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Introduction

Resampling (typically, but not necessarily, bootstrapping) is a well-known stochastic technique for improving estimates in particular for small samples. It is known very efficient in many cases. Its drawback is that resampling leads to a compromise computational cost / stability through the number of resamplings. The computational cost is due to the study of multiple randomly drawn resamples. Intuitively, we want some more properly distributed resamples to improve the stability of resampling-based algorithms. Quasi-random numbers are a wellknown technique for improving the convergence rate of data-based estimates. We here consider quasi-random version of resamplings. We apply this technique to BSFD, a data-mining algorithm for simultaneous-hypothesis-testing, to crossvalidation, and to (su-)bagging, an ensemble method for learning. We present quasi-random numbers in section 2. We present bootstrap and a quasi-random version of bootstrap-sampling in section 3. We present experimental results in section 4.

Introduction to quasi-random numbers

If you are unlucky, random points can be distributed in a very non-uniform manner. Figure 1 (upper-left) is a pseudo-random independent sample (uniformly drawn in [0, 1] 2 ). Usually, you can not get by chance something as regular as other plots in figure 1. Therefore, in many areas of computer science, betterthan-random points have been studied (integration [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF], optimization [START_REF] Auger | Xse: quasi-random mutations for evolution strategies[END_REF], path planning [START_REF] Tuffin | On the use of low discrepancy sequences in monte carlo methods[END_REF], learning [START_REF] Cervellera | A deterministic learning approach based on discrepancy[END_REF]). In order to generate and check uniform point-sets, a measure of uniformity is useful. Consider a point set x 1 , . . . , [1,n]] d(x, x i ) (to be minimized), where d is some distance (e.g. L ∞ distance). Then, generating points as the lattice in figure 1 is easy, and it has been pointed out that for the criterion above, this is optimal for many values of the number of points ( [START_REF] Tuffin | On the use of low discrepancy sequences in monte carlo methods[END_REF]). However, this point set is not satisfactory. For example, it would be nice that the projection on any axis of a good point set is a good point set. This is not the case for the lattice in figure 1: the projection on some well-chosen axis leads to accumulations. Therefore, other criterions have been defined; the most well known is discrepancy. Among various discrepancies, the most well known is the following: sup r∈D [1,d]] r j . This formula has an immediate interpretation: it is the largest absolute difference between the area of a rectangle including 0 and the proportion of points in this rectangle. It is much more stable with respect to projection on an axis. However, it has various drawbacks (see [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF]): (1) it only deals with rectangles with axis parallel to the canonical axis; (2) it only deals with rectangles; (3) it is not symmetric in the sense that the discrepancy of x 1 , . . . , x n is not the discrepancy of 1 -x 1 , . . . , 1 -x n ; (4) it is a worst case on r. The two first drawbacks are unclear drawbacks. Considering variables, in a non-rotation invariant manner, can be meaningful. The fourth drawback is probably the main trouble. Fortunately, extensions have already been defined. The main tool is the L 2 -star-discrepancy:

x n in D = [0, 1] d . An intuitive measure is sup x∈D inf i∈[
1 n Card{i ∈ [[1, n]]; ∀j(x i ) j ≤ r j } -π j∈[
r∈D 1 n Card{i ∈ [[1, n]]; ∀j(x i ) j ≤ r j } -π j∈[[1,d]] r j 2 .
This form of discrepancy (as well as others) verify inequalities similar to Koksma's inequality (see [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF] on this topic). Many algebraic methods have been defined for generating sequences of points with low discrepancy ( [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF][START_REF] Tuffin | On the use of low discrepancy sequences in monte carlo methods[END_REF][START_REF] Owen | Quasi-Monte Carlo Sampling, A Chapter on QMC for a SIG-GRAPH 2003 course[END_REF][START_REF] Sobol | On the systematic search in a hypercube[END_REF][START_REF] Bratley | Algorithm 659: Implementing sobol's quasirandom sequence generator[END_REF]). We here consider scrambled-Halton-sequences. We now define this quasi-random sequence. Consider p a prime number. The following sequence generates the n th element x n,p ∈ [0, 1] of the Van Der Corput sequence [START_REF] Van Der Corput | Verteilungsfunktionen[END_REF] in basis p:

• write n in basis p: n = p k p k-1 . . . p 1 , i.e. n = k i=1 p i p i with p i ∈ [[0, p -1]];
• x n,p = 0.p 1 p 2 . . . p k in basis p, i.e. x n,p = k i=1 p i /p i . A classical improvement, termed scrambling consists in replacing this by x n,p = 0.π(p 1 )π(p 2 ) . . . π(p k ) where π is some permutation of 0, 1, . . . , p-1. The Halton sequence [START_REF] Halton | On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals[END_REF] generalizes the Van Der Corput sequence to dimension d. Consider p i the i th prime number. Then, x n , the n th element of a Halton sequence in dimension d, is x n = (x n,p1 , x n,p2 , . . . , x n,p d ) ∈ [0, 1] d . The scrambled-Halton sequence is the use of a randomly drawn permutation for each i ∈ [ [1, d]].

The applications of bootstrap in data mining and quasi-random bootstrap

Bootstrap has been first defined by Efron [START_REF] Efron | Bootstrap methods: Another look at the jacknkife[END_REF] and uniform versions appeared with the work of Giné and Zinn [START_REF] Gine | Bootstrapping general empirical measures[END_REF]. These works and many others are summarized in [START_REF] Vaart | Weak convergence and empirical processes[END_REF].

Often, we would like to know P , an unknown law of probability, but we only have a database which can be assumed i.i.d according to P . If this database is x 1 , . . . , x n , the traditional notation is P for the empirical measure, i.e. P = 

i ∈ [[1, n]], x ′
i is equal to x ji , where the (j i ) i∈[ [1,n]] are independent and uniform on [ [1, n]]. We then note P = 1 n n i=1 δ x ′ i . So, bootstrap is based on the replacement of a random variable that can not be simulated ( P , the random part of which being the sampling) by one that can be simulated ( P , the random part of which being the resampling).

Simulating P is usually done in an i.i.d manner. However, there is a straightforward application of quasi-random numbers to this simulation. Precisely, we have to quasi-randomly draw the (x ′ 1 , . . . , x ′ n ). Each x ′ i is equal to x ji where the j 1 , . . . , j n are i.i.d uniformly in [ [1, n]]. Naively sampling the bootstrap distribution is therefore equivalent to:

• randomly draw z ∈]0, 1] n ; • for i ∈ [[1, n]], define x ′ i =
x ji where j i = ⌈n × z i ⌉. With this formalism, a quasi-random version is straightforward: we only have to quasi-randomly draw the z in dimension n. Therefore, we can use a quasirandom sequence in dimension n, where n is the number of instances. Unfortunately, this naive approach does not work. The reason is that strongly redundant results can appear, as the result of the second line above is the same when ordinates of z are permuted. Well distributed z's do not lead to well distributed samples. Therefore, we define a better approach. The indices j i are multinomially distributed. It is known that the multinomial distribution is still multinomial after the first components are observed. In algorithmic terms, this means that the following procedure works for generating correct bootstrap samples:

• randomly draw z ∈]0, 1] n ;

• set r = n (number of elements to be drawn in the database);

• for i ∈ [[1, n]], -define z ′ i minimal such that P (binomial(r, 1/(n + 1 -i)) ≤ z ′ i ) ≥ z i ; -set r ← r -z ′ i . • for i ∈ [[1, n]],
define the bootstrap sample such that x i appears in the x ′ j exactly z ′ i times. This generates independent bootstrap samples. We now just have to replace the random-drawing at the first line by a quasi-random sequence. Traditionally, the efficiency of quasi-random sequences is justified by Koksma-Hlawka's inequality. This inequality ensures a convergence in O(V log(b) n /b), where n is the dimension, b is the number of quasi-random samples, and V is the total variation in the sense of Hardy & Krause. In many cases, the quasi-random method indeed works, whenever V is infinite. Here, we are in a nice case: V is finite. Let's formalize this claim:

Theorem: finiteness of the Hardy&Krause total variation Consider f any mapping

[[0, n]] n → R. Consider the following application π f : z → f (z ′ ), π f : [0, 1] n → R,
where z ′ is defined as follows:

• set r = n (number of elements to be drawn in the database);

• for i ∈ [[1, n]], -define z ′ i minimal such that P (binomial(r, 1/(n + 1 -i)) ≤ z ′ i ) ≥ z i ; -set r ← r -z ′ i .
Then, π f has finite total variation in the sense of Hardy&Krause. Proof: π f is constant in each of finitely many hyperrectangles partitionning [0, 1] n . This is sufficient to imply the finiteness of the total variation.

Quasi-random points are often much more efficient than random points in low dimension, but quasi-random points must be adapted for huge dimension, in spite of strong improvements due in particular to scrambling. We need a dimension reduction. We perform this dimension reduction as follows for cases in which the dimensionality of the quasi-random sequence would be too high:

• group examples in the learning set in k clusters by k-means (including the label as supplementary ordinate);

• by quasi-random, choose the number of random draws in each of the k clusters, n 1 examples in cluster 1, . . . , n k examples in cluster k;

• then, randomly distribute the n i examples among the examples in cluster i.

This method is inspired by [START_REF] Diamantidis | Unsupervised stratification of cross-validation for accuracy estimation[END_REF] in a different context. It's likely that more sophisticated methods could be defined also. See [START_REF] Hickernell | A generalized and quadrature error bound[END_REF] for particular cases of derandomization in huge dimension that might be helpful. 

Experimental results

More detailed results are available in http://www.lri.fr/ ∼ teytaud/ qrboutput.pdf. One can find there results about quasi-random-cross-validation also.

Results for information extraction

We refer to the url above for full results; we here only present in Figure 2 one of the tables of results, in the following setting: each variable is independent, normally distributed with variance one and mean 0. BSFD is applied for ex-tracting variables with mean > 0; therefore the best answer is the empty answer (no detection). The table presents for each dimensionality and for 16 examples the empirical probability of more than V 0 false detections, when the bootstrap-based evaluation (thanks to BSFD [START_REF] Lallich | Statistical inference and data mining: false discoveries control[END_REF]) of the selection threshold is based on 32 bootstrap-samples. The user provides δ = 0.25 and V 0 ; the goal of BSFD is to be as close as possible to a risk δ of selecting more than V 0 type-I errors.

Results for (su-)bagging with dimension-reduction

Bagging and subagging were applied in a setting detailed in http://www.lri. fr/ ∼ teytaud/qrboutput.pdf (18 examples, 25 bootstraps). A few results are presented in figure 3. The complete results in the url above show that QRBagging > Bagging > Weak learner, and QRSuBagging > SuBagging > Weak learner.

Conclusion

We experimented quasi-random-sequences of resamples. The standard quasirandom points in [[0, 1]] k could be used thanks to the decomposition of the multinomial law into k binomial laws. The convergence is faster and more stable, both theoretically and in various applications. As far as we know, it's the first time that quasi-random-sequences of bootstrap-samples and quasi-randomsequences of subsets are defined and applied.
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 1 Figure 1: Random points, lattice points, Sobol points, scrambled-Halton points.
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 2 Figure 2: Results of quasi-random-BSFD versus standard-BSFD. The variance is much lower in all but one case.

n n i=1 δ xi , where δ x is the Dirac measure located at x. A bootstrap sample consists in randomly drawing n elements, with replacement, among the x i : for
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