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Abstract

The Net Exchange Formulation (NEF) is an al-
ternative to the usual radiative transfer formu-
lation. It was proposed by two authors in 1967,
but until now, this formulation has been used
only in a very few cases for atmospheric stud-
ies. The aim of this paper is to present the NEF
and its main advantages, and to illustrate them
in the case of planet Mars.

In the NEF, the radiative fluxes are no more
considered. The basic variables are the net ex-
change rates between each pair of atmospheric
layers i,7. NEF offers a meaningful matrix
representation of radiative exchanges, allows to
quantify the dominant contributions to the local
heating rates and provides a general framework
to develop approximations satisfying reciprocity
of radiative transfer as well as first and second
principle of thermodynamic. This may be very
useful to develop fast radiative codes for GCMs.

We present a radiative code developed along
those lines for a GCM of Mars. We show that
computing the most important optical exchange
factors at each time step and the others ex-
change factors only a few times a day strongly
reduces the CPU time without any significant
precision lost. With this solution, the CPU time
increases proportionally to the number N of the
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vertical layers and no more proportionally to its
square N2. We also investigate some specific
points such as numerical instabilities that may
appear in the high atmosphere and errors that
may be introduced if inappropriate treatments
are performed when reflection at the surface oc-
curs.

1 Introduction

In the past decades, numerical modeling of the
atmospheric circulation of Mars has been tak-
ing an increasing importance, in particular in
the frame of the spatial exploration of the red
planet (Leovy and Mintz, 1969; Pollack et al.,
1981; Hourdin et al., 1993; Forget et al., 1998).
With the increased number of missions to Mars
and especially with the use of aero-assistance for
orbit injection, there is an increasing demand
for improvements of our knowledge of Martian
physics, in particular of Martian upper atmo-
sphere.

Computation of radiative transfer is a key
element in the modeling of atmospheric circu-
lation. Absorption and emission of visible and
infrared radiation are the original forcing of at-
mospheric circulation. With typical horizontal
grids of a few thousands to 10.000 points, and
since we want to cover years with explicit repre-
sentation of diurnal cycle, operational radiative
codes must be extremely fast. Representation of
radiative transfer must therefore be drastically
simplified and parameterized.

For Mars, the main contributors to atmo-



spheric radiation are by far carbon dioxide
(which represents about 95% of the atmospheric
mass) and airborne dust particles (even outside
large planetary scale dust-storms, extinction of
solar light by dust is of several tens of percent).
Carbon dioxide is dominant at infrared frequen-
cies with a vibration-rotation line spectrum that
must be properly accounted for.

In the development phase of the Laboratoire
de Météorologie Dynamique (LMD) Martian at-
mospheric circulation model, a major step was
the derivation of a radiative transfer code for the
CO3 15 pm band (Hourdin, 1992). This model
was based upon the Wide Band Model approach
developed by Morcrette et al. (1986), and used
in the operational model of the European Cen-
ter for Medium-Range Weather Forecasts (Mor-
crette, 1990). This model is based on a two
stream flux formulation. Wide band transmi-
tivities are fitted as Padé approximants (ratio
of two polynomials) as functions of integrated
absorber amounts, including simple representa-
tions of temperature and pressure dependencies.
For application to Martian atmosphere, the fit
was somewhat adapted in order to account for
Doppler line broadening which becomes signifi-
cant above 50 km.

Altogether, in standard configurations of the
LMD Martian model with a 25 layer vertical
discretization, infrared computations represent
a significant part (up to one half) of the total
computational cost. Similar reports are made
concerning terrestrial models. The transmis-
sion functions being not multiplicative for band
models, the determination of radiative fluxes at
each level requires independent calculations of
the contributions of all atmospheric layers. The
corresponding computation cost increases as the
square of the number of vertical layers. This
quadratic dependency undoubtedly represents a
severe limitation when thinking of further model
refinements, in particular as far as near sur-
face and high atmosphere processes are con-
cerned, both requiring significant vertical dis-
cretization increases. However, it is commonly
recognized that, despite of this formal difficulty,
infrared radiative transfers are dominated by a
few terms such as cooling to space and short
distance exchanges (e.g. Rodgers and Walshaw,
1966; Fels and Schwarzkopf, 1975). In prac-
tice, the quadratic dependency of absorbtivity-
emissivity methods is widely over costly, a sig-
nificant part of the computations resulting in
fully negligible contributions.

In standard flux formulations, it is difficult
to quantify the relative importance of the var-
ious contributions to the local heating rates
because the individual contributions are not
identified as such in the formalism. Green
(1967) suggested that a reformulation of radia-
tive transfers in terms of net exchanges allows
quantifying the relative importance of physically
distinct contributions to the local heating rates
and could help design more efficient models. In
Green’s approach, called here the Net Exchange
Formulation (NEF), the quantity under consid-
eration is directly the net energy exchanged be-
tween two atmospheric layers (or more generally
two surfaces or gas volumes). Joseph and Bursz-
tyn (1976) attempted to use the net exchange
approach to compute radiative exchanges in the
terrestrial atmosphere. Despite some numeri-
cal difficulties, they showed that radiative net
exchanges between an atmospheric layer and
boundaries (space and ground) are dominant al-
though the net exchanges with the rest of the at-
mosphere are not negligible as they contribute
to approximatively 15% of the total energy bud-
get. With NEF, Bresser et al. (1995) did elabo-
rate analytical developments for particular cases
in order to compute the radiative damping of
gravity waves. The well known Curtis matrix
((Curtis, 1956), see for instance,[]Goody.Yung-
1989) may be related to NEF, but in the Curtis
matrix approach one way exchanges are consid-
ered instead of net exchanges, which means that
useful properties of NEF, such as the strict si-
multaneous satisfaction of energy conservation
and reciprocity principle, are abandoned. Fels
and Schwarzkopf (1975) and Schwarzkopf and
Fels (1991) take advantage of the importance of
the cooling to space to develop an accurate and
rapid longwave radiative code. They don’t use
the NEF but their work may be easily under-
stand in the net exchange framework.

Similar developments were also motivated
by various engineering applications. Hottel’s
method (Hottel and Sarofim, 1967), also named
the zone method, is originally based on NEF.
However, difficulties were encountered consid-
ering multiple reflection configurations and the
NEF symmetry was practically abandoned.
Cherkaoui et al. (1996, 1998), Dufresne et al.
(1998) and De Lataillade et al. (2002) showed
that NEF can be used to derive efficient Monte
Carlo algorithms. Dufresne et al. (1999) used
NEF to identify and analyze dominating spec-
tral ranges, emphasizing the contrasted behav-



ior of gas-gas and gas-surfaces exchanges. Fi-
nally, this formulation was recently used to ana-
lyze longwave radiative exchanges on Earth with
a Monte-Carlo method (Eymet et al., 2004).

In the present paper, we show how NEF can
help derive efficient operational radiative codes
for circulation models. This code is now op-
erational in the general circulation model de-
veloped jointly by Laboratoire de Météorologie
Dynamique and the University of Oxford (For-
get et al.,, 1999). As an example, this circu-
lation model has been used to produce a cli-
mate database for Mars for the European Space
Agency ! (Lewis et al., 1999). In Sec. 2 the NEF
is presented in the specific case of stratified at-
mospheres and analysis are performed for typi-
cal Martian conditions. Section 3 discusses the
questions related to operational radiative code
derivations, in particular those related to verti-
cal integration procedures and reflections at the
surface. The time integration scheme is consid-
ered in Sec. 4, first by investigating the numer-
ical instabilities that may occur in the high at-
mosphere, then by finding how computer time
may be saved without loosing accuracy. Sum-
mary and conclusions are in section 5.

2 Net exchange formulation

2.1 General approach

Longwave atmospheric radiative codes are gen-
erally based on flux formulations. Angular in-
tegration of all intensities at each location leads
to the radiative flux field, ¢, the divergence of
which gives the radiative budget of an elemen-
tary volume dVj, around point M as

dQ = —div (¢it) AV (1)

In an exchange formulation, the volumic ra-
diative budgets are addressed directly without
explicit formulation of the radiative intensity
and radiative flux fields. Corresponding for-
mulations include complex spectral and optico-
geometric integrals that may come down to
(Dufresne et al., 1998)

+o00o
dQ = dVM/ dy/ dvp/
Tm,p
BM

T Ky Kp., (Bp

I1The database is accessible both with a Fortran
interface for engineering and through the WEB at
http://www.lmd.jussieu.fr /mars.html

In this expression, v is the frequence, A repre-
sents the entire system (for an atmosphere, the
entire atmosphere plus ground and space bound-
aries), I'ys p is the space of all optical paths join-
ing 1ocations M and P. For each optical path
v, 7 is the spectral transmission function along
the path. BY% and By, are the spectral black-
body intensities at the local temperatures of P
and M, and K7}, is the absorption coeflicient in
M. The differential dVp around location P is
either an elementary volume or an elementary
surface and K7 . is either the absorption coeffi-
cient in P (if P is within the atmosphere) or the
directional emissivity (if P is at the boundaries).

Expressed this way, the radiative budget of
elementary volume dV); can be seen as the dif-
ference of two terms: the radiative power ab-
sorbed by dVj; coming from the whole atmo-
sphere plus surface and space (Bp part of Eq. 2)
minus the power emitted by dVj; toward all
other locations (Bps term). When separated
this way, the equation can be simplified fur-
ther noticing that the By, part (total emission
of volume dV)) reduces to 4 [,"°° K¥, BYdv.
This approach is the current basis for engineer-
ing zone method and Curtis matrix (see for in-
stance, Goody and Yung, 1989).

In NEF, equation 2 is rather interpreted
keeping the formal symmetry as the sum of the
individual net exchanges between volume dVj,
and all other elementary volumes or surfaces (in-
cluding space in the case of an atmosphere). An
individual spectral net exchange rate between
dVM and de

’l/)V(dVM,dVP) = dVMde/ d7 (3)
I'n,p
T KX Kp, (Bp — Biy)

is just the power emitted by dVp and absorbed
by dVjs minus that emitted by dVj; and ab-
sorbed by dVp. For a discretized atmosphere,
the spectral net exchange rate between two
meshes ¢ and j reads:

A

where A; and A; are the volumes or surfaces of
meshes ¢ and j. The spectral radiative budget
17 of mesh 7 is the sum of the net exchange rates
between ¢ and all other meshes j:

= Zﬁj
J

Y(dVar,dVe)  (4)

()



A very specific feature of this formulation
lies in the fact that both the reciprocity prin-
ciple, the energy conservation principle and the
second thermodynamic principle may be strictly
satisfied whatever the level of approximation is
retained to solve Eq. 3 and 4. The reciprocity
principle states that the light path does not de-
pend on the direction in which light propagates,
which means that the integrals of the optical
transmission 7./ over both the optical path space
I"ar,p and over the reciprocal space I' p ps are the

same:
/ dyty = / dyty
I'np I'pm

Using Eq. 3, the reciprocity principle reduces
(6] ¢V(dVM, de) = —w’/(de, dV]yj). This con-
dition may be satisfied provided that the same
computation is used for both ¥*(dVys, dVp) and
—p*(dVp,dVas). In other words, when pho-
tons emitted by dVj; and absorbed by dVp are
counted as an energy loss for volume dVj;, the
same approximate energy amount is counted as
an energy gain for dVp. As a direct conse-
quence, the energy conservation principle is also
satisfied. Finally, provided that the difference
(BY% — BY,) that appears as such inside the op-
tical path integral is preserved, Eq. 3 ensures
that warmer regions heat colder regions in ac-
cordance with the second thermodynamic prin-
ciple.

Altogether, the NEF allows the derivation of
approximate numerical schemes strictly satisfy-
ing both the reciprocity principle, the energy
conservation principle and the second thermo-
dynamic principle. Any approximation may be
retained for the integration over the optical path
domain without any risk of inducing artificial
global energy sources, or non physical energy
redistributions.

(6)

2.2 Application to the CO, band

15um in the Martian context
After these general considerations, we illustrate
the net exchange approach in the case of the

CO2 15um band on Mars. At this first stage,
we make the following simplifying assumptions:

e the atmosphere is perfectly stratified along
the horizontal (plan parallel assumption).

e the surface is treated as a black-body
(emissivity e=1).

e the atmosphere is assumed dust free.

Under these assumptions, the space of relevant
optical paths reduces to straight lines between
exchange positions. Dividing the atmosphere
into N layers, spectral net exchange 17, be-
tween layer 7 and layer j can be derived from
Eq. 3 and 4 as

///

B”)k”(zz) (20)k"(2)p(2;)
exp (

/ ' de tan 0
2 cosf

where Z; 1 and Z, ip1 are the altitudes at the
lower and’ higher boundaries of atmospheric
layer i, p is the gas density, k¥ is the spectral
absorption coefficient and € is the zenith angle.
The previous equation may be rewritten as:

s

(7)

(8)

[V

82T”(zi, Zj)

BY — BY
( Zi Zl) 62282’]

dZZ‘de

where TV is the spectral integrated transmission
function defined as

s

(2, ') = 2/05
(L] Fe

With the same assumptions, the spectral net ex-
change rate ¢y, between layer ¢ and ground or
space can be derived from Eq. 3 as

wef

B”(Tb)

exp (—

with T, = Ty for exchanges with the planetary
surface (at temperature T,) and T, = 0 K for
cooling to space. This equation may be rewrit-
ten as:

(9)

> sinf cos @ db

(10)

Bk (21)p(z:)
[k,

cos

) sin 6 dfdz;

oY (2, 2p)

8zi dZi

v ZH—% v v
wﬁ/ (BY(Ty) - B)

-3

(11)



This last equation is well known as it is com-
monly used to compute the cooling to space.

In practice, net exchange computations re-
quire therefore angular, spectral and vertical in-
tegrations. In the present study, the following
choices are made:

1. As in most GCM radiative codes, the an-
gular integration is computed by applying
the diffusive approximation which consists
in the use of a mean angle 6 (1/cosf =
1.66, see Elsasser, 1942).

2. As in the original martian model, the
spectral integration is replaced by a band
model approach in which the Planck func-
tions and wide band transmitivities are
separated (Morcrette et al., 1986; Hour-
din, 1992). 2

3. The vertical integration is what we con-
centrate on in Section 3 with various levels
of approximation.

With the diffusive approximation and the
use of wide band transmitivities, the net ex-
change 1); ; becomes after spectral integration
of Eq. 8 over wide bands m:

i+d
b / / ) (12)
Bm)f Aymdzldzj
with o2+ ( )
-m _ Tm ZZ‘,Zj
gzi,zj- - ‘ 62’7,82] (13)

where 7" (z;, zj) is the wide band transmitivity
between z; and z; with a mean angle  and Av,,
is the band width.

The net exchange 1;, between layer 7 and
boundary b (ground or space) becomes after
spectral integration of Eq. 11:

wlbf/ Ty

(B™(Ty) —

2This approach is exact for a spectral interval nar-
row enough to use a constant value of the Planck func-
tion. For larger intervals, temperature variations affect
the correlation between the gaz absorbtion spectrum and
the Planck function. Following Morcrette et al. (1986),
this effect was accounted for in the original model by
using different sets of fitting parameters for the trans-
mission function depending upon the temperature of the
emitting layers. Here, we only use one set of parameters
and control tests indicated that this simplification has a
negligible effect on the estimated radiative heat sources.

(14)

BME . Avpdz;

with
—=m

™ (2i, 2p)
82’1'

Finally the net exchange 5. between the
ground surface s and space e becomes:

(15)

ZiyZp

‘8?

= -m
Vse = Z —B™(T,)z, . AV (16)
m
with
Fm _=m
ZsyZe T (287’26) (17>
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Figure 1: Temperature vertical profile (K, bot-
tom axis, continuous line) with 500 layers (thin

line) and 25 layers (bullet, thick line). Each
temperature of the 25 layers grid is the mean of
20 layers of the high resolution grid (finite vol-
ume representation). The reference heating rate
(K/day, top axis, dotted line) is also displayed
for the two grids.

2.3 Reference case

We first present a computation of net exchanges
on a typical 25 layers GCM grid (Table 1), with
refined discretization near the surface. To avoid
problems with the vertical integration for this
reference computation, exchanges are first com-
puted on an over-discretized grid of 500 layers
(Fig. 1), each layer of the coarse GCM grid cor-
responding exactly to 20 layers of the 500 lay-
ers grid. An exchange between two atmospheric
layers of the coarse grid is simply obtained as
the sum of the 20x20 exchanges from the finer
grid.



We use a reference temperature profile
(Fig. 1) derived from the measurement taken by
two Viking probes during their entry in the Mar-
tian atmosphere (Seiff, 1982) and already used
by Hourdin (1992). In the upper atmosphere,
there is no systematic temperature increase as
there is no significant solar radiation absorption
equivalent to that the ozone layer on Earth. In
the middle atmosphere, gravity waves and ther-
mal tides disrupt the temperature profile. Near
the surface, the quasi isothermal part of this av-
eraged profile hides a strong diurnal cycle. The
surface pressure is fixed to 700 Pa.

2.4 Net exchange matrix

NEF offers a meaningful matrix representation
of radiative exchanges. A graphical example of
such a matrix is shown in Fig. 2. Each element
displays the net exchange rate x;; for a given
pair 7, j of meshes converted in terms of heating

rate:
i = 2L L%
J Cp ot 5;02

where ¢ is the gravity, Cp the gas mass heat
capacity, and &t the length of the Martian day
(6t = 88775s). For the ground , the heating rate
is arbitrary computed using a thermal capaci-
tance of 1 J.K ~t.m~2.day~!. The total heating
rate of a layer 7 is:

Xi = ZXi,j-
J

Xi,; and Xj; are of opposite sign but the ex-
change matrices expressed in K /day are not an-
tisymmetric as they would be if expressed in

W/m? (;; = —;,; but xi; # —Xj,i)-

(18)

(19)

2.4.1 Matrix characteristics

As an example of reading Fig. 2, consider layer
1 = 10 (marked in the figure). The temperature
profile and total heating rate x; are also plot-
ted on both sides. The horizontal line of the
matrix shows the decomposition of the heating
rate in terms of net exchange contributions (see
Eq. 19). This partitioning of the heating rates
first emphasizes some well established physical
pictures. The cooling to space is the dominant
part of the heating rate: it essentially defines
the general form and the order of magnitude
of the heating rate vertical profile. This well

known property has been widely used to de-
rive approximate solutions in atmospheric con-
text (e.g. Rodgers and Walshaw, 1966; Fels and
Schwarzkopf, 1975; Schwarzkopf and Fels, 1991).
Internal exchanges within the atmosphere are by
far dominated by the exchanges with adjacent
layers (note that there is a factor of ~ 3 between
two consecutive colors). As a consequence, the
net exchange matrix is very sparse. A very few
terms dominate all the others. These important
terms are the exchanges with boundaries (space
and surface) and the exchanges with adjacent
layers. Thanks to the NEF, the relative magni-
tude of these terms can be quantified.

2.4.2 Thermal aspects

In each spectral band, each contribution X;"; to
the total net exchange rate x; ; is the integral of
the product of two terms: the blackbody inten-
sity difference between z; and z; and the optical
exchange factor E:LZJ (e.g. Eq. 12). The sign
of the net exchange rate X;"; only depends on
the temperature difference between ¢ and j as
the optical exchange factor Ez,zj is always pos-
itive. Layer ¢ heats layer j only if its tempera-
ture T; is greater than T;. The direct influence
of the temperature profile on the exchange ma-
trix can be seen on Fig. 2. For instance layer 10
is heated by the warmer underlying atmosphere
and surface and looses energy toward the colder
layers above and toward space. The picture is
more complex in the upper atmosphere where
strong temperature variations are generated by
atmospheric waves. In this region, a layer can
be heated by both adjacent warmer layers (e.g.
layer 20). In particular these radiative exchange
between adjacent layers are known to damp the
possible temperature oscillations due to atmo-
spheric waves (Bresser et al., 1995).

Finally, the gas radiative properties depend
much less on the temperature than the black
body intensity. Therefore the metric of optical
exchange factors £ may be assumed as constant
for qualitative exchange analysis, and even to
some extent for practical computations as dis-
cussed later on.

2.4.3 Spectral aspects

The exchange factors & between two meshes are
proportional to the gas transmission 7 for the
exchange between surface and space (Eq. 17),
proportional to the first derivative of 7 for the



Layer o Approx. Layer o Approx. Layer o Approx.
# height (m) # height (km) # height (km)
1 0.99991 3.6 10 0.9251 3.030 19 0.3256 43.69
2 0.99958 16.4 11 0.8787 5.037 20 0.2783 49.80
3 0.99898 39.8 12 0.8157 7.934 21 0.2359 56.24
4 0.99789 82.1 13 0.7403 11.70 22 0.1975 63.15
5 0.99592 159.0 14 0.6597 16.19 23 0.1613 71.04
6 0.99238 297.9 15 0.5803 21.19 24 0.1275 80.21
7 0.98605 547.0 16 0.5061 26.52 25 0.0842 96.35
8 0.97494 988.4 17 0.4388 32.07
9 0.95598 1753 18 0.3788 37.80

Table 1: Low resolution (i.e. 25 layers) vertical grid characteristics: layer number, o levels (o =
P/ Py, with Ps the surface pressure) and approximate corresponding heights.
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Figure 2: Graphical representation of radiative net exchange rates in the Martian atmosphere.
Left: temperature profile, Middle: net exchange matrix, Right: heating rate. The vertical axis is
the layer number. Same conditions as in Fig. 1.
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Figure 3: Gas transmission 7 (solid) and its
two first derivatives normalized by the emissiv-
ity € of the gas layer, 1/€.|07/0X| (dash) and
1/€2.|0%7/0X?| (dot), as a function of the nor-
malized integrated mass of atmosphere X =
(P — P5)/Ps, for the central part (band #1, up-
per plot) and for the wings part (band #2, lower
plot) of the CO2 15um band. The atmospheric
temperature is assumed uniform (I' = 200K)
and the surface pressure is P = 700Pa.

exchanges between a layer and surface or space
(Eq. 15) and proportional to the second deriva-
tive of 7 for the exchanges between two atmo-
spheric layers (Eq. 13). The behavior of optical
exchange factors can be understood by analyz-
ing these three functions. To allow comparison,
we normalize them by the product of the emis-
sivity at both extremities. If the extremity 4
is a gas layer of differential thickness dz;, the
emissivity is:

€ = dzi/k:”(zi)p(zi)du (20)

=m

If the extremity ¢ is ground or space, € = 1.
We also use a normalized integrated mass X of

atmosphere
g : ’
= d
P, / pas

where Py is the ground pressure.

The wide band model used in this study has
two spectral bands chosen empirically (Hourdin,
1992). The first one (band #1), ranging from
635 to 705 em ™1, corresponds to the central part
of the CO3 15 pm band. The second one (band
#2), ranging from 500 to 635 cm ™! and from
705 to 865 cm~! corresponds to the wings. The

X(z) = (21)

three normalized functions, 7, 1/€,,.07/0X and
1/(e, €.,).0°7/0X?, that may also be seen as
normalized exchange factors, are displayed in
Fig. 3 for the two bands. The three normal-
ized exchange factors go to 1 when X goes to
0. Indeed, when the two extremities are adja-
cent, the exchange factor is the product of the
emissivity at both extremities®.

When X increases, the normalized exchange
factor slowly decreases (in particular for band
#2) if the two extremities are black surfaces
(here space and ground); it decreases faster
if one extremity is a gas layer and decreases
even faster if the two extremities are gas layers
(Fig. 3). This is an illustration of the so-called
“spectral correlation effect” (e.g. Zhang et al.,
1988; Modest, 1992; Dufresne et al., 1999). For
the exchange between two gas layers, both ab-
sorption and emission are maximum in spectral
regions near the center of the absorbing lines.
But exactly at the same frequencies gas absorp-
tion creates a strong decrease of the transmis-
sion when the distance between extremities in-
creases. Thus the exchange strongly decreases
with distance. On the contrary, the exchange
between ground and space is most important in
spectral regions where the spectral transmission
is high, that is where the gas absorption is low.
Thus the exchange factor between ground and
space is much less sensitive to the integrated air
mass between them. Exchange between a layer
and ground or space is an intermediate case.

When X increases, the decrease of the three
normalized exchange factors is faster for the cen-
tral part of the COgband (band #1) than for the
wings (band #2) (Fig. 3). As a consequence,
the decrease with distance of the exchange be-
tween two atmospheric layers is more important
in band #1 (left panel of Fig. 4) than in band
#2 (right panel of Fig. 4). The exchanges be-
tween adjacent layers are much greater for band
#1 than for band #2, whereas distant exchanges
have the same magnitude for the two bands. For
the cooling to space, the competition between
the decrease of |07 /90X | and the increase of the
local black body intensity yields noticeably dif-
ferent vertical profiles: The absolute value of
the cooling to space decreases when the layer
is closer to the surface for band #1 whereas it
increases for band #2.

3This is only true in the limit where the gas layer(s)
is(are) optically thin. In the example presented here, the
emissivities are computed for layers with a normalized
thickness AX = 0.01.
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3 Vertical integration

In the above reference computation, net ex-
changes have been computed using given sub-
grid scale temperature profiles(Fig. 1). In prac-
tice, with circulation models, only mean tem-
peratures are known for each layer? and assump-
tions are required concerning sub-grid scale pro-
files. First we present the very simple assump-
tion of a uniform temperature within each at-
mospheric layer. This allows us to highlight the
link between NEF and flux formulations. Then
we address the more general case of non isother-
mal layers and finally we highlight the modifica-
tions that are required in the case of a reflective
surface.

3.1 Isothermal layers

For isothermal layers, the individual exchanges
contributing to the radiative budget of layer ¢
(i = >2;¥i;) take a simple form (Eq. 12 and
13) reducing to

=Y &y(By

m

Vi B;") (22)

4We assume that circulation models make use of finite
volume representations and that GCM outputs are rep-
resentative of mean temperatures rather than mid-layer
temperatures

and over the whole spectrum (open circles).

with

T =m _=m _=m =

Sij -t T Timagor T TR TN e
(23)

In the equivalent flux formulation, the individ-
ual contributions of the radiation emitted by
layer i to the flux at interface j + %

ey =SB (0
(24)

are first summed over i to compute the radiative
flux F; 1 at each interface j + . The radiative
budget of each layer j then reads

1k

V= F} i+

E Z*)jf* E 14»]4»2

An exact equivalence between the net exchange
and flux formulations is obtained by noting that

—=m
—Fm
i—5.j+3

(25)

1
2

‘ j—its T j*)’b** ’ i—j+i _anjfé
(26)

and using the property 7; ; = 7.

For developing a radiative code, NEF how-
ever presents advantages. With flux formula-
tion, fluxes are first integrated over altitude z
and then differentiated. When temperature con-
trasts are weak (here near the surface for in-
stance), net exchange rates can be by orders of



magnitude smaller than fluxes. Computing first
the fluxes and then the differences may lead to
strong accuracy loss which we observed could in-
duce reciprocity principle violations (colder lay-
ers heating warmer layers for instance)®.

In Fig. 5, we show the error on net exchanges
if the isothermal approach is retained for all ex-
changes with respect to the reference 500-layer
simulation. The error is very large around the
diagonal and often larger than the exchange it-
self. Indeed, at frequencies where significant
CO4 emission occurs (close to absorption lines
centers) the atmosphere is extremely opaque,
which means that most emitted photons have
very short path lengths compared to layer thick-
nesses. Consequently, exchanges between adja-
cent layers are mainly due to photon exchanged
in the immediate vicinity of the layer interface.
In this thin region, temperature contrasts are
much weaker than the differences between mean
layer temperatures. The isothermal approxima-
tion thus results in a strong overestimation of
the net exchanges.

The relative error due to the isothermal hy-
pothesis strongly decreases with distance be-
tween layers. This feature is further commented
in appendix.

3.2 Net exchanges between adja-
cent layers

The specific difficulty of exchange estimations
in the case of adjacent layers is commonly iden-
tified and solutions have been implemented in
flux computation algorithms (e.g. Morcrette
et al., 1986). In most GCMs, only the average
layer temperatures and compositions are avail-
able. Here a linear approximation is retained
for B to describe the atmosphere close to the
mesh interface. Because of the symmetry of
Eq. 8 in #; and z;, the linear approximation is
strictly equivalent to a quadratic approximation
in the limit case of two layers of identical thick-
nesses (see Appendix). When computing ; ;11
we therefore assume that B(z) is linear between
zi—1/2 and z;,3/9, satisfying the following con-
straints for j =i £ 1 (Fig. 6):

/Zj+1/2
Zi_1/2
5This problem may be partially overcome in the flux

formulation by introducing the blackbody differential
fluxes F' = 7B — F (e.g. Ritter and Geleyn (1992))

B(z)dz = B;.Az; (27)
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Figure 5: Error matrix with the isothermal layer
assumption. Line ¢ column j gives the error in
K/day for the heating rate of layer i due to
its exchange with layer j. The error is com-
puted with respect to the reference computation
performed with 20 sub-layers inside each layer.
Other conditions are the same as in Fig. 2.

Note that in this approach, the assumed temper-
ature profile inside a layer is different when com-
puting the exchange with the layer just above or
just below.

With this assumption, exact integration pro-
cedures could be designed, for instance using the
analytical solution available for the best fitted
Malkmus transmission function (Dufresne et al.,
1999), or integrating by parts and tabulating in-
tegrated transmission function from line by line
computations. Here we test a more basic solu-
tion by dividing the linear profile into isother-
mal sub-layers, with thiner sub-layers closer to
the interface (Fig. 6). The sub-discretization
scheme was tested against reference simulations.
For the present application, a satisfactory ac-
curacy is reached with a sub-discretization into
three isothermal sub-layers of increasing thick-
nesses (Az/7, 2Az/7 and 4Az/7) away from the
interface.

Whatever the integration procedure, a direct
consequence of the previous linear black body
intensity assumption is that the net exchange
between two adjacent layers may be still written
formally like the net exchange between isother-
mal layers (Eq. 22). Only the expression of the
exchange coefficient Ezliﬂ depends on the tem-
perature profile hypothesis.

We finally adopt the following solution
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Figure 6: A linear black body intensity pro-
file approximation is used for computation of
the net exchanges between adjacent layers. The
black body intensity profile inside a layer is dif-
ferent when computing the exchange with the
layer just above (black line) or just below (grey
line). The sub-grid discretization is also shown
(thin lines).

for the vertical integration: the above sub-
discretization into three isothermal sub-layers
is used to compute the radiative exchanges
between adjacent layers whereas the simple
isothermal layer assumption is used to compute
the exchange between distant layers. For the
exchange between ground and first layer, we as-
sume the temperature of gas just above the sur-
face to be Ty = (T1+7%)/2 and a linear B profile
between T7 and Ty. An isothermal description is
retained for the exchange between the optically
thin upper layer and space. The global error due
to the vertical integration scheme as well as the
origin of the error are displayed Fig. 7. The an-
alytical expression of these errors are presented
in appendix for some cases. One should have
in mind that results are compared with a high
resolution vertical grid where the temperature
profile has a more precise description than in
the low resolution grid.

3.3 Exchanges with reflection at
the surface

The above presentation assumes that the surface
behaves as a black-body. In practice, surface
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Figure 7: Vertical profile of the heating rate
error in K/day due to the vertical integration
scheme (left), and part of this error due to
the computation of the net exchange with ad-
jacent layers (middle, square), with distant lay-
ers (middle, circle), with ground (right, square)
and with space (right, circle). The error is com-
puted with respect to the reference computation
performed with 20 sub-layers inside each layer.
Other conditions are the same as in Fig. 2. The
vertical axis is the layer number.

emissivity can differ from 1. The mean emissiv-
ity of the Martian surface is believed to be of
the order of 0.95 (Santee and Crisp, 1993), and
emissivity is believed to be lower in some regions
(Forget et al., 1995).

When reflection at the surface is present, two
atmospheric layers can exchange photons, either
directly, or through reflection at the surface. For
instance, the net exchange between two atmo-
spheric layers ¢ and j (Eq. 12) becomes:

Z'i+% Zj+%
= 2
[ e
(B

1 —
3 m

1
2

J
zj BZ)
[ET(ZZ, Z]) + ET(ZZ, Z])} dedZ]
where E:ln is the optical exchange factor for di-
rect exchanges

82?(21', Zj)

2
821‘ 82]‘ ( 9)

Ealenzy) = \

and ET the optical exchange factor through re-
flection at the surface:

E (o) = (1— )| L Lez020)

02;0z; (30)

- &)

11



where ¢, is the surface emissivity and T's(z;, 2j)
is the transmission function from z; to z; via the
surface for a spectral interval. Assuming the dif-
fusive approximation this transmission writes:

Is(2i,25) = / (7" (2:,0)77(0,2;)) dv (31)
14

In the original flux formulation, as well as in
other radiative codes based on the so-called
absorbtivity /emissivity method, the downward
flux is first integrated from the top of the atmo-
sphere to the surface. The reflected part of this
downward flux is then added to the flux emitted
by the grey surface. This flux is then used as a
limit condition to integrate the upward flux up
to the atmospheric top. This assumption corre-
sponds to the following approximation :

Ty (zi, 25) =~ T(z;,0)7(0, z;) (32)
which is wrong for wide and narrow band mod-
els because the spectral information is forgotten
at the surface. The error on the heating rate is
particularly strong for the layers near the sur-
face. For a surface emissivity of 0.9, as expected,
the exact solution displays small changes in the
heating rate compare to the case where the sur-
face is black (plus signs and circles in the left
on Fig. 8). On the other side, the computa-
tion which neglects the spectral correlation at
the surface (squares) displays a very large and
unrealistic change of the heating rate near the
surface.

A useful property can be used to check the
results with a reflective surface. Let us consider
an atmosphere with a thin layer near the sur-
face having the same temperature as the sur-
face itself. This layer will never exchange en-
ergy with the surface because both are at the
same temperature. If the surface emissivity dif-
fers from 1, the exchange of this layer with the
atmosphere above and with the space will be
increased through reflection at the surface. For
an optically thin layer and for a perfect mirror
(e = 0) all those exchanges, and hence the radia-
tive cooling, will be exactly twice that without
reflection (e = 1) (Cherkaoui et al., 1998). The
net exchange computation fulfills this property
(plus signs and circles in the right hand of Fig. 8)
but the original flux model does not (square).

The above computations were performed
with a prescribed vertical temperature profile.
In order to evaluate the error associated to
incorrect treatment of reflection when all the
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Figure 8: Left: Vertical profile of the heating
rate when the surface is perfectly black (cross,
continuous line) and when the surface has an
emissivity e, = 0.9, the computation being ei-
ther exact (circle, dash line) or neglecting spec-
tral correlation when reflection at the surface
occurs (square, dotted line). Same atmospheric
conditions as in Fig. 1. The vertical axis is the
layers number. Right: Same, but with a per-
fectly reflecting surface (e; = 0).

physical processes (radiation, turbulent vertical
mixing...) are active, we present hereafter re-
sults obtained with a 1D model that corresponds
to a single vertical column of the 3D GCM.

When the temperature profile is prescribed,
a decrease of the surface emissivity reduces the
cooling of the surface but increases the cooling of
the atmosphere above (Fig. 8). With the full 1D
model, a decrease of the surface emissivity re-
duces the cooling of the surface which increases
its temperature (Fig. 9). The temperature of
the atmosphere above also increases, but less,
as the decrease of emissivity increases the cool-
ing of the atmosphere.

When the temperature profile is prescribed,
we previously noticed that neglecting the spec-
tral correlation at the surface leads to strongly
overestimate the atmospheric cooling just above
the reflective surface (Fig. 8). With the 1D
model, neglecting the spectral correlation leads
to underestimate by a factor of 0.5 to 0.7 the
temperature increase in the boundary layer due
to the emissivity decrease (Fig. 9). This un-
derestimate is even more important if the tur-
bulent vertical mixing is neglected (not shown).
Neglecting the spectral correlation also slightly
increases the diurnal cycle of the atmospheric
temperature near the surface (not shown).



Temperature diff. (K)

Figure 9: Vertical profile of the daily mean
temperature difference due to a change in the
surface reflectivity with an exact computation
(open circle) and neglecting spectral correlation
at the surface (closed circle). The tempera-
tures of a run with a slightly reflective surface
(es = 0.9) are compared to a run with a non
reflective surface (e, = 1). The runs are 10 days
long, have the same initial state and are per-
formed with the single column version of the
Martian GCM. Diurnally averaged temperature
differences are plotted for the last day. The ver-
tical axis is the atmospheric layer number.

3.4 Computing vertical fluxes

In a general way there is no direct relationship
between upward and downward fluxes and net
exchanges. Only the net radiative fluxes may
be directly expressed as a function of net ex-
changes. For instance, the net fluxes at the top
of atmosphere F]\} 41 reads:

N
FZJF% = Z YNk (33)
k=0
N — —
=> > B (34)

k=0 m

where N is the number of vertical layers, k = 0
stands for ground and k¥ = N + 1 stands for
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space.
The optical exchange factors € present in
Eq. 34 are comparable to the so-called weighting
functions used to invert satellite radiative mea-
surements. Therefore NEF should be a useful
framework to assimilate those measurements in
GCMs.
In the atmosphere, the net flux at level 7 +
5 is equal to the net exchange between all the
meshes below 7 + % and all the meshes above
1+ %:
N+1 i
Fiy= Z Z%’,k

j=i+1k=0

(35)

If one realy wants the values of the upward and
downward fluxes, they may be approximated as-
suming each atmospheric layer is isothermal. If
the optical exchange factors £ have been com-
puted with this assumption, the upward flux at
level 7 + % is equal to the flux emitted by all
the meshes below ¢ + % and absorbed by all the
meshes above 7 + %:

i N+1

F;—% = Z Z gjkaj

=0 k=i+1

(36)

Note that the errors on fluxes arising from the
isothermal hypothesis are much smaller than the
error on net exchanges between adjacent layers
due to the same hypothesis. The same way, the
downward flux at lever i + % is equal to the flux
emitted by all the meshes above ¢ + % and ab-
sorbed by all the meshes below i + %:

i N+1

Fi = Z Z & B

=0 k=i+1

(37)

4 Time integration

4.1 Numerical instabilities in the
high atmosphere

When the atmospheric vertical resolution in-
creases, numerical instabilities appear in the
Martian GCM in the high atmosphere and
they may increase dramatically. This prob-
lem has also been encountered in some GCM
of the Earth atmosphere and specific stabiliza-
tion techniques are commonly used to bypass
this difficulty. Here we analyze the reasons of
this difficulty and we propose a solution that
takes advantage of the NEF.



In the original Martian model, the radi-
tative transfer is integrated with an explicit
time scheme, the evolution between times t and
t + dt of the temperature of layer ¢ beeing com-
puted from a computation of the heating rate

=2, & (Bt — BY) at time ¢t as

idt

m; Op

T =T + (38)

In the upper atmosphere, the mass m; of the
atmospheric layers becomes very low, reducing
they thermal capacitance. As a consequence,
strong numerical oscillations appear for large
time steps if the variations of ; with temper-
ature, within the time-step, are not taken into
account.

A well-known solution to this problem con-
sists in replacing ! in Eq 38 by v, @ — =(1-

)t + a0t With those notations, the tem-
poral scheme covers the cases of explicit (a = 0),
implicit (¢ = 1) and semi-implicit (o = 1/2)
schemes. For a0 # 0, the scheme is no more ex-
plicit and requires an inversion procedure. The
net exchange formalism offers a simple practical
solution to this problem. Based on the analysis
above, it can be assumed that only the black-
body emissions B; vary during the time-step
while the optical coefficients do not. Also it
can be assumed that only the exchanges with
adjacent layers (¢ = 1) and boundaries (b) vary
while the exchanges with distant layers are un-
modified. With these approximations, and after
linearization of the Planck function,

p=ylra > €l (39)
j=it1,b
dB dB
|:dT (Tt+5t T]t) dT ‘ (Tt+5t T,Lt)

If in addition we do not consider the variation of
Ty, within the time-step (which is exact for space
and not a problem for the surface when comput-
ing the heating rates in the upper atmosphere),
the temperature at time ¢ + dt is obtained from
that at time ¢ through the inversion of a tridi-
agonal matrix, for a low CPU cost.

This approach, implemented in the Martian
GCM with a = 1/2, is very efficient and su-
presses all the numerical oscillations in the up-
per atmosphere.

14

4.2 Saving computer time

The computation cost of the LW radiative code
is known to be very important in most GCMs.
Solutions have been proposed and implemented
to reduce this computation time. Generally the
full radiative code is computed only one out of
N time steps, and approximations are used to
interpolate the LW cooling rates between those
N time steps. The simplest time interpolation
scheme is to maintain constant the cooling rates
during this period. This is the case in the origi-
nal Martian GCM where the radiative code is
computed one out of two time steps (each 1
hour).

On Mars, the surface temperature diurnal
cycle is as high as 100K and the time interpola-
tion method has to reproduce the effects of this
diurnal cycle. The NEF provides an easy answer
to this problem. Since the Planck function dom-
inates the variations of the radiative exchanges,
the Planck function will be computed at each
time step while computing the optical factors
Ei, ; only one out of N time steps. A second level
of optimisation consist in computing the optical
exchange factors corresponding to the most im-
portant exchange rates (see Sec. 2.4) more fre-
quently than the others. Once again, the NEF
ensures that the above approximation will not
alter the energy conservation and the reciprocity
principle (Sec. 2.1). Practically all the optical
exchange factors are scattered in three groups :
the exchange factors between each atmospheric
layer ¢ and (1) its adjacent atmospheric layers,
(2) the distant atmospheric layers (i.e. the other
atmospheric layer) and (3) the boundaries (i.e.
surface and space).

We present numerical tests performed using
the single column version of our GCM. The runs
last 50 days and the comparison between runs
is performed using the results of the two last
days. For these two days, we computed the at-
mospheric temperature difference between each
run and the reference run. The mean and the
RMS of this difference allows a quick compar-
ison between them (Table 2). In the reference
run (case # 1), the full LW code is called at each
time step of the physics, i.e. every 30 Martian
minutes). Case # 2 corresponds to what was im-
plemented in the original version of our GCM:
the full LW code is called one out of two time
steps of the physic, i.e. every Martian hour, and
the LW cooling rates are constant during this
period. Computing all the optical exchange fac-



tors only once a day (case # 3) leads to an error
only slightly greater than computing all the LW
radiative code one out of two time steps (case #
2), but requires a much smaller CPU time. This
result illustrates that the diurnal variations of
the optical exchange factors are not very impor-
tant compared to the diurnal variations of the
Planck function.

As mentioned above, one may compute
the most important exchange factors more fre-
quency than the other. Computing the opti-
cal exchange factors with boundaries at each
time step highly reduces the error while it
only slightly increases the CPU time (case #4).
Computing the exchange factors with adjacent
layers at each time step slightly reduces the er-
ror while strongly increasing the CPU time (case
#5).

Computing exchange factors only once a day
may introduce a significant bias for long term
simulations as the diurnal cycle is very badly
sampled. We choose to compute all the ex-
change factors at least four times a day (case
# 7-10). Computing the exchange factors with
boundaries at each time step (30’) and the other
exchange factors every 6 hours (case # 8) pro-
duces much smaller errors than the original so-
lution (case #2) while being two times less con-
suming. Another important advantage of this
solution is that the number of exchange factors
with boundaries increases linearly with the num-
ber N of vertical layers. The number of the
other exchange factors are still proportional to
N? but they are computed much less frequently
and the required CPU time is therefore negligi-
ble: the CPU time will increase almost linearly
with N and no more as a function of N? as for
all the absorbtivity-emissivity methods.

If higher accuracy levels are required, a more
frequent computation of the exchanges factors
with both the boundaries and the adjacent lay-
ers is a good solution (case # 10). The errors
are negligible and the CPU time is divided by a
factor of two compared to the reference solution

(case #1).

5 Summary and conclusion

In the present paper, a radiative code based on
a flux formulation has been reformulated into a
radiative code based on the NEF. This formu-
lation has been proposed by Green (1967) but
has not be often used since this time.
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The graphical representation of the net ex-
change matrix appears to be a meaningful tool
to analyze the radiative exchanges and the ra-
diative budgets in the atmosphere. In the case
of Mars, the exchange between a layer and space
(the cooling to space) and the exchanges be-
tween a layer and its two adjacent layers are by
far the dominant contributions to the radiative
budgets. The exchange with space explains the
general trend of the radiative budget with alti-
tude. The exchanges with adjacent layers play
a key role as they dump the temperature oscil-
lations due to the various atmospheric waves.

A key point of the NEF is that it ensures
both the energy conservation and the reciprocity
principle whatever the errors or approximations
are made when computing the optical exchange
factors.

The net exchange between meshes is equal
to the product of an optical exchange factors
and the Planck function difference between the
two meshes. This allows one to analyze sep-
arately the role of the optical properties of the
atmosphere and the role of the temperature pro-
file. The optical exchange factors are very ex-
pensive to compute and they vary slowly with
time. On the contrary, the Planck function
strongly depends on temperature, that strongly
varies during a day, but is very fast to com-
pute. Computing the optical exchange factors
and the Planck function at different time steps
is therefore of immediate interest. Moreover, be-
cause the NEF ensures both the energy conser-
vation and the reciprocity principle, some of the
exchange factors (the most important) may be
computed more frequently than others. These
possibilities give various opportunities to reduce
the CPU time without loosing accuracy. Some
possibilities have been explored in this paper.
In particular we have shown that the most im-
portant terms are the exchanges with bound-
aries, number of which is proportional to the
number N of vertical layers. Computing those
terms more frequently than the others leads the
CPU time to increase proportionally to N and
not proportionally to N2 as in all the absorbtiv-
ity /emissivity methods.

Another consequence of the splitting of the
net exchange rates into optical exchange factors
and Planck function differences is the possibil-
ity to linearize the Planck function for all or
parts of the net exchanges. This allows us to
implement implicit or semi-implicit algorithms
at a low numerical cost (inversion of a tridiag-



Computation periode of Atm. temperature Normalized
case | the net exchanges the exchange factors with difference (K) CPU time of
and the adjacent | boundaries | distant | mean RMS the LW

radiative budgets layers layers radiative code
1 307 307 307 307 0.00 | 0.00 1.00
2 1hr 1hr lhr 1hr -0.10 | 0.38 0.50
3 307 1dy 1dy 1dy 0.32 | 0.38 0.15
4 307 1dy 307 1dy -0.08 | 0.16 0.21
5 307 307 1dy 1dy 0.27 | 0.33 0.46
6 307 307 307 1dy -0.10 | 0.13 0.54
7 307 6hr 6hr 6hr 0.21 | 0.20 0.16
8 307 6hr 307 6hr 0.01 | 0.05 0.25
9 307 307 6hr 6hr 0.18 | 0.20 0.47
10 307 307 307 6hr -0.01 | 0.02 0.52

Table 2: Comparison between the various time interpolation schemes.

onal matrix associated with exchanges between
adjacent layers).

In our original radiative code (as well as in
other codes), reflections at the surface are con-
sidered in a crude way: the reflected part of the
downward radiation and the radiation emitted
by the surface are supposed to have the same
spectrum. We have shown that this approxi-
mation leads to highly overestimate the cooling
of the atmosphere above the surface. The rea-
son is that the spectrum of the downward radi-
ation strongly depends on the gas absorption
spectrum and is therefore very different from
the spectrum of the radiation emitted by the
surface. An exact computation is possible but
double the CPU time.

A drawback of the NEF is that only the net
flux in the atmosphere can be directly deduced
from the net exchanges, not the upward and
downward fluxes (although they are of experi-
mental interests). Nevertheless we have shown
that they can be estimated with a few more as-
sumptions. On the other hand, the optical ex-
change factor between each gas layer and space
does correspond to the so-called weighting func-
tion used to invert satellite flux measurements.
Therefore a radiative code based on the NEF
might be well suited for assimilation of satellite
radiances.

The radiative code presented here is used in
the last version of the LMD GCM of Mars (For-
get et al., 1999). In addition to the absorption
by gases presented in this paper, the effects of
aerosols is also considered. Outside the two CO4
wide bands, both absorption and scattering ef-
fect are computed using the algorithm of Toon
et al. (1989). Inside the two COy wide bands,
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only absorption by the aerosols is considered,
scattering being neglected. This is consistent
with previous studies that show that scattering
by dust aerosols has the highest impact in win-
dow regions of the atmosphere (e.g. Dufresne
et al., 2002). Currently a radiative code based
on the NEF, that uses a ck-method for the spec-
tral integration and that also considers scatter-
ing is under progress for the Venus planet.
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7 Appendix

7.1 Sub-grid temperature quadratic profile

We consider here an atmosphere with a temperature profile that is compatible with a second order
blackbody intensity profile within the considered spectral band

B(z) = az® + bz +c. (40)

We also assume that absorption coefficients are uniform. Under these assumptions, the net ex-
changes between two layers i and j (Eq. 12) of thickness e separated by a layer of thickness [ lead
to the following double integral:

—1/2 +1/2+e
Yoy = /A v [ [y ek - )] BG) - B) (41)

—1/2—e +1/2
= / dv /8 dx /e dy k2 exp[—k, (x + y)] exp(—=k, ) [B(y +1/2) — B(—x — 1/2)] (42)
Av 0 0

=b A dvexp (—k, 1) [1 —exp (—kye)] {({ +2/k,)[1 —exp (—k,e)] — 2eexp (—k,e) }

(43)

This is obtained by expanding the expression of B in Eq. 41. The terms with ¢ directly disapear.
The double integral of the terms with a is equal to zero. Only the terms with b remain.
Under the same assumptions, Eq. 40 leads to

l+e (44)
with B; and B; the average blackbody intensities of layers i and j.

Therefore, Eq. 43 depends only on the layer average of B, which means that all quadratic
profile that meet the layer averages have the same first order terms and therefore lead to identical
net exchange rates. In particular, the linear subgrid profile approximation used in Sec. 3.2 for
adjacent layer net exchange computations is therefore equivalent to a second order approximation.

Note that this demonstration is only valid for conditions in which layer thicknesses are com-
parable and that the reasoning is made with blackbody intensity layer averages, whereas GCM
outputs are temperature averages. Practical use therefore requires that blackbody intensities may
be confidently linearized as fonction of temperature, which implies limited temperatures gradients.

7.2 Errors due to the isothermal layer approximation

The same analysis may also be used to justify the use of the isothermal layer assumption for non
adjacent layer net exchange computations. We consider an atmosphere with the same previous
temperature profile that is compatible with a second order blackbody intensity profile within the
considered spectral band. Under this assumption, the net exchange between two layers ¢ and j
(Eq. 12) of thickness e separated by a layer of thickness [ may be approximated as

w;j = / dvexp(—k,l)[1 — exp(—k:,,e)]2 (B; — B)) (45)
Av
= dv exp(—ky1) [1 — exp(—ky,e)]” b(l + ¢) (46)
Av
Using the exact expression of 1; ; (Eq. 43), the corresponding relative error £ = w;d in the

optically thick limit writes:

ifkl,e>>1then5z2_kue

> Rl (47)
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If the optical thickness between the two layers distant of [ is also high (k,I > 1), the relative error
on the net exchange is £ ~ 7, which means that the relative error on the net exchange between
two layers due to the isothermal layer approximation decreases when the distance between the two
layer increases.

One can be more precise when considering three contiguous layers, numbered 1, 2 and 3, of
thickness e. We estimate the error made when computing the net exchanges between layer 1 and
the two other layers, ¢ = 12 + 1,3, accounting for the exact sublayer profile for ¢ o (i.e. for
the adjacent layer) and using the isothermal layer assumption for ¢; 3 (i.e. for the distant layer).

With the same notation as here above with [ = e, the corresponding relative error becomes:

e _ (kye — 2)[1 — exp(—kye)] + 2k, e exp(—kye)

(kye+2)[1 — exp(—k,e)] — 2k, eexp(—k,e) + wlp%‘jﬁe) {2[1 — exp(—k,e)] — 2k, eexp(—k,e)}

This relative error is 0 for small values of the optical thickness k,e, reaches 5% for an optical
thickness of 2, then decreases toward 0 when the optical thickness increases.
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