N

N

Quasi-Random resamplings, with applications to
rule-samplng, cross-validation and (su-)bagging
Olivier Teytaud, Sylvain Gelly, Stéphane Lallich, Elie Prudhomme

» To cite this version:

Olivier Teytaud, Sylvain Gelly, Stéphane Lallich, Elie Prudhomme. Quasi-Random resamplings, with
applications to rule-samplng, cross-validation and (su-)bagging. International Workshop on Intelligent
Information Acces — IITA 2006, 2006, France. hal-00113368

HAL Id: hal-00113368
https://hal.science/hal-00113368
Submitted on 21 Nov 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00113368
https://hal.archives-ouvertes.fr

Quasi-random resamplings, with applications to
rule extraction, cross-validation and (su-)bagging

Olivier Teytaud, Sylvain Gelly, Stphane Lallich, Elie Prudhomme
May 17, 2006

1 Introduction

Resampling (typically, but not necessarily, bootstrapping) is a well-known
stochastic technique for improving estimates in particular for small samples. It
is known very efficient in many cases. Its drawback is that resampling leads to a
compromise computational cost / stability through the number of resamplings.
The computational cost is due to the study of multiple randomly drawn resam-
ples. Intuitively, we want some more properly distributed resamples to improve
the stability of resampling-based algorithms. Quasi-random numbers are a well-
known technique for improving the convergence rate of data-based estimates.
We here consider quasi-random version of resamplings. We apply this technique
to BSFD, a data-mining algorithm for simultaneous-hypothesis-testing, to cross-
validation, and to (su-)bagging, an ensemble method for learning. We present
quasi-random numbers in section 2. We present bootstrap and a quasi-random
version of bootstrap-sampling in section 3. We present experimental results in
section 4.

2 Introduction to quasi-random numbers

If you are unlucky, random points can be distributed in a very non-uniform man-
ner. Figure 1 (upper-left) is a pseudo-random independent sample (uniformly
drawn in [0,1]?). Usually, you can not get by chance something as regular as
other plots in figure 1. Therefore, in many areas of computer science, better-
than-random points have been studied (integration [1], optimization [2], path
planning [3], learning [4]). In order to generate and check uniform point-sets, a
measure of uniformity is useful. Consider a point set z1,...,z, in D = [0, 1]¢.
An intuitive measure is sup,cp infie(1,ny) d(z, ;) (to be minimized), where d
is some distance (e.g. L distance). Then, generating points as the lattice in
figure 1 is easy, and it has been pointed out that for the criterion above, this
is optimal for many values of the number of points ([3]). However, this point
set is not satisfactory. For example, it would be nice that the projection on
any axis of a good point set is a good point set. This is not the case for the



lattice in figure 1: the projection on some well-chosen axis leads to accumu-
lations. Therefore, other criterions have been defined; the most well known is
discrepancy. Among various discrepancies, the most well known is the follow-
ing: sup,cp |2Card{i € [[1,n]];Vj(z:); <7r;} — mjeq,ayr;|- This formula has
an immediate interpretation: it is the largest absolute difference between the
area of a rectangle including 0 and the proportion of points in this rectangle.
It is much more stable with respect to projection on an axis. However, it has
various drawbacks (see [5]): (1) it only deals with rectangles with axis parallel
to the canonical axis; (2) it only deals with rectangles; (3) it is not symmet-
ric in the sense that the discrepancy of zi,...,x, is not the discrepancy of
1—x1,...,1 —x,; (4) it is a worst case on . The two first drawbacks are un-
clear drawbacks. Considering variables, in a non-rotation invariant manner, can
be meaningful. The fourth drawback is probably the main trouble. Fortunately,
extensions have already been defined. The main tool is the L2-star-discrepancy:
\/f7'ED (XCard{i € [[1,n]];Vj(z;); <rj} — wje[[lyd]]rj)Q. This form of discrep-
ancy (as well as others) verify inequalities similar to Koksma’s inequality (see
[5] on this topic). Many algebraic methods have been defined for generating
sequences of points with low discrepancy ([1, 3, 6, 7, 8]). We here consider
scrambled-Halton-sequences. We now define this quasi-random sequence. Con-
sider p a prime number. The following sequence generates the n*" element
Zn.p € [0,1] of the Van Der Corput sequence [9] in basis p:

e write n in basis p: n = prPr—1...p1, i.e. N = Zlepipi with p; €
[[0,p — 1]];

. . . k ;
® 2, =0.p1pa...pp in basis p, ie. z,, =D pi/D"

A classical improvement, termed scrambling consists in replacing this by z,, , =
0.7(p1)m(p2) . .. m(px) where 7 is some permutation of 0, 1,...,p—1. The Halton
sequence [10] generalizes the Van Der Corput sequence to dimension d. Consider
p; the i*" prime number. Then, z,, the n'* element of a Halton sequence in
dimension d, is Tn, = (Tnpy» Tnpas -« Tnpy) € [0,1]9. The scrambled-Halton
sequence is the use of a randomly drawn permutation for each i € [[1,d]].

3 The applications of bootstrap in data mining
and quasi-random bootstrap

Bootstrap has been first defined by Efron [11] and uniform versions appeared
with the work of Giné and Zinn [12]. These works and many others are sum-
marized in [13].

Often, we would like to know P, an unknown law of probability, but we only
have a database which can be assumed i.i.d according to P. If this database
is x1,...,T,, the traditional notation is P for the empirical measure, i.e. P =
%Z?zl 0z,, where 4, is the Dirac measure located at x. A bootstrap sample
consists in randomly drawing n elements, with replacement, among the x;: for



—T5oT T T T T 1 T T &T T

ool & o bog?g validgm o o o | . ooolalﬁcgo Qbo ]
o %
08¢5% éfgo ®oo0 *F oop o °, oo % °%
07 oo 8 5 " o 9
06 ko © 0,° % o %o ooo “od
b o
05 00 00,000 g0 g o % % o
04l °°% o o e oo ® ] Co % 9%
oo © ©g o 5° ° ° o ©
03 o oo ® 090 ° © o0 oo
o o °e o o o
02 o & g o %

o o o o2 © 0o o % % 7
01f o O, g % "o o o o To %
b9 %0 20 0,0, 00 . G

0 01020304 0506070809 1 0 010203040506070809 1
LTI B P v S S wwrew v e
091°% 0 oy 00 [EF T, 4 09 o, o O scrambledralan, S o]
08 b 9 o © _ocoo0 o 1 08k o °p 4 o o

o 00 % % °o _ o ° o
07p © % oo S oo 74 07F o o7 95 ° o0& A
06Fo §o o %% To o7 4 060 o %5 00 0% o o 1
Lo o © o | L 0% © ° [} o
05 %oo . 20 0,8°%, 05 o R %o S
0ag © 0% T ° oo °F 04b ° o & 000 0o ]
03, 00° & ° o . oY 03 o° ooo 00 ° %0, %o o1
B
02k ° 2 oo OOOO o 7 ° K 020 ooo % & o ,0° ° A
o o 0, ° o]
0170 o, °2.0°% °%o0] 0l & oy o 2% 9
0 L L 10 9) L L L Q I 0 L foN1 10 L L 100
0 01020304 0506070809 1 0 010203040506070809 1

Figure 1: Random points, lattice points, Sobol points, scrambled-Halton points.
i € [[1,n]], x} is equal to xj,, where the (j;);c[p1,5) are independent and uniform

n [[1,n]]. We then note P = 2527 4,
So, bootstrap is based on the replacement of a random variable that can
not be simulated (P, the random part of which being the sampling) by one

that can be simulated (ﬁ, the random part of which being the resampling).

Simulating P is usually done in an i.i.d manner. However, there is a straight-
forward application of quasi-random numbers to this simulation. Precisely, we
have to quasi-randomly draw the («,...,}). Each 2} is equal to z;, where

the j1,...,Jn are i.i.d uniformly in [[1,n]]. Naively sampling the bootstrap dis-
tribution is therefore equivalent to:

e randomly draw z €]0,1]™;
e for i € [[1,n]], define 2} = x;, where j; = [n x z;].

With this formalism, a quasi-random version is straightforward: we only have
to quasi-randomly draw the z in dimension n. Therefore, we can use a quasi-
random sequence in dimension n, where n is the number of instances. Un-
fortunately, this naive approach does not work. The reason is that strongly
redundant results can appear, as the result of the second line above is the same
when ordinates of z are permuted. Well distributed z’s do not lead to well
distributed samples. Therefore, we define a better approach. The indices j;
are multinomially distributed. It is known that the multinomial distribution is
still multinomial after the first components are observed. In algorithmic terms,
this means that the following procedure works for generating correct bootstrap
samples:

e randomly draw z €]0, 1]™;
e set r = n (number of elements to be drawn in the database);

o for i € [[1,n]],



— define 2/ minimal such that P(binomial(r,1/(n+1—1)) < z}) > z;;

— set r 1 —2z.

e for i € [[1,n]], define the bootstrap sample such that x; appears in the '
exactly z} times.

This generates independent bootstrap samples. We now just have to replace the
random-drawing at the first line by a quasi-random sequence. Traditionally, the
efficiency of quasi-random sequences is justified by Koksma-Hlawka’s inequality.
This inequality ensures a convergence in O(V log(b)™/b), where n is the dimen-
sion, b is the number of quasi-random samples, and V is the total variation in
the sense of Hardy & Krause. In many cases, the quasi-random method indeed
works, whenever V is infinite. Here, we are in a nice case: V is finite. Let’s
formalize this claim:

Theorem: finiteness of the Hardy&Krause total variation Consider
[ any mapping [[0,n]]” — R. Consider the following application 7y : z — f(2'),
my:[0,1]" — R, where 2’ is defined as follows:

e set r =n (number of elements to be drawn in the database);
o forie[[Ln]],

— define z, minimal such that P(binomial(r,1/(n+1—1)) < z}) > z;

— setr—1r—2.

Then, 7y has finite total variation in the sense of Hardyé/Krause. Proof:
is constant in each of finitely many hyperrectangles partitionning [0,1]™. This
is sufficient to imply the finiteness of the total variation.

Quasi-random points are often much more efficient than random points in
low dimension, but quasi-random points must be adapted for huge dimension,
in spite of strong improvements due in particular to scrambling. We need a
dimension reduction. We perform this dimension reduction as follows for cases
in which the dimensionality of the quasi-random sequence would be too high:

e group examples in the learning set in k clusters by k-means (including the
label as supplementary ordinate);

e by quasi-random, choose the number of random draws in each of the k
clusters, n; examples in cluster 1, ..., ni examples in cluster k;

e then, randomly distribute the n; examples among the examples in cluster
i.

This method is inspired by [14] in a different context. It’s likely that more
sophisticated methods could be defined also. See [15] for particular cases of
derandomization in huge dimension that might be helpful.



With random bootstrap-samples

11001}
‘0s[e

IeA Su

po[rejop QIO

soqqe

M

sy[nsa1

0 < ueow Uy
"98BD QUO JN( [[® Ul IOMO[ YONUW SI

‘

synsod [ejuowredxy ¥

o[qeresr oIe

T

diay u

UO1}0BJI)X UOIJeWLIOJUI I0J SHMNSAY ¥

Vo 10 20 30 10 50
1 0.17 0.13 0.12 0.04 0.09
E=0.73 E=0.55 E=0.49 E=0.53 E=0.55
std=0.00161 5td=0.00184 5td=0.00119 std=0.00121 5td=0.00143
3 0.15 0.24 0.27 0.19 0.22
E=1.38 BE=1.79 E=1.37 BE=1.61 BE=1.48
std=0.00101 5td=0.000751 | std=0.000671 | std=0.000958 | std=0.000869
3 0.24 0.26 0.18 0.23 0.28
BE=1.99 E=2.85 E=2.19 BE=2.47 E=2.25
std=0.000455 | std=0.000559 | std=0.000642 | std=0.000610 | std=0.000563
I 0.03 0.3 0.23 0.26 0.21
E=2.97 E=3.99 E=3.18 E=3.46 E=3.1
std=0.000485 | std=0.000702 | std=0.000473 | std=0.000350 | std=0.000683
5 0.16 0.38 0.17 0.34 0.22
E=3.97 BE=5.14 E=4.16 E=4.44 E=3.99
std=0.000522 | std=0.000597 | std=0.000381 | std=0.000468 | std=0.000511
6 0.1 0.37 0.31 0.3 0.3
E=4.62 E=5.95 E=5.24 E=5.63 E=4.92
std=0.000503 | std=0.000330 | std=0.000308 | std=0.000281 | std=0.000381
With quasi-random bootstrap-samples
10 20 30 40 50
1 0.18 0.15 0.09 0.09 0.08
E=0.73 E=0.66 E=0.47 E=0.65 E=0.61
std=0.00126 5td=0.000872 | std=0.000884 std=0.00102 5td=0.000973
) 0.17 0.23 0.28 0.27 0.24
BE=1.45 BE=1.73 E=1.39 B=1.77 E=1.55
std=0.000707 | std=0.000688 | std=0.000640 | std=0.000653 | std=0.000659
3 0.25 0.28 0.16 0.2 0.29
E=2.06 BE=2.89 E=2.21 E=2.43 E=2.4
std=0.000541 | std=0.000551 | std=0.000449 | std=0.000433 | std=0.000426
1 0.06 0.33 0.23 0.24 0.21
E=2.96 E=3.97 E=3.19 B=3.44 BE=3.2
std=0.000345 | std=0.000433 | std=0.000387 | std=0.000333 | std=0.000413
5 0.16 0.37 0.15 0.33 0.27
E=4.03 E=5.16 E=4.28 E=4.59 E=4.1
std=0.000348 | std=0.000300 | std=0.000305 | std=0.000296 | std=0.000310
6 0.08 0.34 0.34 0.3 0.28
E=4.53 E=5.86 E=5.41 E=5.63 E=5.02

std=0.000361

std=0.000293

std=0.000234

std=0.000240

std=0.000305

04 pue gg'0 = ¢ sepraoid 1esn oy [, ‘sejdures-derysjooq g¢

‘

UL (ASE-pIepue)s snsioa ([ JS¢-wopuei-isenb jo synsoy :g oInsi

‘10110 [-0dA} 04 uer) orour SuIpod(as Jo ¢ NSII © 03 d[qIissod se 9S0[O st 9 0}

ST qASE Jo 1803 o1y
U0 paseq ST Ploysedi} uorposes ol jo ([97] @IS 07 S{Uel)) UOIIeN[RAD DPase(

-de1)s100( o1} UOYM ‘SUOI}0930P ds[e] 04 ueyy aIow jo Aiiqeqold [eorirduo o)
-xo 10§ porjdde st (S ‘() UedW PUE 9UO dOUBLIBA [HIM PIINGLIISIP A[[eULIOU

‘guopuadapul ST d[qeLIRA DR :Sul}jos SUIMO[[O] oY) UI ‘S}[NSOI JO SI[qe) O3 JO
ouo g oSi ur jussord ATUO 910 oM {SHMNSAI [[NJ IO dAOQR [IN OY) O} IOJOI A\

UOT)RPI[RA-SSOII-TIOPURI-ISEND Jnoqe symsol o101} puy ueo au() ‘Fpd-andanoqrb

sojdurexs QT 10J pue A}I[RUOISUSWIP T[Jed I0J sjuasald aqe) o1 ], *(U0TID939p Ou)
/pneaken, /Iy TIT nam//

Tomsue £3dwo o} ST IOMSUR }89( 9} 0I0JIO}

JOURLIRA O




4.2 Results for (su-)bagging with dimension-reduction

Bagging and subagging were applied in a setting detailed in http://www.lri.
fr/~teytaud/qrboutput.pdf (18 examples, 25 bootstraps). A few results are
presented in figure 3. The complete results in the url above show that QRBag-
ging > Bagging > Weak learner, and QRSuBagging > SuBagging > Weak
learner.

5 Conclusion

We experimented quasi-random-sequences of resamples. The standard quasi-
random points in [[0,1]]* could be used thanks to the decomposition of the
multinomial law into k binomial laws. The convergence is faster and more
stable, both theoretically and in various applications. As far as we know, it’s the
first time that quasi-random-sequences of bootstrap-samples and quasi-random-
sequences of subsets are defined and applied.

References

[1] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, P. SIAM, Ed., 1992.

[2] A. Auger, M. Jebalia, and O. Teytaud, “Xse: quasi-random mutations for
evolution strategies,” in Fvolutionary Algorithms, 2005.

[3] B. Tuffin, “On the use of low discrepancy sequences in monte carlo
methods,” 1996. [Online]. Available: citeseer.ist.psu.edu/tuffin96use.html

[4] C. Cervellera and M. Muselli, “A deterministic learning approach based
on discrepancy,” in Proceedings of WIRN’03, pp53-60, 2003. [Online].
Available: citeseer.ist.psu.edu/633350.html

[56] F. Hickernell, “A generalized discrepancy and quadrature error bound,”
Math. Comp. 67, 299-322, 1998.

[6] A. Owen, Quasi-Monte Carlo Sampling, A Chapter on QMC for a SIG-
GRAPH 2003 course, 2003.

[7] I. M. Sobol’, “On the systematic search in a hypercube,” vol. 16, no. 5, pp.
790-793, Oct. 1979.

[8] P. Bratley and B. Fox, “Algorithm 659: Implementing sobol’s quasirandom
sequence generator,” ACM Transactions on Mathematical Software Volume
14, Number 1, pages 88-100, 1988.

[9] J. G. van der Corput, “Verteilungsfunktionen,” Proc. Ned. Akad. v. Wet.,
38:8137821, 1935.



Method (mean standard
deviation of output)

Error rate +
standard deviation

199 runs, 320 examples (1/5

-4/5), dim 2

SuBaggingDecStump (0.137097)
SuBaggingQRDecStump8 (0.123100)
SuBaggingQRDecStump4 (0.125160)
SuBaggingQRDecStump2 (0.125882)

0.110062 £ 0.065750
0.097637 £ 0.048096
0.103565 £ 0.058860
0.101170 £ 0.054242

BaggingDecStump (0.079022)
BaggingQRDecStump5 (0.074899)
BaggingQRDecStump4 (0.073276)
BaggingQRDecStump2 (0.073361)
BaggingQRDecStump8 (0.074814)

0.164514 £ 0.121832
0.154719 £ 0.123209
0.159332 £ 0.122726
0.158154 £ 0.119545
0.159293 £ 0.121817

199 runs, 320 examples (1/5

-4/5), dim 4

SuBaggingDecStump (0.136094)
SuBaggingQRDecStump8 (0.128807)
SuBaggingQRDecStump4 (0.127693)
SuBaggingQRDecStump2 (0.128570)

0.148673 £ 0.066784
0.136267 £ 0.061232
0.137092 £ 0.060400
0.140036 £ 0.063278

BaggingDecStump (0.078661)
BaggingQRDecStump5 (0.075725
BaggingQRDecStump4 (0.074121
BaggingQRDecStump2 (0.074604
BaggingQRDecStump8 (0.075216

0.164632 £ 0.121136
0.158704 £ 0.120155
0.159685 £ 0.121453
0.165162 £ 0.120381
0.161334 £ 0.122183

)
)
)
)
(

199 runs, 1280 examples (1/5-4/5), dim 2

SuBaggingDecStump (0.098132)
SuBaggingQRDecStump8 (0.091579)
SuBaggingQRDecStump4 (0.091416)
SuBaggingQRDecStump2 (0.093533)

0.034690 £ 0.018896
0.033336 £ 0.017868
0.031559 £ 0.015501
0.032025 £ 0.016090

BaggingDecStump (0.070920)
BaggingQRDecStump5 (0.066053
BaggingQRDecStump4 (0.064879
BaggingQRDecStump2 (0.066117
BaggingQRDecStump8 (0.065024

0.035691 £ 0.078878
0.022584 £ 0.060712
0.029012 £ 0.071060
0.026701 £ 0.067174
0.028399 £ 0.068832

)
)
)
)
(

199 runs, 1280 examples (1/5-4/5), dim 4

SuBaggingDecStump (0.099501)
SuBaggingQRDecStump8 (0.092640)
SuBaggingQRDecStump4 (0.092366)
SuBaggingQRDecStump2 (0.092609)

0.041349 £ 0.027841
0.038277 £ 0.024346
0.036368 £ 0.018317
0.036520 £ 0.017937

BaggingDecStump (0.071598)
BaggingQRDecStump5 (0.064187
BaggingQRDecStump4 (0.067099
BaggingQRDecStump2 (0.070020

(

)
)
)
BaggingQRDecStump8 (0.066850)

0.030308 £ 0.072339
0.025577 £ 0.065089
0.029601 £ 0.072861
0.024110 £ 0.062809
0.025391 £ 0.064964

Figure 3: Results for bagging

and subagging.




[10]

[11]

[12]

[15]

[16]

J. Halton, “On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals,” Numerische Mathematik, vol.
2:84-90, 1960.

B. Efron, “Bootstrap methods: Another look at the jacknkife. annals of
statistics 7, 1-26,” 1979.

E. Gine, , and Z. J., “Bootstrapping general empirical measures. annals of
probability 18, 851-869,” 1984.

A. V. D. Vaart and J.-A. Wellner, “Weak convergence and empirical pro-
cesses. springer series in statistics,” 1996.

N. Diamantidis, D. Karlis, and E. Giakoumakis, “Unsupervised stratifica-
tion of cross-validation for accuracy estimation,” Artificial Intelligence 116,
1-16, 2000.

F. J. Hickernell, “A generalized discrepancy and quadrature error bound,”
Mathematics of Computation, vol. 67, no. 221, pp. 299-322, 1998. [Online].
Available: citeseer.ist.psu.edu/hickernell97generalized.html

S. Lallich, O. Teytaud, and E. Prudhomme, “Statistical inference and data
mining: false discoveries control,” in proceedings of the 17th COMPSTAT
Symposium of the TASC, 2006.



