How entropy-theorems can show that approximating high-dim Pareto-fronts is too hard - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

How entropy-theorems can show that approximating high-dim Pareto-fronts is too hard

Olivier Teytaud

Résumé

It is empirically established that multiobjective evolutionary algorithms do not scale well with the number of conflicting objectives. We here show that the convergence rate of any comparison-based multi-objective algorithm, for the Hausdorff distance, is not much better than the convergence rate of the random search, unless the number of objectives is very moderate, in a framework in which the stronger assumption is that the objectives have conflicts. Our conclusions are (i) the relevance of the number of conflicting objectives (ii) the relevance of random-search-based criterions (iii) the very-hardness of more than 3- objectives optimization (iv) some hints about new cross-over operators.
Fichier principal
Vignette du fichier
pareto2.pdf (148.78 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00113362 , version 1 (13-11-2006)

Identifiants

  • HAL Id : hal-00113362 , version 1

Citer

Olivier Teytaud. How entropy-theorems can show that approximating high-dim Pareto-fronts is too hard. Bridging the Gap between Theory and Practice - Workshop PPSN-BTP, 2006, Reykjavik, Iceland. ⟨hal-00113362⟩
362 Consultations
136 Téléchargements

Partager

More