(P(x)(z)) > C(space(y(2)))

provides a (at least nearly) Pareto-optimal program [28],a

programyf such that there’s no program that is as fasf dsr and 3z; space(P(z)(z)) > C(space(y(z)))

all entries, and better thafi for some specific entry, at least pyqof- The proof is very similar to the two previous ones.

within a tolerance functiorC(.). The precise formulation \ve consider the same target-task (i.e. always writingn

that we propose is somewhat tricky but indeed very generalhe output tape). This can be performed within constant
Corollary 3 (Time complexity)Whatever may be the gnace complexitys. If such aP exists, then it must write,

functionC'(.), there does not exist any prografh even pos- yyith probability at lease/3, a program iny’, whereY’ is the

sibly using a random oracle providing independent randoRy,qg of programs writing within space complexity(S).

values uniformly distributed if0, 1}, such that for any total s class is computable (lemma below), so steps 2 and 3

functionz, with probability at lease/3, of the proof of theorem 1 hold within this modificatior]
P(z) = « and there’s noy = z such thaty Pareto-

dominates P(x) (in time complexity) within C(.), ../ pemark 6 (Other fitnessesyve have proved the non-

1By "simultaneously” we mean that we simulate all the pogsihins C_OmpUt_ab'“ty re_SU_"t for speed, Slze_ and space. Other s
simultaneously, in a breadth-first manner. (in particular, mixing these three fitnesses) lead to theesam

result. The key of the proofs above (th. 1, corollaries 2, 3, has optimal average (on the;) time complexity (resp.
5) is the recursive nature of sets of functions optimal f& thspace complexity) , i.e% Yo time(P(< 1,...,Ym >
given fitness, which is a very stable feature. () (resp.2 37 | space(P(< 1, ..., ym >)(2;))) min-
We now prove the following lemma, useful in the proofimal.
of the previous corollary 5. b) There does not exist a program such thatvm ¢
Lemma 7 (Computability for bounded spac€&pr any N, Vi € [[1,m]],P(< Z1,..,Tm, Y1, Ym >)(T;) =
(k,C) € N, the setS of computable functiong such that y; and P(< zi,...,y, >) has optimal size (i.e]P(<
Va; space(f(z)) < k andVz; f(z) = C is computable. T1,. .., Ym >)| minimal).
Proof: (we assume for consistency that= z; impliesy; = y;
. we recall that our definition of space complexity in-; we consider that the programR is right provided that it
cludes the size of the program. Therefore, TMs wittworks in this safe case, whatever may be its behavior in
a bounded space complexity have a bounded numbeiher cases)
of configuration$; they are finite automata in which ¢) For any (ci,c2,c3) +— c(c1,c2,c3), non-decreasing
some nodes have an output (recall that our TMs hawomputable function with limit-occ as a function of; or as
restrictions on the possibility of moves of heads orft function ofc,, there exists a progran? such thatvm ¢
the input and output tapes). Notd; such a finite N,Vi € [Lm]], P(< z1,...,Zm, Y15 Ym >)(@:) = ¥s
automaton, associated to7a\/ f. and P has optimal average (of) cost, where the cost of
e note Q = {q1,q2,...,qn} the finite set of states of programp on entrye is c(time(p(e)), space(p(e)), p|).
Ay, some of them being halting states and some of Remark 9 (Fast programs do not generalize weNote
them outputingl, some of them outputing, some of thata) in the case of time complexity is only of theoretical
them not outputing anything, some of them reading thénportance as Turing-machines optimal for time complexity
bit under the input head and some others not. Assun@#® a finite set of cases are essentially very big Turing
without loss of generality tha; is the initial state. ~ machines outputting theg; as soon asr; is recognized
« define a new automatoﬂ} on the set of state§) x through a full-branching reading process. These machines
UF_,({0,1}") wherek is the length ofC'. work on the(z;, y;);<m but not necessarily on unseén y)
. set the initial state ofA/f at (q1,#) where # is the (no generalizationability). The adaptation to c¢) is more
empty string. concrete, as shown by theorems 10 and 11 below.
. define the transitions ofd’, as follows: there is a Proof of the theorem:
transition from state(q;, Sy/) (Where S; is a binary a) is realized by the following program in the case of time
string) to (¢;,S;), with S;; = Si».b (where. denotes complexity:
the concatenation operator) when reading enton the « compute the maximal time complexifyy of the naive
input tape (possibly is the empty string ifA; does not program comparing an input to each of ther;, and
read the input tape at stagg), if and only if Ay has a replyingy; if e = z; and replying0 in other cases.
transition fromg; to ¢; when reading: and Ay outputs « consider the programs of time complexity bounded by
b (possibly the empty character if there's no output) in this time complexity. Simulate all of them withif
this case. note thaelff is a finite automaton without any steps ; there are infinitely many such functions, but we
writing hability. only have to take into accound th€ states that can
« set the initial state afq;, So) where S, is the empty be reached withinl" steps, wherek is the maximal
string. number of states that can be visited by a program of time
« then, f isin S if and only: complexity < T (for our Turing-machine formalism,

— f can be consistently translated 4 as explained K < 47 with binary tapes, a8 binary values are read

above, and (one on the input tape and one on the internal tape).
— A} halts inQ x {C} on any entry. « simulate all of them until stefi” on all entries.
both these statements are decidable, theref®rés « select one of them which is optimal from the point of
decidable. 0 view of the average time complexity.

The case of space complexity is similar.
b) can be proved by the following reduction:

] T e assume that such A exists ;
We now turn our attention to the specialization on a finite , consider the prograrm — |P(empty stringe)| ;

sample. Results below will be used as building blocks for , this programs computes the absolute K’olmogorov
theorems of sectlon_V_ abput iterative algorithms. complexity[27], [28], [8], [4], [5], what is not possible.
Theorem 8 (Specialization on a finite sampla): There c) is derived as a) : the properties eff, ., .) ensures that

exists a progran®® such thatvm € N, Vi € [[1,m]], P(< a finite set of functions can be considered (either the set of

IV. SPECIALIZATION ON A FINITE SAMPLE

Tlyeeos Ty Y1y- -y Ym >)(@) = ys and P(< z1, .., Y >

2Here, a configuration is the current state plus the state efiriternal
tapes.

functions with bounded time complexity if(.,0,0) — oo,
which is finite is we restrict our attention to the finitely nyan
possible time steps of simulation as in part a) of this proof,

functions with bounded space complexity:{D, .,0) — o). As the sef{g; g < f} is finite, the previous sentence can be
O rewritten: almost surely, for any < f, there existg, < oo
Note that we have not ensured that the resulting prograsuch thatg(z;,) # v, -

halts within the same time (resp. space) complexity on other For m > sup, i, the property Proba(P(<

entries than the;, y; for i € [[1, m]]. We now have to prove zi,...,Zm,y1,---,Ym >)(z) # y) = 0 holds. O
that working on a sample might be efficient in generalization
(ensuring thatP(< 1, ..., ym, >) halts on anyr and gives The previous theorem holds for any(.) verifying the

the right answer with probability, at least ifm is sufficiently required properties. Indeed, even if the order is compatabl
large). This is a problem ddtatistical learning(see e.g. [32], P(.) is not necessarily computable (e.g. it is not for an
[10]). The usual general framework of statistical learniag ordering by size). On the other hand, as stated in theorem
as follows: 8, P(.) is computable if the order is the average time.

« Consider(x1,y1), (2, y2), ..., a sequence of iid (in- Unfortunately, this is not in the scope of theorem 1_0, as the
dependent identically distributed) elementsh&, with order depends on the examples whereas we need in theorem
common lawP. (z;,y;) is called an example. Restrict- 10 an_order that is not dgpendent on the data. Fortunately, th
ing our attention to the case in which we work onfollowing theorem combines the advantages of both theorems

consistent examples of a deterministic relation, we hef@ @nd 10: it provides a fitness such tiat.) is computable
consider thaP(.) is such that for some total computable@nd generalization holds.
function f, P(f(z) = y) = 1. V. ITERATIVE ALGORITHMS

o« Consider ¢, a function taking as input
< T1, Y1y -y Ty Ym > and where g(<
T1,Y1,- -, Tm, Ym >) IS itself a Turing machine.

« Then, the so-called error rate gf after m examples
(1,y1), -+, (Tm,ym) is the probability for P(z,y)

of g(< T1,Y1,22,Y25 -+, Tms Ym >)($) 7é y. It is a
random variable, as it depends on thefirst examples.

We have shown in section Il that finite-time algorithms
have deep limits. We have shown in section IV that iterative
paradigms could converge to nice solutions (i.e. solutions
that generalize well). We now have to proof that that itewati
paradigms can be implemented on a Turing machine.

So, we now show in theorem 11 that the limit behavior

Statistical learning theory is the study of properties of’f iterative paradigms can be reached by Turing-computable

various functiong;, depending (or not) upon properties|terative algorithms. Theorem 12 is a refinement from the
of P ' point of view of complexity.

)] ~ The following theorem deals with learning deterministic
Many tools exist for studying such problems. The main,mputable relations from examples.

question is a problem of generalization: finding a function Theorem 11:Assume thaty = f(z) where f is com-

that works on(z;, y;)i<m IS €asy (i.e. it is easy to design putable andProba(f(z) =L) = 0 andEtime(f(z)) < .

such thatvi < m, g(< @191 >,..., < ZmyYm >)(@i) = Then, if (21,41, ..., (Tm,ym) is an iid sample with the
yi), but does this function generalizes well ®? A direct same |aw agi, 1), then

proof is possible in the current framework:

Theorem 10 (Learning from deterministic examples): Proba(P(< x1,...,Tm, Y1, -+, Ym >) () #y) =0
Assume thaty = f(x) with probability 1, where f ¢ ., qufficiently large, almost surely. whenevef, —
is a computable functlon__ that alway_s halts. Then, 'fP(< T1yee T ls - Ym >) IS @ computable function
(21,91), -, (Zm, ym) is an iid sample with the same law ¢ = qch thatvi; f,,(z;) = y;, minimal for the criterion
as(z,y), then (ACT(fm), | fm|), where ACT;,(g) is the average com-
putation time ofg on thex; andc(a,b) is any computable
function, continuous and increasing as a function @ivhich
is rational) and increasing as a function &f such that
limg— o0 ¢(a, 0) = limp_ o0 ¢(0,b) = oc.

Proba(P(< @1,...,Tm,Y1,---,Ym >)(x) #y) =0

for m sufficiently large, almost surely in the se-

quence (x1,Y1),- - -, (Tm,Ym),--., Wheneverf = P(< ;)
T1,...,ym >) is the first (for any enumeration of functions) '\"QreP_"er'C(E”me(fm(x))’ |fm|) converges to the opti-
computable function such that € [[1, m]]; f(z:) = y;. mal limit .
In this theorem we do not here assume (and do not c(Etime(fm(2)), [fml)
conclude) thatP(.) is computable. This will be done in the - inf c(Etime(fm(2)), | f])
next section after a slight modification of the paradigm.eNot fiProba(f(z)#y)=0
that the use of an order independent of the target-task hagd f,, is computable from< z1,y1,. .., Zm, Ym >.
been investigated in GP (lexicographic order, see [17]). Proof: 1. Note f* an unknown computable function such
Proof: Consider f the first function such that that Proba(f*(z) # y) = 0, with Etimef*(x) minimal.
Proba(f(z) #y) =0. 2. The average computation time f on thex; converges

For anyg < f, Proba(g(x) # y) > 0. Therefore, for almost surely (by the strong law of large numbers). Its limit
any g < f, almost surely, there exist§, < oo such that is dependent of the problem ; it is the expected computation
g(xi,) # i, time of f* onz.

3. By definition of f,, and by step 2,f,, = P(< .
Tlyeeos Ty Y1y -« Ym >) 1S sUCh thatt(ACT,, (fim), | fm])
is upper bounded by:(ACT,,(f*),|f*|), which is itself .
almost surely bounded above as it converges almost surelye
(Kolmogorov's strong law of large numbers [7]).

4. Therefore, f,,, for m sufficiently large, lives in .
a finite space of computable functionsf;c(0,|f]) < .
c(sup; ACT;(£), |f*])}-

5. Considergy, ..., gi this finite family of computable
functions.

6. Almost surely, for any: € [[1,k]] such that
Proba(gi(z) # y) > 0, there existsn; such thaty;(z,,,) #

Then L(fn)
c(Etime(f(x)),|f]), and almost surely the time complexity
per value ofm is O(L(m)).

An interesting point is that the proof involves an algorithm

set Pop, {fv C(Ov |f|) <
min(Ay,, fitm—1(fm-1))} U Popm—_1.

for f € Pop,,, define fit,,(f) = c(t(f,m),|f]).

for functions f € Pop,,, which finish in time< L(m)
and reply somef(z,,) # ym, then setfit,,(f) = co.
define f,,, € argminp,,,, fitm

if fity(fm) > Am-1, then setA,, = A1 + 1
otherwise, A,, = A,._1.

il’lfng L(f)

—

with L(f) =

ym,- These events occur simultaneously as a finite intersegith a population of functions with their fitnesses in memory
tion of almost sure events is almost sure ; so, almost surelynat is very close to genetic programmingroof: The steps

thesem,; all exist.

7. Thanks to step 6, almost surely, fot > sup, m,,
Proba(fm(x) #y) =0.

8. Combining 5 and 7, we see
argming ¢(ACT,,(g),|g]) where G =
[[1, k]] and Proba(g;(x) # y) = 0}.

9. ¢(ACT(9:),l9il) — c(Etime(gi(x)),|g:|) almost
surely for anyi € [[1,k]] N {i;Etime(gi(z)) < oo as
[[1, k]] asc(., .) is continuous with respect to the first variable
(Kolmogorov's strong law of large numbers). As this set of
indexesi is finite, this convergence is uniform in

10. ¢(ACT:.(9i),|gi]) — oo uniformly in i such that
Etime(g;(x)) = oo as this set is finite.

10. Thanks to steps 8 and §Etime(fo(z)),|fm|) —
infg;Proba(g(w)?ﬁy):O C(Etzme(g(x)), |g|) U

thaff,, €
{9i31 €

We now turn our attention to a slightly modified definition
of fm, which has the advantage of being more quickly
computable. For the sake of clarity, the complexity below is *
with respect to a stronger form of machines, that can siraulat
n steps of machine on entrye in time O(n), and computes
X, +, /, —in O(1).

The following theorem deals with the complexity of learn-
ing Turing computable relations from examples.

Theorem 12:Assume thatProba(g(z) # y) = 0 for ¢
some computable, and thatEtime(g(x)) is finite.

Consider a Turing machine that works with an oracle tape
providing a new example,,, v, at each request, and outputs
fm on the output tape. The Turing machine works in-line,
i.e. provides a newy,, at each request on the oracle.

Then, within logarithmic factors or computational costs
associated to the computation of a finite number of calls
to ¢(.,.), the following algorithm works with asymptotic
time complexityO(L(m)) where L(.) is a non-decreasing

computable function such thatme(L(m)) = O(L(m))
(e.g.logs(.).

Define Ag = 1. Define t(f,0) =
0 and for m > 1 t(f,m) =

% ((m—1) x t(f,m —1) + min(time(f(xm)), L(m))).
Define Popy the empty population. Defing, a function
that just outputsl and halts. Defineva; fito(z) = 0. At =

m
each new example,,, y,, (m > 1):

of the proof are as follows:

define f* = argming s, r=gy L(f).

o defineF = Uy,enPopn,.

Assume, in order to get a contradiction, HA:does not
contain anyf such that i)Proba(f(z) = y) = 1 and
i) f has finite expectation time.

e« Then F is finite, otherwise elsehA,, — oo and

infg fit,, — oo and thereforef* is in F.

o Then, all f € F have fit,,(f) — oco. Proof: for each

feF,

— either there exists, b such thatP(z = a,y = b) >
0 and f(a) # b, anda, b will be drawn infinitely
often, and in particular at some value of for
which L(m) > time(f(a)) ; in this case fit,,(f)
reaches infinity.

— or f does not have a finite expectation time, and
fitm(f) — oo by the lemma below (case 2).

therefore, all fithesses i’ run to infinity. This leads
to A,, — oo. This implies thatf* € F ; this is a
contradiction with H1. Therefore, H1 does not hold ;
for m sufficiently large (saym > myg), some f €
Pop,, verifies Proba(f(x) = y) = 1 and f has finite
expectation time.

then, form > my, fit,(f) < fit,(f*) < K for some
K > 0 as fit,,(f*) converges (cf lemma below, case
1).

therefore A,, is also bounded above. Hendgjs finite.
applying again the lemma below, we see tifat,,(f)
converges toL(f) uniformly in f € F with finite
expectation time andProba(f(z) = y) = 1, and
converges to infinity uniformly for othef € F. This
uniform convergence implies that(f,,) — L(f*). O

Lemma 13 (Adapted strong law of large numbers):
Define L(m) — oo asm — oo. Assume thatr is a
non-negative random variable with finite expectation. Then
em = — > i min(xz;, L(i)) — Ea, if the z; are an iid
sample with the same law as
2. Assume thatr has infinite expectation. Thea,, =
> min(z;, L(3)) — oo.

Proof of 1 (2 is similar):

Step 1: upper bouna,,, < m,, % it x; and by the We first define a modified version of the complexity of
strong law of large numbers from Kolmogorov the right termKolmogorov. We recall that Kolmogorov’s complexity was
goes toEz. first defined by Solomonov [27] in the field of artificial

Step 2: lower boundm,,, — e,, = % ot max(0,z; — intelligence also. Many other works about Kolmogorov's
L(¢)). For anym > mg > 1, the right-hand-term is upper complexity exist, in particular adding constraints on re-

bounded by

mo

> max(0,z; — L(i))

=1

1

m

—0
m-—mg 1 i
— 0,2, — L
+ — Z max (0, z (myg))

i=mo+1

—1

—>K(Tn0)

where the right-hand-term convergence is Kolmogorov
strong law of large numbers [21], [7], wittk (my) is the
expectatiorE max (0, x— L(my)). We now show thak (my)
goes to0 asm — oo:

K(mg) = Emax(0,x — L(my))

= Z max(0,n — L(mg))Proba(x = n)
neN

which goes to0 by the monotone convergence theorem o

Lebesgue [16].
Step 3: summary. So, for amyy, we can sum up previous
steps by the fact that almost surely

em < m,, and
~—~

—Ez

1 & _
em > Ln:,}—(l +0(1)) x p” Zmax(O,xi — L(4))

—Ex i=1

H’NLﬂOOK(mO)H’IYLO*)OOO

the second inequality holding for. sufficiently large.
Step 4: concluding. Therefore, for amy
« upper bound: forn sufficiently largee,,, < Ex+¢ (first
inequality in step 3),
« lower bound:
— for m sufficiently large,m,,, > Ex — €/3,
— with mg such thatK (mg) < €/3 and form > my
sufficiently large(1+o(1)) x = > | max(0, z; —
L(i)) = K(mo) +¢/3
and therefore forn sufficiently largee,,, > Ex—¢/3. O

sources ([3], [6], [26]); as far as we know, the following
result is different and new (more closely related to the scibj
of this paper).

Definition 14 (Kolmogorov’s complexity in bounded time):
An integerz is T',S-complex if there is no Turing machine
M such thatM (0) = z A [M] < S Atime(M(0)) < T.

M is the T-time-reduction ofz if and only if M (0) = =z,
time(M(0)) < T, |M| is minimal among possible functions
(and, for the sake of unicity}/ is the first in lexicographic

,grdering amongM’s with the same size). Consider an

algorithm A deciding wether an integer is 7', S-complex
or not. DefineC(T,.S) the worst-case complexity of this
algorithm (C(T,S) = sup, time(A(< z,T,S >))). It is
finite for some A(.), even if there’s no limit on the size
of x as if = is too large, it isT,,S,-complex whatever
may be its value. We restrict our attention to such, .),
corresponding to algorithms with computation time only
Plepending upofi” and S.

These notions are computable, but we will show that their
complexity is large. The complexity of the optimization of
the fitness in theorem 4 is larger than the complexity, .)
of deciding if z is T',S-complex ; therefore, we will lower
boundC(.,.).

Theorem 15 (The complexity of complexne€X)nsider
now 7, and S,, computable increasing sequences of
integers computable in timé&(n) where @ is polynomial,
and y,, the smallest integer that i%;,,5,-complex. Then,
for somesS,, = O(log(n)),

C(Tn, Sn) > (Tn — Q(n))/ P(n).

whereP(n) is a polynomial, and in particular if, is ©(2"),

Ty

C(T,, Sn) >)

where P’(.) is a polynomial, i.e. essentially we can not get
rid of the computation tim&’,.

The proof follows the lines of the proof of the non-
computability of Kolmogorov’s complexity by the so-called
"Berry’s paradox”, but with complexity arguments instedd o
computability arguments.

We have shown that finite time algorithms could not work prgof:
properly (theorem 1, corollaries 2,3,5, remark 6). We have Step 1y, is T,,S.-complex, by definition.

shown that iterative methods designing programs that are

aSstep 2: But it is not)(n)+y, x C(Ty, Sy), C+ D logy(n)-

fast as possible do not generalize well (remark 9), and th%mplex, where andD are constants, as it can be computed
iterative methods designing programs that are as small g

possible are not Turing-computable (theorem 8). We have
also shown that iterative methods combining size and speed” . . oo B
are Turing-computable and generalize well (theorem 10, ° |1te£a§vely teSt(li?]gti:;]Z 'S Z"’CS(’;CO;T] |)olex, wherek =
11). The complexity of Turing-computable programs defined L "y’; Yn g

therein is mainly the cost of simulation. We now show that Step 3y, < 2°", as:

it is not possible to avoid the complexity of simulation. « there are at mos2®~ programs of size< S,,,

computingT;, and S,, (in time Q(n))

« therefore there are at mo&f~ numbers that are not
T,,S,-complex.

« therefore, at least one number fji), 25~ is T;,, S,.-
complex.

Step 4:ifS,, = C + Dlog,(n), theny, is upper bounded
by a polynomialP(n) (thanks to step 3).

Step 5: combining steps 1 and 2,C(T,,S,) > T, —
Q(n).

Step 6: using step 4 and 5,C(T,,S»)
(T, — Q(n))/P(n), hence the expected result.

av

V1. CONCLUSION

Let's now sum up and compare our results.

« in corollaries 2, 3, 5 we have shown that finite-time
programming-programs can not perform the required
task, i.e. finding the most efficient function in a space
of Turing-equivalent functions.

e in theorem 12, we have shown that an iterative
programming-program could asymptotically perform

Programming

iterative
progs

other inf.
time progs ?

finite-time
progs

speed fithes$

speed fitness

uncom uncom uncom i does not
-putable -putable -putable ge|r|1etrr? 'Z1%S generalize
(cor. 3) (cor. 2) (cor. 5) well (th. 10))\ remark 9)

uncom-
putable (th.
8.h)

much faster
than
simulation

uncom
-putable (th.
15)

the required target-task. E.g., GP is such an iterative le, finite-time programs can not do the job (finding an
method. Theorem 8 also shows that mixed fithessé&ptimal function in a space of Turing-equivalent functipns

should be used ; this is very related btoat, a well in the general case (corollaries 1, 2, 3). Iterative program
known problem in GP: without parsimony pressure, vergan do it, but only with mixed fitnesses (theorem 2b, remark
long programs appear and the optimization does n@). Then, the time-complexity of such fitness-optimization

work. can not get rid of the simulation time (theorem 6).

GP is simulation-based and many GP-applications useln section lll, we show negative results for the task
fitnesses as required according to our results, i.e. mixingpnsisting in writing in finite time a program realizing a
both size and precision. given target-task in a neary optimal manner. These resrgts a

The main drawback of GP is that GP is slow ; one catrue for deterministic programming-programs, randomized
not get rid of the computation time. In theorem 15, usingprograms, working on an oracle describing the target-task
a modified form of Kolmogorov’s complexity, we have under the form of a program or a black-box oracle as well.
shown that getting rid of the simulation time is anywayThese results concern time complexity, space complexity, a
not possible. program size, and are true even within arbitrary tolerance
functionsC(.).
In section V, we show positive result for the specialization

The summary of this paper, which is relevant for theon a finite sample. Learning on a finite sample with a
research of Turing-computable functions realizing a givepragmatic compromise between length and speed leads to
mapping, is as follows: a function which is equivalent to the real one, and which is

optimal for this compromise.

We can conclude as follows when the "target” function is

a computable one:
« for various criterions (size, time complexity, space com-

(23]

o) T 14
plexity), it is not possible to have a finite-time proceduré]
that takes as input a program, and automatically gener-

ates an optimal program.
the size is the most undecidable criterion, as even on

[15

a

finite sample it remains undecidable. This is related to

the so-called "bloat” phenomenon [11], [1], [14], [25],
[22], [30], [2], [12].
it is also not possible to do it from examples, and to

]

[16]
[17]

assert after finitely many examples that the work is donﬁg]

and that the optimal function is found.

on the other hand, it is possible tonvergeo a function
that will match all future examples. Moreover, the
resulting function will have its value, for a compromise
between speed and size, optimal.

(29]

[20]

A remarkable fact is that the positive results occur fofpy
algorithms ignoring the internal structure of the program.

This is a deep argument in favor of genetic programmin
Note that our results also show that optimizing speed alo

is not suitable on a finite sample of, y;, as very big naive
programs are very fast, and that optimizing size alone is n&!
Turing-computable ; compromises between size and time
more suitable. This is in favor of coupled fithesses ([299][3
[17], [19]). Another remarkable fact in favor of GP is that

the simulation time is unavoidable for optimizing the relet/

class of fitnesses.

This only concerns the general framework of design-

!

[25]

ing Turing-computable functions. Of course, on restrictegg)
framework, automatic programing e.g. from specificatians i

possible.

(1]

(2]

(3]

(4]
(3]

(6]
(7]
(8]
9]

(20]

(11]

REFERENCES

Wolfgang Banzhaf and William B. Langdon. Some consitlerss on
the reason for bloatGenetic Programming and Evolvable Machines
3(1):81-91, 2002.

Tobias Blickle and Lothar Thiele. Genetic programmingdaredun-
dancy. In J. Hopf, editorGenetic Algorithms Workshop at KI-94
pages 33-38. Max-Planck-Institut fur Informatik, 1994.

Harry Buhrman, Lance Fortnow, and Sophie Laplante. Ress
bounded kolmogorov complexity revisitedSIAM Journal on Com-
puting, 2001.

G.J. Chaitin. On the length of programs for computing ténbinary
sequencesJ. Assoc. Comput. Mach., 13, 547-56966.

G.J. Chaitin. On the length of programs for computing ténbinary
sequences : statistical considerationk. Assoc. Comput. Mach., 16,
145-159 1969.

L. Fortnow and M. Kummer. Resource-bounded instance pexity.
Theoretical Computer Science 261:123-140, 1996.

A. Y. Khintchine. Sur la loi forte des grands nombr&omptes Rendus
de I'’Academie des Sciencek36, 1928.

A.N. Kolmogorov. Logical basis for information theoryd probability
theory. IEEE trans. Inform. Theory, IT-14, 662-664968.

John R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural SelectioMIT Press, Cambridge,
MA, USA, 1992.

G. Lugosi L. Devroye, L. Gyorfi. A probabilistic theorgf pattern
recognition, springer. 1997.

W. B. Langdon. The evolution of size in variable lengt#presenta-
tions. InICEC’98, pages 633-638. IEEE Press, 1998.

[27]
(28]
[29]

(30]

[31] A. Turing.

[12] W. B. Langdon and R. Poli. Fitness causes bloat: Mutatim John

Koza, editorlate Breaking Papers at GP'9pages 132-140. Stanford
Bookstore, 1997.

W. B. Langdon and Riccardo PolFoundations of Genetic Program-
ming Springer-Verlag, 2002.

W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. Thelgion
of size and shape. In L. Spector, W. B. Langdon, U.-M. O’Reeill
and P. Angeline, editord\dvances in Genetic Programming,Ipages
163-190. MIT Press, 1999.

William B. Langdon. Genetic Programming and Data Structures:
Genetic Programming + Data Structures = Automatic Prograimgh
volume 1 ofGenetic ProgrammingKluwer, Boston, 24 April 1998.
H.L. Lebesguelntégrale, Longueur, AireUniversity of Nancy, 1902.
Sean Luke and Liviu Panait. Lexicographic parsimongsgure. In
W. B. Langdon et al., editoGECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conferengeages 829-836. Morgan
Kaufmann Publishers, 2002.

P.L. Bartlett M. Antony. Neural network learning :
foundations, cambridge university press. 1999.

Peter Nordin and Wolfgang Banzhaf. Complexity compies and
evolution. In L. Eshelman, editoGenetic Algorithms: Proceedings
of the Sixth International Conference (ICGA9%)ages 310-317,
Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

V. Pareto. Manuale d’Economia Politica Milano: Societ Editrice,
Libraria, 1906.

S.D. Poisson. Recherche sur la probabilité des jugésneprinci-
palement en matiére criminell&omptes-Rendus hebdomadaires des
Séances de I'Académie des Sciende473-494, 1835.

A. Ratle and M. Sebag. Avoiding the bloat with probatiitt grammar-
guided genetic programming. In P. Collet et al., editartificial
Evolution VI Springer Verlag, 2001.

H. Rogers.Theory of recursive functions and effective computability
McGraw-Hill, New York, 1967.

J. Schmidthuber. Hierarchies of generalized kolmogaromplexities
and nonenumerable universal measures computable in tite livter-
national Journal of Foundations of Computer Science 158):612
2002.

Sara Silva and Jonas Almeida. Dynamic maximum treetdepA
simple technique for avoiding bloat in tree-based gp. In &ntG-Paz
et al., editor,Genetic and Evolutionary Computation — GECCO-2003
volume 2724 ofLNCS pages 1776-1787. Springer-Verlag, 2003.

M. Sipser. A complexity theoretic approach to randossie In
Proceedings of the 15th ACM Symposium on the Theory of Cargput
pages 330-335, 1983.

Ray Solomonoff. A formal theory of inductive inferenceart 1.
Inform. and Control, vol. 7, number 1, pp. 1;2P964.

Ray Solomonoff. A formal theory of inductive inferencpart 2.
Inform. and Control, vol. 7, number 2, pp. 222-25464.

T. Soule and J. A. Foster. Effects of code growth and ipamy
pressure on populations in genetic programmiBgolutionary Com-
putation 6(4):293-309, 1998.

Terence Soule. Exons and code growth in genetic progriag In
James A. Foster et al., editdEuroGP 2002 volume 2278 ofLNCS
pages 142-151. Springer-Verlag, 2002.

On computable numbers, with an application the
entscheidungsproblem. proceedings of the London Mathematical
Society, Ser. 2, 45, pp. 161-228 (reprinted in M. Davis (398%he
Undecidable, Ewlett, NY: Raven Press, pp. 155-229B6-1937.

Thetical

[32] V. Vapnik. The nature of statistical learning, spring&é995.
(33]

B.-T. Zhang and H. Muhlenbein. Balancing accuracy aatsimony
in genetic programmingEvolutionary Computation, vol. 3, no. 1, pp.
17-38 1995.

