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1 Introduction

Resampling (typically, but not necessarily, bootstrapping) is a well-known
stochastic technique for improving estimates in particular for small samples. It
is known very efficient in many cases. Its drawback is that resampling leads to a
compromise computational cost / stability through the number of resamplings.
The computational cost is due to the study of multiple randomly drawn resam-
ples. Intuitively, we want some more properly distributed resamples to improve
the stability of resampling-based algorithms. Quasi-random numbers are a well-
known technique for improving the convergence rate of data-based estimates.
We here consider quasi-random version of resamplings. We apply this technique
to BSFD, a data-mining algorithm for simultaneous-hypothesis-testing, to cross-
validation, and to (su-)bagging, an ensemble method for learning. We present
quasi-random numbers in section 2. We present bootstrap and a quasi-random
version of bootstrap-sampling in section 3. We present experimental results in
section 4.

2 Introduction to quasi-random numbers

If you are unlucky, random points can be distributed in a very non-uniform man-
ner. Figure 1 (upper-left) is a pseudo-random independent sample (uniformly
drawn in [0,1]?). Usually, you can not get by chance something as regular as
other plots in figure 1. Therefore, in many areas of computer science, better-
than-random points have been studied (integration [1], optimization [2], path
planning [3], learning [4]). In order to generate and check uniform point-sets, a
measure of uniformity is useful. Consider a point set z1,...,z, in D = [0, 1]¢.
An intuitive measure is sup,cp infie(1,ny) d(z, ;) (to be minimized), where d
is some distance (e.g. L distance). Then, generating points as the lattice in
figure 1 is easy, and it has been pointed out that for the criterion above, this
is optimal for many values of the number of points ([3]). However, this point
set is not satisfactory. For example, it would be nice that the projection on
any axis of a good point set is a good point set. This is not the case for the



lattice in figure 1: the projection on some well-chosen axis leads to accumu-
lations. Therefore, other criterions have been defined; the most well known is
discrepancy. Among various discrepancies, the most well known is the follow-
ing: sup,cp |2Card{i € [[1,n]];Vj(z:); <7r;} — mjeq,ayr;|- This formula has
an immediate interpretation: it is the largest absolute difference between the
area of a rectangle including 0 and the proportion of points in this rectangle.
It is much more stable with respect to projection on an axis. However, it has
various drawbacks (see [5]): (1) it only deals with rectangles with axis parallel
to the canonical axis; (2) it only deals with rectangles; (3) it is not symmet-
ric in the sense that the discrepancy of zi,...,x, is not the discrepancy of
1—x1,...,1 —x,; (4) it is a worst case on . The two first drawbacks are un-
clear drawbacks. Considering variables, in a non-rotation invariant manner, can
be meaningful. The fourth drawback is probably the main trouble. Fortunately,
extensions have already been defined. The main tool is the L2-star-discrepancy:
\/f7'ED (XCard{i € [[1,n]];Vj(z;); <rj} — wje[[lyd]]rj)Q. This form of discrep-
ancy (as well as others) verify inequalities similar to Koksma’s inequality (see
[5] on this topic). Many algebraic methods have been defined for generating
sequences of points with low discrepancy ([1, 3, 6, 7, 8]). We here consider
scrambled-Halton-sequences. We now define this quasi-random sequence. Con-
sider p a prime number. The following sequence generates the n*" element
Zn.p € [0,1] of the Van Der Corput sequence [9] in basis p:

e write n in basis p: n = prPr—1...p1, i.e. N = Zlepipi with p; €
[[0,p — 1]];

. . . k ;
® 2, =0.p1pa...pp in basis p, ie. z,, =D pi/D"

A classical improvement, termed scrambling consists in replacing this by z,, , =
0.7(p1)m(p2) . .. m(px) where 7 is some permutation of 0, 1,...,p—1. The Halton
sequence [10] generalizes the Van Der Corput sequence to dimension d. Consider
p; the i*" prime number. Then, z,, the n'* element of a Halton sequence in
dimension d, is Tn, = (Tnpy» Tnpas -« Tnpy) € [0,1]9. The scrambled-Halton
sequence is the use of a randomly drawn permutation for each i € [[1,d]].

3 The applications of bootstrap in data mining
and quasi-random bootstrap

Bootstrap has been first defined by Efron [11] and uniform versions appeared
with the work of Giné and Zinn [12]. These works and many others are sum-
marized in [13].

Often, we would like to know P, an unknown law of probability, but we only
have a database which can be assumed i.i.d according to P. If this database
is x1,...,T,, the traditional notation is P for the empirical measure, i.e. P =
%Z?zl 0z,, where 4, is the Dirac measure located at x. A bootstrap sample
consists in randomly drawing n elements, with replacement, among the x;: for



—T5oT T T T T 1 T T &T T

ool & o bog?g validgm o o o | . ooolalﬁcgo Qbo ]
o %
08¢5% éfgo ®oo0 *F oop o °, oo % °%
07 oo 8 5 " o 9
06 ko © 0,° % o %o ooo “od
b o
05 00 00,000 g0 g o % % o
04l °°% o o e oo ® ] Co % 9%
oo © ©g o 5° ° ° o ©
03 o oo ® 090 ° © o0 oo
o o °e o o o
02 o & g o %

o o o o2 © 0o o % % 7
01f o O, g % "o o o o To %
b9 %0 20 0,0, 00 . G

0 01020304 0506070809 1 0 010203040506070809 1
LTI B P v S S wwrew v e
091°% 0 oy 00 [EF T, 4 09 o, o O scrambledralan, S o]
08 b 9 o © _ocoo0 o 1 08k o °p 4 o o

o 00 % % °o _ o ° o
07p © % oo S oo 74 07F o o7 95 ° o0& A
06Fo §o o %% To o7 4 060 o %5 00 0% o o 1
Lo o © o | L 0% © ° [} o
05 %oo . 20 0,8°%, 05 o R %o S
0ag © 0% T ° oo °F 04b ° o & 000 0o ]
03, 00° & ° o . oY 03 o° ooo 00 ° %0, %o o1
B
02k ° 2 oo OOOO o 7 ° K 020 ooo % & o ,0° ° A
o o 0, ° o]
0170 o, °2.0°% °%o0] 0l & oy o 2% 9
0 L L 10 9) L L L Q I 0 L foN1 10 L L 100
0 01020304 0506070809 1 0 010203040506070809 1

Figure 1: Random points, lattice points, Sobol points, scrambled-Halton points.
i € [[1,n]], x} is equal to xj,, where the (j;);c[p1,5) are independent and uniform

n [[1,n]]. We then note P = 2527 4,
So, bootstrap is based on the replacement of a random variable that can
not be simulated (P, the random part of which being the sampling) by one

that can be simulated (ﬁ, the random part of which being the resampling).

Simulating P is usually done in an i.i.d manner. However, there is a straight-
forward application of quasi-random numbers to this simulation. Precisely, we
have to quasi-randomly draw the («,...,}). Each 2} is equal to z;, where

the j1,...,Jn are i.i.d uniformly in [[1,n]]. Naively sampling the bootstrap dis-
tribution is therefore equivalent to:

e randomly draw z €]0,1]™;
e for i € [[1,n]], define 2} = x;, where j; = [n x z;].

With this formalism, a quasi-random version is straightforward: we only have
to quasi-randomly draw the z in dimension n. Therefore, we can use a quasi-
random sequence in dimension n, where n is the number of instances. Un-
fortunately, this naive approach does not work. The reason is that strongly
redundant results can appear, as the result of the second line above is the same
when ordinates of z are permuted. Well distributed z’s do not lead to well
distributed samples. Therefore, we define a better approach. The indices j;
are multinomially distributed. It is known that the multinomial distribution is
still multinomial after the first components are observed. In algorithmic terms,
this means that the following procedure works for generating correct bootstrap
samples:

e randomly draw z €]0, 1]™;
e set r = n (number of elements to be drawn in the database);

o for i € [[1,n]],



— define 2/ minimal such that P(binomial(r,1/(n+1—1)) < z}) > z;;

— set r 1 —2z.

e for i € [[1,n]], define the bootstrap sample such that x; appears in the '
exactly z} times.

This generates independent bootstrap samples. We now just have to replace the
random-drawing at the first line by a quasi-random sequence. Traditionally, the
efficiency of quasi-random sequences is justified by Koksma-Hlawka’s inequality.
This inequality ensures a convergence in O(V log(b)™/b), where n is the dimen-
sion, b is the number of quasi-random samples, and V is the total variation in
the sense of Hardy & Krause. In many cases, the quasi-random method indeed
works, whenever V is infinite. Here, we are in a nice case: V is finite. Let’s
formalize this claim:

Theorem: finiteness of the Hardy&Krause total variation Consider
[ any mapping [[0,n]]” — R. Consider the following application 7y : z — f(2'),
my:[0,1]" — R, where 2’ is defined as follows:

e set r =n (number of elements to be drawn in the database);
o forie[[Ln]],

— define z, minimal such that P(binomial(r,1/(n+1—1)) < z}) > z;

— setr—1r—2.

Then, 7y has finite total variation in the sense of Hardyé/Krause. Proof:
is constant in each of finitely many hyperrectangles partitionning [0,1]™. This
is sufficient to imply the finiteness of the total variation.

Quasi-random points are often much more efficient than random points in
low dimension, but quasi-random points must be adapted for huge dimension,
in spite of strong improvements due in particular to scrambling. We need a
dimension reduction. We perform this dimension reduction as follows for cases
in which the dimensionality of the quasi-random sequence would be too high:

e group examples in the learning set in k clusters by k-means (including the
label as supplementary ordinate);

e by quasi-random, choose the number of random draws in each of the k
clusters, n; examples in cluster 1, ..., ni examples in cluster k;

e then, randomly distribute the n; examples among the examples in cluster
i.

This method is inspired by [14] in a different context. It’s likely that more
sophisticated methods could be defined also. See [15] for particular cases of
derandomization in huge dimension that might be helpful.



With random bootstrap-samples
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Vo 10 20 30 10 50
1 0.17 0.13 0.12 0.04 0.09
E=0.73 E=0.55 E=0.49 E=0.53 E=0.55
std=0.00161 5td=0.00184 5td=0.00119 std=0.00121 5td=0.00143
3 0.15 0.24 0.27 0.19 0.22
E=1.38 BE=1.79 E=1.37 BE=1.61 BE=1.48
std=0.00101 5td=0.000751 | std=0.000671 | std=0.000958 | std=0.000869
3 0.24 0.26 0.18 0.23 0.28
BE=1.99 E=2.85 E=2.19 BE=2.47 E=2.25
std=0.000455 | std=0.000559 | std=0.000642 | std=0.000610 | std=0.000563
I 0.03 0.3 0.23 0.26 0.21
E=2.97 E=3.99 E=3.18 E=3.46 E=3.1
std=0.000485 | std=0.000702 | std=0.000473 | std=0.000350 | std=0.000683
5 0.16 0.38 0.17 0.34 0.22
E=3.97 BE=5.14 E=4.16 E=4.44 E=3.99
std=0.000522 | std=0.000597 | std=0.000381 | std=0.000468 | std=0.000511
6 0.1 0.37 0.31 0.3 0.3
E=4.62 E=5.95 E=5.24 E=5.63 E=4.92
std=0.000503 | std=0.000330 | std=0.000308 | std=0.000281 | std=0.000381
With quasi-random bootstrap-samples
10 20 30 40 50
1 0.18 0.15 0.09 0.09 0.08
E=0.73 E=0.66 E=0.47 E=0.65 E=0.61
std=0.00126 5td=0.000872 | std=0.000884 std=0.00102 5td=0.000973
) 0.17 0.23 0.28 0.27 0.24
BE=1.45 BE=1.73 E=1.39 B=1.77 E=1.55
std=0.000707 | std=0.000688 | std=0.000640 | std=0.000653 | std=0.000659
3 0.25 0.28 0.16 0.2 0.29
E=2.06 BE=2.89 E=2.21 E=2.43 E=2.4
std=0.000541 | std=0.000551 | std=0.000449 | std=0.000433 | std=0.000426
1 0.06 0.33 0.23 0.24 0.21
E=2.96 E=3.97 E=3.19 B=3.44 BE=3.2
std=0.000345 | std=0.000433 | std=0.000387 | std=0.000333 | std=0.000413
5 0.16 0.37 0.15 0.33 0.27
E=4.03 E=5.16 E=4.28 E=4.59 E=4.1
std=0.000348 | std=0.000300 | std=0.000305 | std=0.000296 | std=0.000310
6 0.08 0.34 0.34 0.3 0.28
E=4.53 E=5.86 E=5.41 E=5.63 E=5.02

std=0.000361

std=0.000293

std=0.000234

std=0.000240

std=0.000305
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4.2 Results for (su-)bagging with dimension-reduction

Bagging and subagging were applied in a setting detailed in http://www.lri.
fr/~teytaud/qrboutput.pdf (18 examples, 25 bootstraps). A few results are
presented in figure 3. The complete results in the url above show that QRBag-
ging > Bagging > Weak learner, and QRSuBagging > SuBagging > Weak
learner.

5 Conclusion

We experimented quasi-random-sequences of resamples. The standard quasi-
random points in [[0,1]]* could be used thanks to the decomposition of the
multinomial law into k binomial laws. The convergence is faster and more
stable, both theoretically and in various applications. As far as we know, it’s the
first time that quasi-random-sequences of bootstrap-samples and quasi-random-
sequences of subsets are defined and applied.
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Figure 3: Results for bagging

and subagging.
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