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REGULARITIES OF THE DISTRIBUTION OF β-ADIC

VAN DER CORPUT SEQUENCES

WOLFGANG STEINER∗

Abstract. For Pisot numbers β with irreducible β-polynomial,

we prove that the discrepancy function D(N, [0, y)) of the β-adic

van der Corput sequence is bounded if and only if the β-expansion

of y is finite or its tail is the same as that of the expansion of 1.

If β is a Parry number, then we can show that the discrepancy

function is unbounded for all intervals of length y 6∈ Q(β). We give

explicit formulae for the discrepancy function in terms of lengths

of iterates of a reverse β-substitution.

1. Introduction

Let (xn)n≥0 be a sequence with xn ∈ [0, 1) and

D(N, I) = #{0 ≤ n < N : xn ∈ I} − Nλ(I)

its discrepancy function on the interval I, where λ(I) denotes the

length of the interval. Then (xn)n≥0 is uniformly distributed if and
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2 WOLFGANG STEINER

only if D(N, I) = o(N) for all intervals I ⊆ [0, 1). Van Aardenne-

Ehrenfest [25] proved that the discrepancy function cannot be bounded

(in N) for all intervals I ⊆ [0, 1). W.M. Schmidt showed in [23]

that the set of lengths of intervals with bounded discrepancy func-

tion, {λ(I) : supN≥0 D(N, I) < ∞}, is at most countable and in [22]

that supI⊆[0,1) D(N, I) ≥ C log N for some constant C > 0. For more

details on the discrepancy, see Drmota and Tichy [4].

For some special sequences, the intervals with bounded discrepancy

function were determined. If xn = {nα}, then D(N, I) is bounded if

and only if λ(I) = {mα} for some m ≥ 0 (Hecke [10] and Kesten [13]).

More generally, Rauzy [18] and Ferenczi [8] characterized bounded re-

mainder sets for irrational rotations on the torus Ts. Liardet [14]

extended Hecke’s and Kesten’s result on these rotations and studied

bounded remainder sets for xn = {p(n)}, where p(n) is a real polyno-

mial with irrational leading coefficient, as well as for q-multiplicative

sequences.

If (xn)n≥0 is the van der Corput sequence in base q, then D(N, I)

is bounded if and only if λ(I) has finite q-ary expansion (W.M.

Schmidt [23] and Shapiro [24] for q = 2, Hellekalek [11] for integers

q ≥ 2). Faure extended this result in [6] on generalized van der Corput

sequences and recently in [7] on digital (0, 1)-sequences over Zq gener-

ated by a nonsingular upper triangular matrix where q is a prime num-

ber (see also Drmota, Larcher and Pillichshammer [3]). Hellekalek [12]

considered generalizations of the Halton sequences in higher dimen-

sions.
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The aim of this article is to determine the intervals with bounded

discrepancy function for the β-adic van der Corput sequences, which

were introduced by Ninomiya [15] who proved that these sequences are

low discrepancy sequences, i.e. supI⊆[0,1) D(N, I) = O(log N), if β is a

Pisot number with irreducible β-polynomial.

For a given real number β > 1, the expansion of 1 with respect to β

is the sequence of nonnegative integers (aj)j≥1 satisfying

1 = .a1a2 . . . =
a1

β
+

a2

β2
+ · · · with ajaj+1 . . . < a1a2 . . . for all j ≥ 2

(Throughout this article, let < denote the lexicographical order for

words.) For x ∈ [0, 1), the β-expansion of x, introduced by Rényi [19]

and characterized by Parry [16], is given by

x = .ǫ1ǫ2 . . . =
ǫ1

β
+

ǫ2

β2
+ · · · with ǫjǫj+1 . . . < a1a2 . . . for all j ≥ 1.

The elements of the β-adic van der Corput sequence (xn)n≥0 are the

real numbers x ∈ [0, 1) with finite β-expansion,

{xn : n ≥ 0} = {.ǫ1ǫ2 . . . :

ǫjǫj+1 . . . < a1a2 . . . for all j ≥ 1, ǫℓǫℓ+1 . . . = 0∞ for some ℓ ≥ 1},

ordered lexicographically with respect to the (inversed) word . . . ǫ2ǫ1,

i.e. for xn = .ǫ1ǫ2 . . . and xn′ = .ǫ′1ǫ
′
2 . . ., we have n < n′ if we have

some k ≥ 1 such that ǫk < ǫ′k and ǫj = ǫ′j for all j > k.

If the expansion of 1 is finite, a1a2 . . . = a1 . . . ad0
∞, or eventually pe-

riodic, a1a2 . . . = a1 . . . ad−p(ad−p+1 . . . ad)
∞, then β is a Parry number

and it is the dominant root of the β-polynomial xd − a1x
d−1 − · · · − ad
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(with ad > 0) and (xd−a1x
d−1−· · ·−ad)−(xd−p−a1x

d−p−1−· · ·−ad−p)

(where p is assumed to be minimal) respectively. In this case, we obtain

results for the discrepancy function.

Theorem 1. If β is a Parry number and D(N, I) is bounded (in N),

then λ(I) ∈ Q(β).

Bertrand [1] and K. Schmidt [21] proved that all Pisot numbers (alge-

braic integers for which all algebraic conjugates have modulus < 1) are

Parry numbers. If furthermore the β-polynomial is the minimal poly-

nomial of β, then we can completely characterize the intervals [0, y)

with bounded discrepancy function.

Theorem 2. If β is a Pisot number with irreducible β-polynomial,

then D(N, [0, y)) is bounded (in N) for y ∈ [0, 1) if and only if the

β-expansion of y is finite or its tail is the same as that of the expansion

of 1 with respect to β, i.e. if y = .y1y2 . . . with ykyk+1 . . . = 0∞ or

ykyk+1 . . . = (ad−p+1 . . . ad)
∞ for some k ≥ 1.

Remark. Another way to formulate the condition on y is: the infinite

β-expansion of y has the same tail as the infinite expansion of 1 (which

is 1 = .(a1 . . . ad−1(ad − 1))∞ if 1 = .a1 . . . ad).

The classification for general intervals I seems to be more difficult.

Of course, D(N, [y, y′)) is bounded if D(N, [0, y)) and D(N, [0, y′)) are

bounded because of D(N, [y, y′)) = D(N, [0, y′)) − D(N, [0, y)). From

the proof of Theorem 2 we see that D(N, [y, y′)) is bounded if y =

.y1y2 . . . and y′ = .y′
1y

′
2 . . . with ykyk+1 . . . = y′

ky
′
k+1 . . . for some k ≥ 1.



DISTRIBUTION OF β-ADIC VAN DER CORPUT SEQUENCES 5

The boundedness of D(N, I) is not necessarily invariant under trans-

lation of the interval. E.g. for 1 = .31∞, D(N, [0, .1∞)) is bounded, but

D(N, [.1∞, .2∞)) is unbounded. It is also possible that D(N, [y, y′)) is

bounded and D(N, [0, y′− y)) is unbounded: D(N, [.02, 1)) is bounded

and D(N, [0, 1 − .02)) = D(N, [0, .2∞)) is unbounded.

This article is organised as follows. In Section 2 we recapitulate

some facts about number systems defined by substitutions (due to Du-

mont and Thomas [5]) and define a reverse β-substitution which deter-

mines xn. Theorem 1 is proved in Section 3 similarly to Shapiro [24].

The remaining parts of Theorem 2 are proved in Section 4, where ex-

plicit formulae for the discrepancy function in terms of lengths of iter-

ates of the reverse β-substitution are given.

2. Number systems defined by substitutions

2.1. Generalities. Let σ be a substitution on the alphabet A =

{1, . . . , d}, i.e. a mapping from A into the set of nonempty finite words

on A, which is extended to a mapping on words by concatenation,

σ(ww′) = σ(w)σ(w′). A sequence of words mk, . . . , m1 is called σ-b-

admissible if we have a companion sequence of letters bj with bk+1 = b

such that mjbj ≤p σ(bj+1) for all j ≤ k (where w ≤p w′ means that w is

a prefix of w′). For a given sequence mk, . . . , m1, clearly the sequence

bk, . . . , b1 is unique.
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If σ(1) = 1w for some word w, then the limit σ∞(1) = limk→∞ σk(1)

exists because of σk+1(1) = σk(1w) = σk(1)σk(w) and we have

(1) σk−1(mk) . . . σ0(m1) ≤p σk(1) ≤p σ∞(1)

for all σ-1-admissible sequences mk, . . . , m1. Furthermore, every prefix

u1 . . . un ≤p σ∞(1), n ≥ 1, can be written as the left hand side of

(1) with a unique σ-1-admissible sequence mk, . . . , m1 with |mk| > 0

(where |m| denotes the length of m). Denote these mj by mj,σ(n)

and set mj,σ(n) = ε (the empty word) for all j > k. For n = 0, set

mj,σ(0) = ε for all j ≥ 1. Then

n =
∞
∑

j=1

|σj−1(mj,σ(n))| =
∞
∑

j=1

d
∑

b=1

|mj,σ(n)|b |σ
j−1(b)|,

where |m|b denotes the number of b’s in m. If mj,σ(n′) = mj,σ(n) for

all j > k and |mk,σ(n
′)| > |mk,σ(n)|, i.e. mk,σ(n

′) = mk,σ(n)bjw for

some word w, then σk−2(mk−1,σ(n)) . . . σ0(m1,σ(n)) is a strict prefix of

σk−1(bk), hence
∑k−1

j=1 |σ
j−1mj,σ(n)| < σk−1(bj) and we have

n′ ≥
∞
∑

j=k

|σj−1(mj,σ(n
′))| ≥

∞
∑

j=k

|σj−1(mj,σ(n))| + |σk−1(bk)| > n,

thus

(2) n < n′ if . . . |m2,σ(n)| |m1,σ(n)| < . . . |m2,σ(n′)| |m1,σ(n
′)|
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2.2. β-substitution. If β is a Parry number, then the β-substitution σ

is defined by

σ(b) =























1ab(b + 1) if 1 ≤ b < d

1ad if b = d, 1 = .a1 . . . ad

1ad(d − p + 1) if b = d, 1 = .a1 . . . ad−p(ad−p+1 . . . ad)
∞

(where 1aj denotes the concatenation of aj letters 1).

If we set Gk = |σk(1)| for all k ≥ 0, then

Gk =
k
∑

j=1

ajGk−j +







1 if aj = 0 for all j > k

0 else

(in particular Gk =
∑d

j=1 ajGk−j if 1 = .a1 . . . ad and k > d) and

n =
∞
∑

j=1

|mj,σ(n)| |σj−1(1)| =
∞
∑

j=1

|mj,σ(n)|Gj−1

since the words mj,σ(n) consist only of ones. Thus the |mj,σ(n)| are

the digits in the G-ary expansion of n with G = (Gj)j≥0 and the σ-1-

admissible sequences mk, . . . , m1 are exactly those sequences consisting

only of ones with |mj | . . . |m1|0
∞ < a1a2 . . . for all j ≤ k.

Example. If 1 = .402, then

σ(1) = 11112, σ(2) = 3, σ(3) = 11.

An example of a σ-1-admissible sequence with k = 5 is

(m5, b5), . . . , (m1, b1) = (11, 1), (1111, 2), (ε, 3), (ε, 1), (1, 1)

which corresponds to

n = |σ4(11)σ3(1111)σ2(ε)σ(ε)1| = 2G4 + 4G3 + 1 = 1053.
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2.3. Reverse β-substitution. For a Parry number β, set t1 = 0∞

and let {t2, . . . , td+1} be the set of words {ajaj+1 . . . : j ≥ 2} with

0∞ = t1 < t2 < · · · < td < td+1 = a1a2 . . .

For 1 ≤ b ≤ d set

τ(b) =







u0(b) . . . ua1
(b) if a1tb < a1a2 . . .

u0(b) . . . ua1−1(b) else

with

uj(b) = b′ if tb′ ≤ jtb < tb′+1.

We clearly have u0(1) = 1, thus τ∞(1) exists and every n ≥ 1 corre-

sponds to a unique τ -1-admissible sequence mk, . . . , m1 with |mk| > 0.

The following example and proposition show (for b = 1) that the

possible sequences of “digits” |mj,τ(n)| are the same as for |mj,σ(n)|,

but in reversed order. Therefore we call τ reverse β-substitution.

Example. For 1 = .402, we have t1 = 0∞, t2 = 020∞, t3 = 20∞,

t4 = 4020∞, thus

τ(1) = 12333, τ(2) = 1233, τ(3) = 2233.

We have a τ -1-admissible sequence with |m5| . . . |m1| = 10042,

(m5, b5), . . . , (m1, b1) = (1, 2), (ε, 1), (ε, 1), (1233, 3), (22, 3)

which corresponds to

n = |τ 4(1)τ 3(ε)τ 2(ε)τ(1233)22| = G4 + 19 = 373.
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Proposition 1. Each τ -b-admissible sequence mk, . . . , m1 satisfies

(3) |mj | . . . |mk|tb < a1a2 . . . for all j ≤ k.

Conversely, for each sequence ǫ1 . . . ǫk with ǫj . . . ǫktb < a1a2 . . . for all

j ≥ 1, we have a (unique) τ -b-admissible sequence mk, . . . , m1 with

|m1| . . . |mk| = ǫ1 . . . ǫk.

Proof. Assume first that mk, . . . , m1 is τ -b-admissible and let bk, . . . , b1

be its companion sequence (mjbj ≤p τ(bj+1), bk+1 = b). Assume further

|mj | . . . |mℓ−1| = a1 . . . aℓ−j and tbℓ
< aℓ−j+1aℓ−j+2 . . .

(which is trivially true for j = ℓ). We have bℓ = u|mℓ|(bℓ+1), hence

|mℓ|tbℓ+1
< tbℓ+1 ≤ aℓ−j+1aℓ−j+2 . . .

This implies |mj | . . . |mℓ| < a1 . . . aℓ−j+1 or

|mj| . . . |mℓ| = a1 . . . aℓ−j+1 and tbℓ+1
< aℓ−j+2aℓ−j+3 . . .

In the latter case, we proceed inductively and obtain

|mj | . . . |mk|tbk+1
= |mj | . . . |mk|tb < a1a2 . . .

Hence, (3) is proved.

For the converse, assume ǫj . . . ǫktb < a1a2 . . . for all j ≥ 1 and

tbℓ+1
≤ ǫℓ+1tbℓ+2

for all ℓ ∈ {j + 1, . . . , k}

(which is trivially true for j = k). Then we have

ǫjtbj+1
≤ ǫjǫj+1tbj+2

≤ · · · ≤ ǫj . . . ǫktbk+1
= ǫj . . . ǫktb < a1a2 . . . ,
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thus bj = uǫj
(bj+1) exists and mj = u0(bj+1) . . . uǫj−1(bj+1). Fur-

thermore, we have tbj
≤ ǫjtbj+1 and obtain, by induction, a (unique)

τ -b-admissible sequence mk, . . . , m1 with |m1| . . . |mk| = ǫ1 . . . ǫk. �

By Proposition 1 (b = 1), every finite β-expansion ǫ1 . . . ǫk0
∞ corre-

sponds to some n < |τk(1)| such that ǫ1 . . . ǫk = |m1,τ (n)| . . . |mk,τ (n)|.

By (2), we have n < n′ for n, n′ < |τk(1)| if

ǫk . . . ǫ1 = |mk,τ(n)| . . . |m1,τ (n)| < |mk,τ(n
′)| . . . |m1,τ (n

′)| = ǫ′k . . . ǫ′1.

Therefore the β-adic van der Corput sequence is given by

xn =

∞
∑

j=1

|mj,τ(n)|β−j.

Note that we have |τk(1)| = |σk(1)| = Gk for all k ≥ 0.

3. Proof of Theorem 1

Let D be the set of all sequences (mj , bj)j≥1 of words mj and letters

bj with mjbj ≤p τ(bj+1) for all j ≥ 1. Set

δ((mj , bj)j≥1, (m
′
j , b

′
j)j≥1) = 1/k

if (mj , bj) = (m′
j, b

′
j) for all j < k and (mj , bj) 6= (m′

j, b
′
j). Then D is a

compact metric space with the metric δ.

In order to extend the addition of 1 in the number system defined

by τ , (mj,τ (n))j≥1 7→ (mj,τ (n+1))j≥1, define the successor function (or
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odometer or adic transformation) on D by

S((mj , bj)j≥1) = (m′
j , b

′
j)j≥1 with (m′

j , b
′
j) =























(mj , bj) if j > k

(mkbk, b
′
k) if j = k

(ε, u0(b
′
j+1)) if j < k

where k ≥ 1 is the smallest integer such that τ(bk+1) = mkbkb
′
kw for

some letter b′k and some word w. If (mj , bj)j≥1 is a maximal sequence,

i.e. mkbk = τ(bk+1) for all k ≥ 1, then let its successor be the (unique)

minimal sequence (ε, 1), (ε, 1), . . .

If the maximal sequence is unique, then S is a homeomorphism and

(D, S) is a transformation group, but in many cases the maximal se-

quence is not unique. In particular if a2a3 . . . > (a1 − 1)∞, then every

maximal sequence satisfies |mj | = a1, |mj′| = a1 − 1 for some j, j′ ≥ 1,

and we obtain a different maximal sequence by shifting this sequence.

Hence (D, S) is only a transformation semigroup.

Define a continuous function f : D → [0, 1) by

f((mj, bj)j≥1) =
∞
∑

j=1

|mj |β
−j.

Then we have xn = f(Sn((ε, 1), (ε, 1), . . .)). If S is invertible, then

(x0, x1, . . .) can be extended to a bisequence (xn)n∈Z by this definition.

Let X denote the orbit closure of (x0, x1, . . .) under the shift T , and

define ϕ : D → X by

(ϕ((mj, bj)j≥1))k = f(Sk((mj , bj)j≥1))

Then ϕ is a homeomorphism and ϕ ◦ S = T ◦ ϕ. Hence the transfor-

mation (semi)group (X, T ) is isomorphic to (D, S). If S is invertible,
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then (X, T ) is minimal by Theorem 2.2 of Shapiro [24] and we can

apply Theorem 5.1 of this article, which states that exp(2πiλ(I)) is an

eigenvalue of T and thus of S if D(N, I) is bounded. Lemma 1 shows

that Shapiro’s proof is valid for our transformation semigroup as well.

By Théorème 5.2 of Canterini and Siegel [2], we have a continuous

and surjective “desubstitution map” Γ : Ω → D, where Ω is the set

of biinfinite words which have the same language as τ∞(1). Let ∆ be

the shift on Ω. By Théorème 5.1 of this article and since the minimal

sequence in D is unique, we have S ◦Γ = Γ◦∆. Therefore the eigenval-

ues of S are a subset of the eigenvalues of ∆ and, by Proposition 5 of

Ferenczi, Mauduit and Nogueira [9], these eigenvalues are of the form

exp(2πiy) with y ∈ Q(β), This concludes the proof of Theorem 1.

Remarks. Ferenczi, Mauduit and Nogueira [9] gave a more precise

description of the set of eigenvalues of ∆ in their Proposition 4, which

is too complicated to be cited here.

For more details on the spectrum of these dynamical systems, see

Chapter 7.3 in Pytheas Fogg [17], but note that the result of [9] is cited

uncorrectly: According to Theorem 7.3.28 of [17], the eigenvalues of ∆

associated with the trivial coboundary are in exp(2πiZ[β]), but Z[β]

should be Q[β] and the condition on the coboundary is unnecessary.

Nevertheless, the author considered the coboundary and showed that

all reverse β-substitutions τ have only the trivial coboundary, but the

proof is rather lengthy and technical and therefore not given in this

article.
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Lemma 1. If D(N, I) is bounded, then exp(2πiλ(I)) is an eigenvalue

of S.

Proof. Set

g((mj, bj)j≥1) = χI

(

∞
∑

j=1

|mj|β
−j

)

− λ(I)

where χI denotes the indicator function of I. Let ω = (mj , bj)j≥1 be a

sequence with |m1| |m2| . . . = y1y2 . . ., hence
∑N−1

j=0 g(Sjω) = D(N, I)

is bounded. Set U(x, η) = (Sx, η + g(x)) for x ∈ D, η ∈ R. Then we

have

Uk(x, η) =

(

Skx, η +

k−1
∑

j=0

g(Sjx)

)

.

The positive semi-orbit {Uk(ω, 0) : k ≥ 0} is bounded and has therefore

compact closure. Denote by M the set of limit points of this semi-orbit.

Then M is nonempty, closed and invariant under U (NCI). It is easy

to see that {Skx : k ≥ 0} is dense in D for all x ∈ D. Since M is NCI,

we must therefore have some point (x, η) ∈ M for all x ∈ D.

Below we show that, for a given x, this η is unique, i.e. η = η(x).

Then the graph (x, η(x)) is the compact set M , therefore η is continu-

ous. Since U(x, η(x)) = (Sx, η(x) + g(x)), we have

η(Sx) = η(x) + g(x),

exp(−2πiλ(I)) = exp(2πig(x)) = exp(2πiη(Sx))/ exp(2πiη(x)).

Therefore K(x) = exp(−2πiη(x)) is a continuous function with

K(Sx) = exp(2πiλ(I))K(x)
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and exp(2πiλ(I)) is an eigenvalue of S.

To prove that η(x) is unique, we show first η(ω) = 0. Suppose

(ω, η) ∈ M . Since M consists of limit points of {Uk(ω, 0) : k ≥ 0}, we

have a sequence kj → ∞ with

lim
j→∞

Ukj (ω, 0) = (ω, η).

This implies

lim
j→∞

Skjω = ω and lim
j→∞

kj−1
∑

i=0

g(Siω) = η,

hence

lim
j→∞

Ukj (ω, η) =



 lim
j→∞

Skjω, η + lim
j→∞

kj−1
∑

i=0

g(Siω)



 = (ω, η + η).

Since M is invariant, we have Ukj (ω, η) ∈ M for all j and, since M

is closed, (ω, 2η) ∈ M . Inductively we obtain (ω, kη) ∈ M for all M ,

which implies η = 0 since M is bounded.

Next suppose (x, η) ∈ M and (x, η′) ∈ M . Since {Skx : k ≥ 0} is

dense, we have some kj → ∞ such that

lim
j→∞

Skjx = ω.

Since M is compact, we can refine the sequence kj so that the sequences

Ukj (x, η) and Ukj (x, η′) converge (to points in M). Since the first

coordinate of the limit points is ω, the second coordinate must be 0 for

both points. Therefore

lim
j→∞



η +

kj−1
∑

ℓ=0

g(Sℓx)



 = lim
j→∞



η′ +

kj−1
∑

ℓ=0

g(Sℓx)



 ,
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hence η = η′ and we have proved that η(x) is unique. �

4. Proof of Theorem 2

Because of Theorem 1, we just have to consider y ∈ Q(β) for The-

orem 2, but first we compute formulae for the discrepancy function of

arbitrary intervals [0, y). Let A(N, I) = #{xn ∈ I : 0 ≤ n < N}.

Then we have, for y = .y1y2 . . .,

D(N, [0, y)) =
∞
∑

k=1

(A(N, [.y1 . . . yk−1, .y1 . . . yk)) − Nykβ
−k).

Lemma 2. We have

A(N, [.y1 . . . yk−1, .y1 . . . yk)) = yk

∞
∑

ℓ=k+1

d
∑

b=1

|mℓ,τ (N)|b |τ
ℓ−k−1(b)|+µk(N, y)

with

µk(N, y) =



































yk if |mk,τ (N)| ≥ yk

|mk,τ(N)| + 1 if |mk,τ (N)| < yk,

|mk−1,τ(N)| . . . |m1,τ (N)| > yk−1 . . . y1

|mk,τ(N)| else.

Proof. For GL ≤ N < GL+1, we have

{(m1,τ (n), . . . , mL,τ(n)) : 0 ≤ n < N}

=

L
⋃

ℓ=1

⋃

m: mb≤pmℓ,τ (N)

{(m1, . . . , mℓ−1, m, mℓ+1,τ (N), . . . , mL,τ (N)) :

mℓ−1, . . . , m1 is τ -b-admissible}

and xn ∈ [.y1 . . . , yk−1, .y1 . . . yk) if and only if

|m1,τ (n)| . . . |mk−1,τ(n)| = y1 . . . yk−1, |mk,τ (n)| < yk.
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Thus, for ℓ > k, we have to count the τ -b-admissible sequences

mℓ−1, . . . , m1 with |m1| . . . |mk−1| = y1 . . . yk−1, |mk| < yk. By Propo-

sition 1, every τ -b-admissible sequence mℓ−1, . . . , mk+1 can be prolon-

gated to such a sequence for all |mk| < yk because of

|mj| . . . |mℓ−1|tb < yj . . . yk ≤ a1a2 . . . for j ≤ k.

Therefore we have yk|τ
ℓ−k−1(b)| such sequences for every letter b in

mℓ,τ(N).

For ℓ = k, we need |m| < |mk,τ (N)| and |m| < yk. For each such

|m| (and the corresponding b), there is one τ -b-admissible sequence

mk−1, . . . , m1 with |m1| . . . |mk−1| = y1 . . . yk−1. Thus, the contribution

is max(|mk,τ(N)|, yk).

Finally, for ℓ < k, we need |m| = yℓ < |mℓ,τ(N)|, |mk,τ(N)| < yk and

|mℓ+1,τ(N)| . . . |mk−1,τ (N)| = yℓ+1 . . . yk−1. Thus the contribution is 1

if |mk,τ(N)| < yk, |mk−1,τ(N)| . . . |m1,τ (N)| > yk−1 . . . y1 and 0 else. �

The characteristic polynomial of the incidence matrix of the β-

substitution σ is the β-polynomial. Hence σ is of Pisot type (one

eigenvalue is > 1 and all other eigenvalues have modulus < 1) if and

only if β is a Pisot number and the β-polynomial is irreducible. Since

|σk(1)| = |τk(1)| for all k ≥ 0, β is an eigenvalue of τ as well. Further-

more, τ is of Pisot type because the alphabet has the same size as the

alphabet of σ. Hence we have some constants cb,j and ρ < 1 such that

|τk(b)| = cb,1β
k + cb,2β

j
2 + · · · + cb,dβ

k
d = cb,1β

k + O
(

ρk
)

,
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where the βj , 2 ≤ j ≤ d are the conjugates of β. Thus

D(N, [0, y)) =
∞
∑

k=1

(

yk

∞
∑

ℓ=k+1

d
∑

b=1

|mℓ,τ(N)|b |τ
ℓ−k−1(b)| + µk(N, y)

− yk

∞
∑

ℓ=1

d
∑

b=1

|mℓ,τ(N)|b |τ
ℓ−1(b)|β−k

)

=

∞
∑

k=1

(

yk

∞
∑

ℓ=k+1

d
∑

b=1

|mℓ,τ (N)|b

d
∑

j=2

cb,j

(

βℓ−k−1
j − βℓ−1

j β−k
)

+ µk(N, y)

−yk

k
∑

ℓ=1

d
∑

b=1

|mℓ,τ (N)|b

(

cb,1β
ℓ−1−k +

d
∑

j=2

βℓ−1
j β−k

)

)

=
∞
∑

k=1

ykO (1)

and

D(N, [0, y)) =
∞
∑

ℓ=1

(

d
∑

b=1

|mℓ,τ (N)|b

( ℓ−1
∑

k=1

yk

d
∑

j=2

cb,j

(

βℓ−k−1
j − βℓ−1

j β−k
)

)

+ µℓ(N, y)−

d
∑

b=1

|mℓ,τ(N)|b

∞
∑

k=ℓ

yk

(

cb,1β
ℓ−k−1 +

d
∑

j=2

cb,jβ
ℓ−1
j β−k

)

)

=
∞
∑

ℓ=1

(

µℓ(N, y)

−

d
∑

b=1

|mℓ,τ (N)|b

(

cb,1

∞
∑

k=ℓ

ykβ
ℓ−k−1 −

d
∑

j=2

cb,j

ℓ−1
∑

k=1

ykβ
ℓ−k−1
j

)

)

+ O (1)

By the above formulae, we easily see that D(N, [0, y)) is bounded

if yk > 0 for only finitely many k ≥ 1. Now we consider y ∈ Q(β).

Bertrand [1] and K. Schmidt [21] proved independently that the el-

ements y ∈ Q(β) are exactly those who have eventually periodic β-

expansion. (See Rigo and Steiner [20] for an alternative proof including

number systems defined by substitutions.) Furthermore, by the above

formulae, a finite number of digits of the β-expansion of y as well as
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a shift of digits has no influence on the boundedness of D(N, [0, y)).

Therefore we may assume that the β-expansion of y is purely periodic.

For y = .(y1 . . . yq)
∞, we have

∞
∑

k=ℓ

ykβ
ℓ−k−1 =

yℓβ
p−1 + · · ·+ yℓ+p−1

βp − 1
= sℓ,d−1β

d−1+· · ·+sℓ,0β
0 = Pℓ(β)

for some sℓ,j ∈ Q. If we set yk = yk+q for k ≤ 0, then we obtain

ℓ−1
∑

k=−∞

ykβ
ℓ−k−1
i =

yℓ−pβ
p−1
i + · · ·+ yℓ−1

1 − βp
i

= −Pℓ(βi),

γℓ(b) = cb,1

∞
∑

k=ℓ

ykβ
ℓ−k−1 −

d
∑

i=2

cb,i

ℓ−1
∑

k=−∞

ykβ
ℓ−k−1
i

= sℓ,d−1|τ
d−1(b)| + · · · + sℓ,0|τ

0(b)|

and

D(N, [0, y)) =
∞
∑

ℓ=1

(

µℓ(N, y) − γℓ(mℓ,τ (N))
)

+ O (1)

by extending γℓ naturally on words, γℓ(w) =
∑d

b=1 |w|bγℓ(b).

We split the remaining part of the proof into two lemmata.

Lemma 3. If β is a Pisot number with irreducible β-polynomial, then

D(N, [0, .(ad−p+1 . . . ad)
∞) is bounded.

Proof. We have

.yℓyℓ+1 . . . = .ad−p+ℓad−p+ℓ+1 . . . = βd−p+ℓ−1−a1β
d−p+ℓ−2−· · ·−ad−p+ℓ−1

and, by Proposition 1, we easily see

|τk(b)| = a1|τ
k−1(b)| + · · ·+ ak|τ

0(b)| +







1 if a1 . . . aktb < a1a2 . . .

0 else
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for all k > 0, hence

γℓ(b) =







1 if tb < ad−p+ℓad−p+ℓ+1 . . .

0 else.

By definition, we have tuj(bℓ+1) ≤ jtbℓ+1
< tuj(bℓ+1)+1, therefore

γℓ(uj(bℓ+1)) =







1 if jtbℓ+1
< ad−p+ℓad−p+ℓ+1 . . .

0 else.

With mℓ,τ(N) = u0(bℓ+1) . . . u|mℓ,τ (N)|−1(bℓ+1), we obtain

γℓ(mℓ,τ (N)) =



































|mℓ,τ (N)| if |mℓ,τ (N)| ≤ ad−p+ℓ

ad−p+ℓ if |mℓ,τ (N)| > ad−p+ℓ,

tbℓ+1
≥ ad−p+ℓ+1ad−p+ℓ+2 . . .

ad−p+ℓ + 1 else

and

∆ℓ = µℓ(N, .(ad−p+1 . . . ad)
∞) − γℓ(mℓ,τ (N))

=



































−1 if |mℓ,τ(N)| > ad−p+ℓ, tbℓ+1
< ad−p+ℓ+1ad−p+ℓ+2 . . .

1 if |mℓ,τ(N)| < ad−p+ℓ,

|mℓ−1,τ (N)| . . . |m1,τ (N)| > ad−p+ℓ−1 . . . ad−p+1

0 else.

If ∆ℓ = −1, then tbℓ+1
< ad−p+ℓ+1ad−p+ℓ+2 . . . and

tbℓ+1
≤ |mℓ+1,τ (N)|tbℓ+2

< tbℓ+1+1 ≤ ad−p+ℓ+1ad−p+ℓ+2 . . .

implies either |mℓ+1,τ (N)| < ad−p+ℓ+1, thus ∆ℓ+1 = 1, or

|mℓ+1,τ(N)| = ad−p+ℓ+1, tbℓ+2
< ad−p+ℓ+2ad−p+ℓ+3 . . . and ∆ℓ+1 = 0.
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Inductively, we obtain some k > ℓ such that ∆ℓ+1 = · · · = ∆k−1 = 0

and ∆k = 1.

If ∆ℓ = 1, then |mℓ−1,τ (N)| . . . |m1,τ (N)| > ad−p+ℓ−1 . . . ad−p+1 im-

plies either

|mℓ−1,τ (N)| > ad−p+ℓ−1 and tbℓ
≤ |mℓ,τ(N)|tbℓ+1

< ad−p+ℓ,

thus ∆ℓ−1 = −1, or

|mℓ−1,τ (N)| = ad−p+ℓ−1, |mℓ−2,τ(N)| . . . |m1,τ (N)| > ad−p+ℓ−2 . . . ad−p+1

and ∆ℓ−1 = 0. Inductively, we obtain some k < ℓ such that ∆k = −1

and ∆k+1 = · · · = ∆ℓ−1 = 0.

Therefore we have
∑∞

ℓ=1 ∆ℓ = 0 and the discrepancy function is

bounded. �

D(N, [0, .(ad−p+j . . . adad−p+1 . . . ad−p+j−1)
∞), 1 < j ≤ p, is bounded

as well because a shift of digits does not change the boundedness.

Lemma 4. If D(N, [0, y)) is bounded and y 6= 0 has purely peri-

odic β-expansion, then the expansion of 1 is eventually periodic and

y = .aLaL+1 . . . for some L > d − p.

Proof. Let the β-expansion of y be .y1y2 . . . = .(y1 . . . yq)
∞. Consider

sequences of integers NK given by

(m1,τ (NK), m2,τ (NK), . . .) = ((m1, . . . , mJq)
K , ε, ε, . . .)
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with mℓ+1 = · · · = mJq = ε for some ℓ ≥ 1, J ≥ 1 such that bℓ+1 = 1

and yℓ+1 . . . yJq > 0 . . . 0. For these sequences, we have

µj+kJq(NK , y) = µj(NK , y), γj+kJq(mj+kJq,τ(NK)) = γj(mj)

for all j ≤ Jq, k < K. Thus D(NK , [0, y)) is bounded if and only if

Jq
∑

j=1

(µj(N1, y) − γj(mj)) = 0

Let furthermore m1 = · · · = mk−1 = ε for some k ∈ {1, . . . , ℓ}, hence

µj(N1, y) = γj(mj) for all j < k. Consider simultaneously integers N ′
K

with m′
k = ε and m′

j = mj for all j 6= k. Then we have µj(N
′
1, y) =

γj(m
′
j) = 0 for all j < k, γj(m

′
j) = γj(mj) for all j > k and

Jq
∑

j=k+1

µj(N1, y) =

Jq
∑

j=k+1

µj(N
′
1, y)+























1 if |mk| > yk,

|mk+1| . . . |mJq| < yk+1 . . . yJq

0 else,

thus

γk(mk) − µk(N1, y) =

Jq
∑

j=k+1

(µj(N1, y) − γj(mj))

=







1 if |mk| > yk, |mk+1| . . . |mℓ| ≤ yk+1 . . . yℓ

0 else

and

γk(mk) =























|mk| if |mk| ≤ yk

yk if |mk| > yk, |mk+1| . . . |mℓ| > yk+1 . . . yℓ

yk + 1 else.
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If mkbk <p τ(bk+1), then mℓ, . . . , mk+1, mkbk is a τ -1-admissible se-

quence and we obtain

(4) γk(bk) = γk(mkbk) − γk(mk) =







1 if |mk| . . . |mℓ| ≤ yk . . . yℓ

0 else,

in particular γk(1) = 1 for all k ≥ 1 (with k = ℓ, mk = ε).

If mkbk = τ(bk+1), consider

.yk+1yk+2 . . . = β × .ykyk+1 . . . − yk = sk,d−1β
d + · · · + sk,0β − yk,

hence

γk+1(bk+1) = sk,d−1|τ
d(bk+1)| + · · ·+ sk,0|τ(bk+1)| − yk

= sk,d−1|τ
d−1(mkbk)| + · · · + s1,0|mkbk| − yk = γk(mk) + γk(bk) − yk

= γk(bk) +























−1 if |mk| < yk (i.e. |mk| = a1 − 1, yk = a1)

0 if |mk| = yk or |mk| > yk, |mk+1| . . . |mℓ| > yk+1 . . . yℓ

1 else.

In case |mk| = |τ(bk+1)|−1 = a1−1, yk = a1, we have a1tbk+1
≥ a1a2 . . .,

yk+1yk+2 . . . < a2a3 . . . and tbk+1
≤ |mk+1|tbk+2

≤ · · · ≤ |mk+1| . . . |mℓ|0
∞,

hence |mk+1| . . . |mℓ| ≥ a2 . . . aℓ−k+1 ≥ yk+1 . . . yℓ. One of these in-

equalities is strict because tbk+1
= |mk+1| . . . |mℓ|0

∞ = a2 . . . aℓ−k+10
∞

implies |mk+1| . . . |mℓ| = a2 . . . ad0
ℓ−k−d+1 > yk+1 . . . yℓ. Therefore we



DISTRIBUTION OF β-ADIC VAN DER CORPUT SEQUENCES 23

have, for all bk, bk+1,

γk(bk) − γk+1(bk+1)

=























1 if |mk| . . . |mℓ| ≤ yk . . . yℓ, |mk+1| . . . |mℓ| > yk+1 . . . yℓ

−1 if |mk| . . . |mℓ| > yk . . . yℓ, |mk+1| . . . |mℓ| ≤ yk+1 . . . yℓ

0 else.

and, with γℓ+1(bℓ+1) = γℓ+1(1) = 1, (4) holds for all mk, bk.

Now, let k = 1 and mℓ, . . . , m1 and m′
ℓ, . . . , m

′
1 be τ -1-admissible

sequences with companion sequences bℓ, . . . , b1 and b′ℓ, . . . , b
′
1. If b1 < b′1,

then we have |m1|tb2 < tb1+1 ≤ tb′
1
≤ |m′

1|tb′2 , thus either |m1| < |m′
1| or

|m1| = |m′
1|, b2 < b′2. Inductively, we obtain |m1| . . . |mℓ| < |m′

1| . . . |m
′
ℓ|

and γ1(b1) ≥ γ1(b
′
1). Therefore we have some b′ ≥ 2 such that

γ1(b) =







1 if b < b′

0 else.

Finally, consider the system of linear equations

s1,d−1|τ
d−1(b)| + · · · + s1,0|τ

0(b)| =







1 if b < b′

0 else

for 1 ≤ b ≤ d. We have tb′ = aLaL+1 . . . for some L ≥ 2. Then, by

the proof of Lemma 3, (s1,d−1, . . . , s1,0) = (0, . . . , 0, 1,−a1, . . . ,−aL−1)

is a solution of this system, i.e. y = .aLaL+1 . . . To show that these

solutions are unique, consider linear combinations of the column vectors
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(|τ ℓ(1)|, . . . , |τ ℓ(d)|)T (over Q). We have, with β1 = β,

d−1
∑

ℓ=0

rℓ













|τ ℓ(1)|

...

|τ ℓ(d)|













=
d−1
∑

ℓ=0

rℓM
ℓ













1

...

1













=
d−1
∑

ℓ=0

rℓ

d
∑

j=1

vjβ
ℓ
jej =

d
∑

j=1

vjej

d−1
∑

ℓ=0

rℓβ
ℓ
j ,

where M is the incidence matrix of τ , M = (|τ(b)|c)1≤b,c≤d, and the

ej, 1 ≤ j ≤ d, are right eigenvectors of M to the eigenvalues βj. If

rℓ ∈ Q, then all rℓ must be zero, hence the vectors (|τ ℓ(1)|, . . . , |τ ℓ(d)|),

0 ≤ ℓ < d, are linearly independent and the system of linear equations

has a unique solution.

To conclude the proof of the lemma, note that aLaL+1 . . . is purely

periodic if and only if L > d − p. �
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J Number Theory 16: 376–394

[7] Faure H (2005) Discrepancy and diaphony of digital (0,1)-sequences in prime

base. Acta Arith 117: 125–148

[8] Ferenczi S (1992) Bounded remainder sets. Acta Arith 61: 319–326.

[9] Ferenczi S, Mauduit S, Nogueira A (1996) Substitution dynamical systems:

Algebraic characterization of eigenvalues. Ann Sci Éc Norm Supér, IV Sér 29:
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