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Abstract. It is empirically established that multiobjective evolution-

ary algorithms do not scale well with the number of conflicting objec-

tives. We here show that the convergence rate of any comparison-based

multi-objective algorithm, for the Hausdorff distance, is not much better

than the convergence rate of the random search, unless the number of

objectives is very moderate, in a framework in which the stronger as-

sumption is that the objectives have conflicts. Our conclusions are (i)

the relevance of the number of conflicting objectives (ii) the relevance of

random-search-based criterions (iii) the very-hardness of more than 3-

objectives optimization (iv) some hints about new cross-over operators.

1 Introduction

Multi-objective optimization (MOO,[1, 10, 3]) is the research of the set {x; @y; (∀i fi(x) ≤

fi(y)) ∧ (∃i fi(x) < fi(y))} which is called the Pareto set. Many papers have

been devoted to MOO, some of them with deterministic methods (see [10]),

and some others with evolutionary algorithms (EA) ([3]). Usually, Evolution-

ary MOO (EMOO) is considered as an offline tool for approximating the whole

Pareto-sets. Hence, the diversity of the population is a main goal of EMOO

([13]); the goal is a convergence to the whole set. Measuring this convergence to

the whole set is difficult as defining quality-criterions is hard ([15]). Convergence

proofs and convergence rates exist in non-population-based iterative determin-

istic algorithms (see e.g. [10, chap.3]), or for specific cases in population-based

methods (see e.g. [9]), or very pessimistic-bounds in the case of the discrete

domain {0, 1}n ([6]). Empirical results mainly show that scaling up with the

number of objectives is not easy ([12],[4]).

The goal of off-line population-based methods is the convergence to the whole

Pareto-set, whereas on-line methods lead to iterative procedures in which itera-

tively (1) the user provides a weighting of the objectives (2) the MOO-algorithm



provides an optimum of the corresponding weighted average. We will here inves-

tigate conditions under which such a global convergence to the whole Pareto-set

is tractable. We will restrict our attention to comparison-based methods, but

we conjecture that the comparison-based-nature of the algorithm is indeed not

crucial in the results.

We here precisely show (i) an upper bound for a simple random search al-

gorithm (section 2) and (ii) a lower bound for any comparison-based algorithms

that is very close to the convergence rate of random search (section 3) when the

number of objectives is large. The lower-bound is based on entropy-theorems,

a family of results that has been adapted to EA in [11]. The main conclusion

is that for our criterion (the Hausdorff distance) EMOO has a strong curse of

dimensionality, which is redhibitory for dimension1 roughly > 3 or 4, except

when the problem is such that random search can handle it.

An interesting point is that the ”real” number of objectives among a set of

d objectives, as the number of dimensions for a subset of Rd, can be studied

more carefully than by just bounding it by d. When some objectives are almost

equal, then the ”true” dimensionality is much lower. In particular, in all our

negative results below, we consider that objectives can be conflicting. This is

the stronger hypothesis of our work, and our negative results under this hypoth-

esis strongly emphasize the interest of approachs dealing wich non-conflicting

hypothesis. Deeply, our work uses packing numbers of pareto-sets; the logarithm

of this packing numbers is polynomial with degree the number of conflicting

objectives2.

Related works include (i) papers trying to remove objectives that are not in

conflict with others and can therefore be removed without significant change in

the Pareto-set [2] (ii) criterions relating the efficiency of a MOO-algorithm to

the efficiency of random-search [7].

Notations and definitions

MOO problems are formulated as follows. The (multi-valued) fitness is an appli-

cation from a given domain to [0, 1]d ; d = 1 is the mono-objective cases, d > 1 is

a strictly multi-objective problem. We consider that fitnesses, to be maximized,

have values in [0, 1]. A distribution is given, that leads to a distribution of prob-

ability P in the space of fitnesses, namely [0, 1]d. We note d(x, y) the euclidean

1 ”Dimension” refers to the dimension of the fitness space, i.e. the number of objec-

tives.
2 By the way, this degree might be non-integer for problems in which some objectives

are somewhere between fully conflicting and strictly non-conflicting.



distance between elements x, y ∈ [0, 1]d. We note d(A,B) the Hausdorff-distance

between subsets of Rd, i.e.

d(A,B) = max(sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b))

(see figure 1, left). We will use the Hausdorff distance in the space of fitnesses.
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Fig. 1. Left: the Hausdorff distance between two sets. The Hausdorff distance between

two Pareto-fronts A and B is the maximal distance between x ∈ A and B or x ∈ B

and A. In particular, if the distance is ε, any ball of radius > ε whose center is in A

(resp. B) intersects B (resp. A). Right: illustration of theorem 1.

We note a Â b if and only if ∀i, ai ≥ bi and ∃i, ai > bi. We note a º b if and

only if ∀i, ai ≥ bi. If E ⊂ [0, 1]d, we note PF (E) the set of elements dominated

by E, i.e. PF (E) = {f ∈ [0, 1]d s.t. ∃e ∈ E, e º f}. If P is a distribution, we

note PF = PF (support(P )) (we omit the index P for short). Being given e > 0

and m(., .) a metric, a e-separated set for m(., .) is a set S such that ∀(x, y) ∈

S, x 6= y ⇒ m(x, y) ≥ e. In all the sequel if G is included in a metric space with

distance m(., .) we note N(G, e,m(., .)) the packing number of the set G for e > 0

and for metric m(., .), i.e. the maximal e-separated (for m(., .)) set included in

G. If ||.|| is a norm, then we note N(G, e, ||.||) = N(G, e, (x, y) 7→ ||x − y||).

We consider a comparison-based EMOO, in the sense that the only use of

computed fitness-values is a comparison for the relation º. The behavior of

the algorithm is therefore only dependent on (i) binary answers to dominance-

requests (ii) random choices. Pn is the population proposed by the algorithm as

an approximation of the PF . All the laws for randomly generated elements, all

the information flow depend on the result of comparisons only. This is an usual

(yet not exclusive) framework for EA.

We will study in the sequel the convergence rate of EMOO. This convergence

rate is with respect to time. Time is at least linear in the number of tests and

in the number of calls to the fitness function. Therefore, we will count as one



time step a step which contains either a comparison or a fitness-evaluation (or

both). We will show an upper bound (for a naive algorithm) and a (general)

lower bound, that are very close to each other when the number of objectives

is large. The upper bound is shown on the most simple possible algorithm : the

pure random search. We will note PFn = PF (fitness(Pn)) the Pareto-front

estimated by the algorithm after n calls to comparison operators.

We consider P a family of possible problems with d objectives. For each

problem:

– a fitness fitness is given from the domain to [0, 1]d ;

– PF = {x ∈ [0, 1]d;∃y, y º x}.

The precision of the algorithm after n comparisons with confidence 1 − δ is the

smallest εP,n,δ (we will use ε for short in the sequel, omitting the dependency in

P, n and δ) such that for any p ∈ P,

P (d(PF, PFn) > ε) ≤ δ

2 Upper bounds for the random-search

In this section we (i) define a simple random-search algorithm (ii) evaluate its

convergence rate.

An initial empty P0 is defined. Each epoch for n = 0, . . .∞ is as follows :

– generate one random point x in the domain;

– set Pn+1 = {x} ∪ Pn.

(the same Pareto-front PFn would result from a pruning, i.e. if at the second

line we only add x if it is not dominated by any point in Pn and if we remove

from Pn+1 points dominated by x)

An immediate property is that Pn dominates the n randomly drawn elements.

We now study, thanks to this simple remark, the convergence of the Hausdorff

distance between PF and PFn.

Theorem 1. Assume that all fitnesses are upper-bounded by 1 − c < 1. For

any d, there exists a universal constant K such that with probability at least

1 − δ, for any absolutely continuous distribution of probability P in the fitness

space with density lower bounded in its support by q > 0, d(PFn, PF ) ≤ K d

√

e/q,

where e = O(d log(n) − log(δ))/n.

Proof :

We note x1, . . . , xn the n randomly drawn points in the fitness-space. We

note µ the Lebesgue’s measure.



First step, PFn ⊂ PF . Therefore,

d(PFn, PF ) = sup
x6∈PFn

d(x, Rd \ PF ) (1)

(figure 1 (right) illustrates the previously defined PFn and PF )

Second step. We now consider ε < c and x such that x 6∈ PFn and d(x, [0, 1]d\

PF ) > ε. Consider x+ = {y ∈ [0, 1]d; y º x}. We consider the area a(x) =

µ(x+∩PF ). The area µ(x+∩B(x, ε)), where B(x, ε) is {z ∈ [0, 1]d; (d(z, x) < ε)},

is Ω(εd). Therefore a(x) = Ω(εd). This concludes the second step.

Third step. We will now use the notion of VC-dimension. Readers unfamiliar

with this notion are referred to [5, chap. 12, 13] for an introduction. We will only

use VC-dimension to justify equation 2. It is a known fact (see [5, chap. 12,13]

that the set {a+ = [a1, 1] × [a2, 1] × · · · × [ad, 1]; a ∈ [0, 1]d} has VC-dimension

≤ d (see e.g. [5, chap. 13]). This implies that with probability at least 1 − δ,

sup
a∈[0,1]d;∀i∈[[1,n]]xi 6∈a+

P (a+) ≤ e (2)

where e = O(d log(n) − log(δ))/n.

Fourth step. We now combine previous steps to conclude. Consider ε =

d(PFn, PF ). By the first step,

ε = sup
x6∈PFn

inf
y 6∈PF

d(x, y)

For any arbitrarily small h, consider some x 6∈ PFn realizing this supremum

within precision h.

By the third step, as we know that none of the xi lies in x+, we know that

with probability 1− δ, for any such x, P (x+) ≤ e = O(d log(n)− log(δ))/n, and

therefore

µ(x+ ∩ PF ) = O(d log(n) − log(δ))/qn (3)

By the second step,

µ(x+ ∩ PF ) = Ω((ε − h)d) (4)

and therefore at the limit of h → 0, combining equations 3 and 4 leads to

εd = O(d log(n) − log(δ))/qn, hence the expected result. ¥

3 Lower bounds for any EA

We will prove lower bounds on the efficiency of comparison-based MOO algo-

rithms and show that these lower bounds are not far from the performance of

random search when the number of objectives increase.



We consider families P of problems as defined in section 1, and a strongly

restricted family of problems is enough for concluding: we assume that the fitness

space has the same dimensionality as the input space and that the fitness in P

verify the following:

– fitness(x) = x if x ∈ PF ;

– fitness(x) = 0 otherwise else.

Note that with this particular fitness function, the Pareto-set (in the space of

individuals) and the Pareto-fronts (in the space of fitnesses) are equal. The result

holds a fortiori if we consider a framework in which the domain has higher

dimension, or if the relation between x and fitness(x) is more complicated

when fitness(x) is in the Pareto-front. Therefore, the negative results are more

general than this particular case.

So, we consider a very simple form of MOO problem. We will have no restric-

tion on the EMOO provided that it is comparison-based as defined in section 1.

We will consider the number of fitness-comparisons or fitness-evaluations neces-

sary for ensuring with precision at least 1 − δ a precision ε for the Hausdorff-

distance between the output of the algorithm and the target-Pareto-front for

any C1 Pareto-front.

In order to simplify notations (in the case n = 0 of the algorithm below), we

note x−1 = 0 ∈ Rd. Consider a EMOO, fitting in the following framework:

– initialize s to the empty vector.

– for n = 0 to ∞ :

• generate one individual xn according to some law pn(s).

• update the internal state s by s ← (s, ‘generate′, xn) (we keep in memory

the fact that we have generated xn).

• compare the fitness of xn to fitness(xgn(s)) with modality g′n(s), i.e.:

∗ tests if fitness(xn) Â fitness(xgn(s)) (case g′n(s) = 0);

∗ or tests if fitness(xgn(s)) Â fitness(xn) (case g′n(s) = 1)

where gn(s) < n and g′n(s) ∈ {0, 1} and note r the result.

• update the internal state s by s ← (s, ‘compare′, x, r) (we keep in mem-

ory the fact that we have compared x to xgn(s) with modality g′n(s) and

that the result was r.

• suggest PFn = PF (fitness(x0), . . . , fitness(xn)) as an approximation

of the Pareto front.

This covers all multi-objective algorithms based on comparisons only, with var-

ious functions pn(.) and gn(.). The case of the random search is handled by



pn(s) constant for any s and n. We can include in this framework any niching

mechanism or diversity criterion in the domain. We have not considered different

comparisons for a Â b and a º b, but we could consider any set of comparisons

provided that the number of possible outcomes is finite; this is just a constant

value in the theorem below instead of the 2 in log(2).

The algorithm has precision ε within time n with confidence 1 − δ on a

given set of problems, if for any problem in some given family of problems, with

probability 1 − δ, d(PFn, PF ) ≤ ε.

Theorem 2: entropy-theorem for EMOO. We note F the set of all

PF (E) for any E ⊂ [0, 1]d such that the Pareto-front is C1. Assume that for

any s ∈ F , P contains at least one distribution such that PF (P ) = s. Then, the

number of comparisons required for a precision ε and confidence 1− δ is at least

Ω(1/εd−1) + log(1 − δ)/ log(2).

Remark : we could consider a three-outputs-comparison also (one for a Â b,

one for b Â a, and one if a 6Â b and b 6Â a), leading to a factor log(2)/ log(3) on

the bound.

Proof :

Thanks to the lemma below, consider a ε-separated set s1, . . . , sN in F

equiped with the Hausdorff-metric, of size N = exp(Ω(1/εd−1)).

Consider r the sequence of the n first answers of the algorithm to requests

of the form ”does a Â b hold ?”. r is a sequence in {0, 1}n (r of course depends

on the problem and can be random3). Note PFn
r the Pareto-front provided by

the algorithm if the answers are r. PFn
r is a random variable as the algorithm

might be randomized.

First, let’s consider a fixed r, in the set R of all possible sequences of answers.

Consider s a random uniform variable in {s1, . . . , sN}. Consider the proba-

bility that PFn
r is at distance < ε of s. This is a probability both on PFn

r and

on s. Then,

P (d(PFn
r, s) < ε) ≤ 1/N

Now, we will sum on all possible r ∈ R.

P (∃r ∈ R; d(PFn
r, s) < ε) ≤ 2n

︸︷︷︸

=|{0,1}n|

/N

Therefore, this probability can only be ≥ 1 − δ if 2n/N ≥ 1 − δ, therefore

n log(2) ≥ log(N) + log(1 − δ)

3 As previously pointed out, we could consider a richer comparison-operator with

outputs in {a Â b, b Â a, a º b, b º a, a = b, a not comparable to b}; this only

changes the constant in the theorem.



¥

Lemma 1: The packing number N(F , ε, d(., .)) of the set F with respect to

the Hausdorff distance for Lebesgue measure verifies log(N(ε)) = Ω(1/εd−1).

Proof:

Before the proof itself, let’s see a sketch of the proof. The packing numbers of

derivable spaces of functions are known for the ||.||∞ norm since [8]. The packing

numbers of their subgraph are nearly the same thanks to a lemma below. The

proof will then be complete. Now, let’s go to the details.

Consider the set F of applications f : [0, 1]d−1 → [0, 1] which are C1 with (i)

derivative with respect to any coordinate bounded by 1/(4d2) (ii) value bounded

by 1/(4d2).

For any fixed f , consider pf = {(x, y) ∈ [0, 1]d−1 × [0, 1]; y ≤ g(x)}, where

g(x) = 1
2 + f(x)− 1

2d2

∑

i xi. As g(x) ∈ [0, 1] and ∂g(x)
∂xi

< 0, we see that pf ∈ F .

The proof is now the consequence of (i) the lemma below relating the pack-

ing numbers of the C1-functions in F and the packing numbers of their sub-

graphs {pf ; f ∈ F} ⊂ F for the Hausdorff-metric (ii) the bound N(F, ε, ||.||∞) =

Ω(1/εd−1) provided in [8] (see also [14, 5] for more recent references). ¥

Lemma 2: Consider a fixed d. Then for some constant C,

N({pf ; f ∈ F}, ε, d(., .)) ≥ C × N(F, ε, ||.||∞)

Proof: All we need is

d(pf1
, pf2

) = Ω(||f1 − f2||∞)

for functions in F . The sequel of the proof is devoted to proving this inequality.

The proof is as follows :

1. let δ = ||f1 − f2||∞.

2. by compactness, δ is realized by some x : |f1(x) − f2(x)| = δ. Without loss

of generality, we can assume f1(x) = f2(x) + δ.

3. consider gi : t 7→ 1
2 + fi(t)−

1
2d2 . As pointed out in the proof of the lemma ,

the subgraph of gi is pfi
(by definition).

4. then g1(x) − g2(x) = δ.

5. consider the euclidean distance δ2 between (x, g1(x)) (which is in pf1
) and

pf2
.

6. this distance is realized (thanks to compactness) by some z : δ2 = d((z, g2(z)), (x, g1(x))).

7. by the bound on the derivatives of the gi (which have the same derivatives

as the fi) and by step 2, g1(x) − g2(z) ≥ δ − K(d(z, x)) for some K.



8. then, δ2
2 = d(z, x)2 +(g1(x)−g2(z))2 ≥ max(d(z, x)2,max(0, δ−Kd(z, x))2).

9. there are now two cases:

– d(z, x) < δ/(2K), and then δ − Kd(z, x) ≥ δ/2 and δ2
2 ≥ δ2/4 (by step

7).

– d(z, x) ≥ δ/(2K), and then δ2
2 ≥ d(z, x)2 ≥ δ2/(4K2) by step 8.

and this implies in both cases that δ2 ≥ min(δ/2, δ/(2K)) = Ω(δ).

The proof is complete. ¥

4 Conclusion

We have shown a lower bound on the complexity of finding a Pareto-set within

precision ε for the Hausdorff-distance, that holds for any comparison-based al-

gorithms, and that almost matches the complexity of random search when d

is large. Let’s examine precisely the results depending on the dimension. Note

NR the number of comparisons required for the random search, and NE the

number of pairs (comparisons,fitness-evaluations) required for the EA. Compare

these two numbers for a given precision ε going to 0. Then, NE ≥ N
d−1

d

R . For

d = 1, this allows the well-known difference between the slow convergence of

random search and established linear convergence rates for mono-objective EA.

For d = 2, this is still satisfactory: NE ≥ N
1
2

R . We can be much faster than the

random search. For d = 10, this leads to NE ≥ N
9
10

R .

This disappointing result has to be discussed. The random-search algorithm

as previously defined, provides a good solution in terms of the Hausdorff distance

at least if the number of generations is sufficient, but this solution is far from

parsimonious. It contains many elements, only a small part of them being non-

dominated by others. So, we compare only solutions provided by random-search

and any comparison-based algorithms in a framework in which parsimony is

not required. We compare the computation time before the algorithms provide

a description of a not-too-bad Pareto-front for the Hausdorff distance, without

regarding the size of the description of the Pareto-front. The random search

provides a non-compact description. This is the strongest limitation of this work.

This implies that the main result of this work is that in dimension d large, the

rule used for selecting new candidates is not much better than the pure random

search. This does not imply, of course, that various techniques are not helpful, but

mainly these techniques will prune the solution efficiently, and not significantly

improve the convergence rate in terms of Hausdorf distance with respect to the

sum number of comparisons plus number of fitness-evaluations (this sum lower-

bounds the computation-time).



A strength of the results in this paper has to be emphasized. We have con-

sidered entropy of smooth Pareto-fronts and it was enough to deduce strong

lower bounds. The entropy numbers are the same if we add various constraints,

e.g. convexity or concavity of the Pareto-front. Therefore, we can not get an im-

provement without strong hypothesis, different from convexity or smoothness. It

is necessary, to get rid of the limits proved in this paper, to restrict one’s atten-

tion to spaces of Pareto-fronts with small entropy numbers (typically smoothly

parametric Pareto-fronts).

The following question naturally arises: can our results be extended to non-

comparison-based algorithms ? We believe that gradient-based informations on

the hyperplane tangent to the Pareto-front can lead to theoretically interesting

improvements, in which the solutions are no more described by a population of

points close to the frontier but by local approximations based on a population of

points. This requires however (i) the use of fitness-values (and not only compar-

isons) or (ii) the use of gradient information, that would probably be not very

reliable for real-world applications. We therefore believe that generalizations of

our results are possible, that would show that unless very strong smoothness

hypothesis, MOO in large dimension requires interactive sessions in which the

user guides the research in interesting areas of the Pareto-front. Deeply, it is

likely that there’s no description of Pareto-fronts that would be useful in large

dimension and that can fit in memory or even be written in memory in tractable

time.

We point out the following elements, summarizing the elements above and

adding some other ones:

– our results do not take care about compactness of the solution provided

by algorithms; they only consider the time that is required before a good

solution is found, in terms of the Hausdorff metric, but not the time that is

required before a good and parsimonious solution is found;

– we conjecture that our results are not specific of comparison-based methods;

however, we could not extend the results to a more general case;

– we consider convergence in terms of the Hausdorff distance to the whole

Pareto-set; this is not related to other forms of MOO like interactive-MOO.

– the computation-time is lower bounded by the number of comparisons; this

assumption of our theorems of course hold, but when almost all the compu-

tation time is indeed in the computation of the fitnesses, then this might be

a bad model. Therefore, for expensive optimization (typically, when 3 hours

are required for computing the fitnesses of an individual), our results might

be misleading.



Assuming that the conjecture (line 2 above) holds (unless we should precise

”in comparison-based methods”, our results could therefore be applied as follows:

when the number of conflicting objectives is high, online interactions with the

user, in order to specify the interesting part of the Pareto-set, are necessary.

Finally, our result is a form of No-Free-Lunch theorem for MOO with some

realistic distribution of conflicting fitnesses. We do not show that all algorithms

are equivalent, but we show that all comparison-based algorithms have a similar

behavior (the same order of magnitude for computation-time) when the dimen-

sion increases. This has three main applications in practice.

– The first one is that the real dimensionality of a multi-objective problem is

the number of conflicting objectives. This is strongly related to works in the

direction of the removal of non-conflicting objectives[2].

– A second point is the relevance of criterions relating the efficiency of a MOO-

algorithm to the efficiency of random-search [7]. Whereas for mono-objective

algorithms, there are perhaps too much orders of magnitudes between ran-

dom search and efficient algorithms, in the MOO-case such measure is rea-

sonnable. Our work shows that for a large number of objectives, if the im-

provement on random search is huge, then the algorithm uses some regularity

of the problem - as pointed out above, mainly the number of non-conflicting

objectives.

– The third more subtle point concerns the comparison operator. Our work

deals with binary comparisons, but in the multi-objective case more subtle

comparison operator, comparing each fitness separately, could be considered.

Instead of two bits for the cases a Â b, b Â a, a and b not comparable,

one could consider d bits of information, each bit being the comparison

between ai and bi. However, results in the paper are mainly preserved; the

lower-bounded on the computation time is at most divided by a factor d

when such ”stronger” comparison operators are applied. But, for e.g. 4 or 5

conflicting objectives, we do believe that such improvements are possible by

the definition of cross-over operators that use this additional information, as

well as some constraint-handling techniques use the full constraint-violation

information and not only one bit for the satisfaction of all constraints. As

far as we know, no such multi-objective cross-over has been proposed yet.
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