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87 avenue du Docteur Albert Schweitzer, F-33608 Pessac France.∗

Daniel Brosetta
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We present the master (i.e. unique) behavior of the squared capillary length - so called the
Sudgen factor-, as a function of the temperature-like field along the critical isochore, asymptotically
close to the gas-liquid critical point of twenty (one component) fluids. This master behavior is
obtained using the scale dilatation of the relevant physical fields of the one-component fluids. The
scale dilatation introduces the fluid-dependent scale factors in a manner analog with the linear
relations between physical fields and scaling fields needed by the renormalization theory applied to
the Ising-like universality class. The master behavior for the Sudgen factor satisfies hyperscaling
and can be asymptotically fitted by the leading terms of the theoretical crossover functions for
the correlation length and the susceptibility in the homogeneous domain recently obtained from
massive renormalization in field theory. In the absence of corresponding estimation of the theoretical
crossover functions for the interfacial tension, we define the range of the temperature-like field where
the master leading power law can be practically used to predict the singular behavior of the Sudgen
factor in conformity with the theoretical description provided by the massive renormalization scheme
within the extended asymptotic domain of the one-component fluid “subclass”.

PACS numbers: 64.60.-i, 05.70.Jk, 64.70.Fx

1. INTRODUCTION

The knowledge of interfacial properties [1] for a non-
homogeneous fluid of coexisting vapor and liquid at equi-
librium is of prime importance for many engineering ap-
plications and process simulations. Moreover, accurate
predictions of these interfacial properties are essential to
gain confidence in modeling underground geological fluid
flows in porous media, oil recovery, gas storage in geo-
logical formations, pool boiling phenomena, microfluidic
devices based on wetting phenomena, etc.

A large number of different forms of related phe-
nomenological laws, the so-called ancillary equations, are
reported in the literature to calculate interfacial prop-
erties along the vapor-liquid equilibrium (VLE) line [2].
These relations complement the complex multiparameter
equations of state (EOS’s) which have been developed to
accurately fit the thermodynamic properties measured
in the homogeneous domain. Such a phenomenologi-
cal approach to estimate fluid properties is commonly
based on the multiparameter corresponding-states prin-
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ciple [2, 3, 4]. In the following we call n-CSEOS such
an EOS which contains n ≥ 2 system-dependent param-
eters. The main reason for the power of such a phe-
nomenological approach is related to the fact that the
two-parameter corresponding-states (2-CS) principle can
be applied to any polynomial EOS which has a liquid-
vapor critical point [5]. However, in spite of increasing
the number of fluid-dependent parameters, the common
calculation of interfacial properties from ancillary equa-
tions and n-CSEOS, is not only mathematically complex,
but is also unable to account for:

1) the molecular fluid complexity [3], especially the
non-spherical symmetry of molecules and the quantum
behavior of light fluids [4];

2) the asymptotic scaling of the critical phenomena

close to the gas-liquid critical point [6], especially the
non-analytic Ising-like nature [7, 8] of the critical expo-
nent [9].

Among these interfacial properties, the capillary length
ℓCa, or more precisely the squared capillary length (ℓCa)
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also called the Sugden factor [10] and noted Sg in the
following, plays a special role on Earth’s gravity envi-
ronment (recalled here by the subscript g). The Sugden
factor reflects the balance between interfacial and volu-
mic forces which defines the shape and the position of the
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interface in equilibrium when subject to the gravity field
of constant acceleration g. In the case of perfect liquid
wetting,Sg is then related to the surface tension σ and
the density difference ∆ρLV = ρL − ρV between coexist-
ing liquid (density ρL) and vapor (density ρV ) phases by
the equation

Sg =
2σ

g∆ρLV

(1)

where σ is the surface tension. Therefore, the knowledge
of the Sugden factor is an important challenge to provide
better control on non homogeneous fluid properties.

In addition, as clearly documented two decades ago
[11, 12, 13], the temperature dependence of Sg, along a
large temperature range of the VLE line of all investi-
gated one-component fluids [11, 12, 14, 15, 16, 17, 18,
19, 20, 21, 22], shows a pure power law behavior which is
applicable over an appreciably larger temperature range
[see below Eq. (2) and the related dicussion of the Fig.
1a]. Such a weak temperature dependence of the effective
exponent at small but finite distance of the critical point
was partly well-understood to be related to the smallest
value (≃ 0.51 [9], see below) of the confluent exponents
which govern the corrections to asymptotic scaling of crit-
ical phenemonena [23]. However the theoretical reason to
observe a near zero-value of the amplitude contribution
of the confluent corrections for the Sugden factor case
remains unclear, specially in the absence of estimation of
the crossover behavior of the surface tension.

Indeed, the significant theoretical improvements to ac-
count for classical-to-critical crossover [8], specially in
the one-component fluids [6], provide the most power-
ful tools available today to analyze accurately interfa-
cial properties in large temperature ranges of the non-
homogeneous domain. For example in the present work,
using the crossover functions recently derived [24, 25]
from the massive renormalization scheme [26, 27, 28, 29],
our main objective is to accurately estimate this lead-
ing asymptotic behavior of Sg from scaling arguements
[1, 30, 31, 32] and available MR description [33, 34, 35] of
the master singular behavior of the one-component fluid
“subclass”. Such a description is based on the formal
analogy between the scale dilatation of the physical field
variables proposed by Garrabos [36, 37, 38] and the linear
relation between the physical fields and the scaling fields
needed by the renormalization theory [39]. The major
advantage of this scale dilatation method is to estimate
the universal behavior of any one-component fluids with-

out adjustable parameters, by using only the four critical
coordinates of its liquid-vapor critical point (excluding
here quantum fluids [38] to simplify the presentation of
the scale dilatation method).

The paper is organized as follows. Section 2 demon-
strates the master singular behavior of Sg observed from
the scale dilatation method. The corresponding Ising-
like asymptotic description of Sg based on hyperscaling
[1, 30, 31, 32] and MR description [26, 28, 29] of the criti-
cal crossover is reported in Section 3. The master leading

terms of the MR crossover functions for the correlation
length and the susceptibility in the homogeneous domain
[24, 25], are used to demonstrate that the fit of the mas-
ter behavior observed in the (nonhomogeneous) extended
asymptotic domain can be made with a theoretical preci-
sion of the same order of magnitude than the experimen-
tal one. The discussion given in Section 4 shows the main
points to be considered for a classical-to-critical crossover
description of the interfacial properties at finite temper-
ature distance to the critical temperature. Specifically,
we estimate precisely the temperature-like range where
this theoretical treatment becomes unappropriate to rep-
resent the increasing non critical microscopic difference
between gas and liquid approaching the triple point tem-
perature. Conclusion is given in Section 5.

2. MASTER SINGULAR BEHAVIOR OF THE

SUGDEN FACTOR

2.1. The data sources

The Sugden factor measurements Sg (|∆T |) as a func-
tion of the temperature distance ∆T = T − Tc to the
critical point in the nonhomogeneous range T < Tc, have
been published and analyzed for several one-component
fluids [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 40]. T
(Tc) is the temperature (critical temperature). Sg (|∆T |)
data are generally obtained along the critical isochore
ρ = ρc in a finite temperature range bounded by max
and min values of |∆T | = Tc,exp − T , where Tc,exp is the
measured (or estimated) critical temperature in the ex-
periments [ρ (ρc) is the density (critical density)]. The
relative precision clamed by the authors is generally lower
than 10%. For most fluids, Sg was fitted using the effec-
tive power law of equation [1, 11, 13]

Sg = S0,e |∆τ∗|ϕe (2)

where the dimensionless temperature distance |∆τ∗| to
the critical point was defined by

|∆τ∗| =
|∆T |
Tc,exp

=
Tc,exp − T

Tc,exp

(3)

In Eq. (2), the free amplitude S0,e was a fluid-dependent
quantity related to the effective value ϕe ≃ 0.91 − 0.97
of the free (or fixed) exponent ϕe considered as an ad-
justable parameter when measurements were performed
in a restricted temperature range at finite distance to
Tc,exp. The corresponding results ϕe;S0,e [with free (or
fixed) value of ϕe] for each selected fluid are summarized
in columns 3 and 4 of Table I (references are given in
column 2). However, admitting now that ∆τ∗ is the rel-
evant physical field [30] to describe the singular scaling
behavior of the thermodynamic fluid properties in the ho-
mogeneous or nonhomogenous domains along the critical
isochore, the three main “critical phenomena” features of
these fitting analyses are:
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i) the correlation between the effective values of S0,e

and ϕe is highly dependent on Tc,exp and on the (min
and max) values of the temperature range covered by
the fit “close” to the critical point; especially when the
local values of ϕe are estimated in the temperature range
lower than |∆τ∗| < 0.05, the common averaged value
ϕe = 0.935 ± 0.015, equal to the asymptotic universal
value ϕ = 2ν − β = 0.935 ± 0.015 obtained from the
present theoretical estimation of the critical exponents
ν = and β = [9] [see below Eq. (5)], appears consistent
with the Sg data, whatever the one-component fluid.

ii) accordingly, the temperature dependence of the ef-
fective exponent over a larger temperature range is very
small (then with a sign not unambiguously defined for the
small amplitude of the leading confluent term), whatever
the one-component fluid or the extension of the temper-
ature range of the fit;

iii) the measured value of the effective exponent is
never equal to the mean-field value ϕMF = 1, whatever
the one-component fluid and even the large temperature
range of the fit;

As a matter of fact, it is well-established now [8] that
the range of validity of the asymptotic scaling form of Eq.
(2) is, strictly restricted to the asymptotic approach of

the liquid-gas critical point (CP), when σ ∝ |∆τ∗|φ and

∆ρLV ∝ |∆τ∗|β simultaneously go to zero for ∆τ∗ → 0
in Eq. (1). φ = (d − 1) ν ≈ 1.261 and β ≈ 0.326 are
the universal values [9] of the critical exponents related
to σ and ∆ρLV , respectively, and ν ≈ 0.63 is the univer-
sal value [9] of the critical exponent for the correlation

length, with ξ ∝ |∆τ∗|−ν
(see also [8] for details of nota-

tions and definitions). However, at small but finite |∆τ∗|,
any pure power law like Eq. (2) must be modified to ac-
count for confluent corrections to scaling which can be
represented by the Wegner-like expansion [23] with the
universal features of uniaxial 3D Ising like systems [8].
Then, the asymptotic singular decrease of Sg must be
fitted by the following equation

Sg = S0 |∆τ∗|ϕ
[

1 +
∞
∑

i=1

Si |∆τ∗|i∆
]

(4)

where ∆ ≈ 0.51 is the universal value [9] of the critical
exponent which characterizes the leading family of the
confluent corrections to scaling. The amplitudes S0, S1,
... Si, etc., are fluid-dependent quantities. Equation (4)
means that the critical exponent

ϕ = φ − β = (d − 1) ν − β (5)

only takes its universal value ϕ ≈ 0.935 asymptotically
when ∆τ∗ → 0. Therefore, the weak temperature depen-
dence of the effective exponent at finite value of ∆τ∗, first
shows low rate of convergence of the Wegner expansion.
Moreover, in the fitting of the experimental Sg data, if
the contribution of the confluent correction terms is neg-

ligible, then

∞
∑

i=1

Si |∆τ∗|i∆ ∼ 0 in Eq. (4).

To illustrate this behavior, the Sugden factor Sg ≡
(ℓCa)

2
(expressed in m2) can be divided by (Tc − T )

ϕ

(expressed in Kϕ, with ϕ = 0.935) [13]. In Figure 1a (log-

log scale), this convenient scaled form
Sg

(Tc−T )ϕ [m2 K−ϕ],

is shown as a function of the temperature distance Tc−T
[K] for eighteen one-component fluids. Each curve has a
relative temperature extension corresponding to the ex-
perimental temperature range (including for some fluids
measurements until their triple point temperature TTP ).
The use of such dimensional quantities makes the order
of magnitude of the leading amplitude contribution (i.e.

Sg (T = Tc + 1K) ≃ S0 (Tc)
−ϕ) of each fluid clearly dis-

tinguishable, while the quasi-horizontal line whatever the
fluid (except the water case which needs a special atten-
tion given in § 4.3) shows that the confluent contribution

is negligible (i.e.

∞
∑

i=1

Si (Tc)
−i∆

(Tc − T )
i∆ ∼ 0). Sg val-

ues at Tc − T = 1 K cover one decade: from 1.5 10−8 m2

for sulfurhexafluoride [with S0 (SF6) = 3.84 mm2], to
1.5 10−7 m2 for methane [S0 (CH4) = 13.80 mm2].

We have noted that some of the data reported in
Fig. 1a have been measured in a large temperature
range of the coexisting VLE line, including measure-
ments close to TTP . To separate the asymptotic critical
range from the triple point location along the tempera-
ture axis, we have marked by vertical arrows the tem-
perature distance where T = 0.7 Tc (i.e. the tempera-
ture distance where the practical fluid-dependent acen-
tric factor [41] is defined in the nonhomogeneous do-
main). The “non-critical” temperature range between
0.3 Tc ≤ Tc − T ≤ Tc − TTP (the right hand side of the
corresponding arrows in Fig. 1a) is considered to be far
away from the critical point. Close to the critical point,
the practical temperature range where the Wegner-like
expansion fit the singular behavior does not usually ex-
ceed a few percent in |∆τ∗| [42]. In a similar arbitrary
manner, we have represented by vertical arrows the tem-
perature distance where T = 0.99 Tc, to make clear the
“critical” temperature range Tc − T ≤ 0.01 Tc (the left
hand side of the corresponding arrows in Fig. 1a), where
the use of Eq. (4) has a theoretical justification, as dis-
cussed below in § 3. To introduce the main physical pa-
rameters needed for accurate description of the singular
behavior of Sg in this asymptotic temperature range, the
next subsection presents the application of the scale di-
latation method [36, 37] leading to define the dimension-
less form (noted S∗

g ) and the renormalized form (noted
S∗

g∗) of the Sugden factor, with two objectives:

1) to show that any modeling based on the 2-CS prin-
ciple is inaccurate to describe the fluid dependence of
(dimensionless) S∗

g [see below Eq. (12)] as a function of
the (dimensionless) temperature field ∆τ∗;

2) to unambiguously show the master singular behavior
of (renormalized) S∗

g∗ [see below Eq. (18)] as a function of
the (renormalized) temperature-like field, noted T ∗ [see
below Eq. (14)] .



4

Fluid Ref ϕe S0,e S0,ϕ Ref ZS,ϕ δZS,ϕ
(

mm2
) (

mm2
)

%

Ar [17] 0.940 4.13 4.036 [13] 2.423 −1.9

[12] 0.913 3.78 4.18 This work 2.510 +1.6

Xe [18] 0.942 3.05 2.953 [13] 2.668 +8.0

N2 [17] 0.930 5.46 5.59 This work 2.446 −1.0

[12] 0.926 5.10 5.32 This work 2.328 −5.7

O2 [12] 0.909 4.85 5.47 This work 2.563 +4.6

CO2 [19] 0.933 9.47 9.52 [13] 2.55 +3.3

[12] 0.920 8.40 9.0 This work 2.411 −2.4

SF6 [11] 0.943 3.931 3.84 [13] 2.46 −0.4

CCl3F [11] 0.928 6.234 6.44 This work 2.470 0.0

CCl2F2 [11] 0.936 5.615 5.589 This work 2.476 +0.3

CClF3 [19] 0.972 5.33 4.5 This work 2.268 −8.1

[11] 0.9379 4.847 4.783 This work 2.411 −2.4

CBrF3 [11] 0.938 3.879 3.826 This work 2.374 −3.1

CHClF2 [11] 0.937 6.859 6.796 This work 2.323 −6.0

C2H4 [14] 13.90 [13] 2.480 +0.4

CH4 [12] 0.933 13.6 13.73 This work 2.382 −3.6

C2H6 [14, 16] 14.42 [13] 2.437 −1.3

i − C4H10 [15] 12.71 [13] 2.392 −3.2

n − C5H12 [40] 0.935 12.916 2.488 +0.7

n − C6H14 [40] 0.935 12.753 2.445 −1.0

n − C7H16 [40] 0.935 12.520 2.552 +3.4

n − C8H18 [40] 0.935 12.217 2.520 +2.0

H2O [22] 34.72 [13] 2.262 −8.4

[21] 0.91 33.2 37.25 This work 2.427 −1.7

〈ZS,ϕ〉 2.4530 ±3.1

ZS 2.47

Table I: Effective leading amplitude S0,e [see Eq. (2)] of the Sugden factor Sg ≡ (ℓCa)2 (ℓCa is the capillary length) (column
2) for several one-component fluids (colum 1); Calculated values of the master amplitudeZS,e (column 3) of the renormalized

Sugden factor S∗
g∗ [see Eq. (18)], using Eq. (22); The residual δZS = 100 ×

(

(ZS)exp

ZS
− 1
)

(expressed in %) from the value

ZS = 2.47 estimated from Eq. (43) is given in column 4; (for data sources and the selected fitting results see the references
given in the last column).

2.2. The scale dilatation method to observe the

master singular behavior

The following analysis of the Sugden factor from the
scale dilatation method is similar to the one of the corre-
lation length given in Ref. [33]. We recall only the main
features (ignoring the quantum contributions at T ∼= Tc

[38]). The input data are the four critical coordinates

Qmin
c,ap̄

=

{

Tc, vp̄,c, pc, γ
′
c =

[

(

∂p

∂T

)

vp̄,c

]

CP

}

(6)

which localize the liquid gas critical point on the phase
surface of equation Φp

ap̄
(p, vp̄, T ) = 0 for each fluid par-

ticle of mass mp̄ [43]. p is the pressure, vp̄ is the particle
volume, and ap̄ (T, vp̄) is the Helmholtz energy per parti-
cle. The subscript p̄ refers to a particle quantity and all

the definitions and notations related to Eq. (6) are given
in [36, 37, 38]. The critical data related to the fluids se-
lected in Table I are reported in Table II. We note that
Tc values of Table II, which were obtained from the ther-
modynamic analysis of the phase surface, can be slightly
different from Tc,exp values given in the experiments ref-
ered in Table I. Also ρc =

mp̄

vp̄,c
values from Table II can

be slightly different from the experimental critical den-
sity values reported in these experiments.

In combining Qmin
c,ap̄

, the Boltzmann constant kB , and

d = 3, Eq. (6) can be written in a more convenient form,
such that

Qmin
c =

{

(βc)
−1

, αc, Zc, Yc

}

(7)

which introduces the following four scale factors given by,
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Fluid
mp̄

(

10−26kg
)

Tc

(K)

vp̄,c
(

nm3
)

pc

(MPa)

γ′
c

(

MPaK−1
)

(βc)
−1

(

10−21J
)

αc

(nm)
Zc Yc

Ar 6.634 150.725 0.12388 4.865 0.191 2.08099 0.753463 0.2896 4.32882

Xe 21.803 289.733 0.19589 5.84 0.1182 4.0003 0.881508 0.28601 4.85434

N2 4.652 126.214 0.14814 3.398 0.1715 1.74258 0.80043 0.288875 5.37014

O2 5.314 154.580 0.12187 5.043 0.1953 2.13421 0.750786 0.287972 4.98641

CO2 7.308 304.137 0.15622 7.3753 0.170 4.19907 0.82882 0.27438 6.0104

SF6 24.255 318.735 0.32769 3.754 0.0835 4.40062 1.0544 0.27954 6.0896

CCl3F 22.810 471.110 0.41174 4.4076 0.0655 6.50438 1.13850 0.27901 6.00530

CCl2F2 20.078 384.930 0.35562 4.1249 0.0745 5.31454 1.08814 0.27602 5.95186

CClF3 17.348 301.88 0.29807 3.877 0.0910 4.16791 1.02441 0.27727 6.08861

CBrF3 24.727 340.19 0.33191 3.956 0.0810 4.69683 1.05889 0.27956 5.96985

CHClF2 14.359 369.30 0.27454 4.990 0.0965 5.09874 1.00721 0.26869 6.14259

C2H4 4.658 282.345 0.21667 5.042 0.11337 3.89820 0.91781 0.28131 5.34856

CH4 2.664 190.564 0.16361 4.5992 0.14442 2.63102 0.830133 0.28679 4.9838

C2H6 4.993 305.322 0.24171 4.872 0.10304 4.21554 0.95290 0.27935 5.45505

i − C4H10 9.652 407.844 0.43020 3.629 0.0610 5.63084 1.15770 0.27726 5.93407

n − C5H12 11.981 469.70 0.521785 3.3665 0.0511 6.48491 1.24425 0.270875 6.12956

n − C6H14 14.310 507.49 0.61138 3.0181 0.043658∗ 7.00666 1.3186 0.26667 6.30719

n − C7H16 16.6386 540.13 0.7168 2.727 0.038068∗ 7.45731 1.3983 0.26218 6.64356

n − C8H18 18.9683 568.88 0.81839 2.486 0.033768∗ 7.85424 1.46746 0.258978 6.82776

H2O 2.991 647.067 0.09268 22.046 0.275 8.93373 0.740 0.229 7.071

Table II: Set of critical parameters [see Eqs. (6) and (7)] for twenty one-component fluids of particle mass mp̄ [43] selected in
the present work (see Fig. 1).

(βc)
−1

= kBTc (8)

αc =

(

kBTc

pc

)
1
d

(9)

Zc =
pcvp̄,c

kBTc

(10)

Yc = γ′
c

Tc

pc

− 1 (11)

Equation (7) involves one energy scale unit (βc)
−1

, one
length scale unit αc, and two dimensionless scale factors

Zc and Yc characterizing two preferred directions to cross
the critical point along the critical isotherm and the crit-
ical isochore, respectively. αc, which does not depend of

the size L ∼ (V )
1
d of the container, has a clear physical

meaning as length unit [36]: it represents the spatial ex-
tent of the short-ranged (Lennard-Jones like) molecular
interaction [44], which allows us to define vc,I = kBTc

pc

as the volume of the microscopic critical interaction cell

(CIC) of each fluid. Zc is the usual critical compression

factor. Furthermore, (Zc)
−1

= ncvc,I is the number of

particles that fills vc,I . Then the minimal set of data in
Eq. (7) is related to the thermodynamic properties of

the critical interaction cell of size αc = (vc,I)
1
d [45].

We recall that the critical compression factor Zc, and
the critical Riedel factor αR,c [46] [related to Yc by αR,c =
Yc + 1], are among the basic parameters used to develop
4-CSEOS’s for engineering fluid modeling [47].

The characteristic units (βc)
−1 and αc are the param-

eters needed to provide a dimensionless analysis of the
fluid properties, leading to their “classical” description
based on the two-parameter corresponding state (2-CS)
description. Obviously, the dimensionless form of the
Sugden factor is given by

S∗
g =

Sg

(αc)
2 (12)

Figure 1b (log-log scale; color online) represents the con-
fluent behavior of the rescaled dimensionless quantity

S∗
g

|∆τ∗|ϕ as a function of the dimensionless temperature

distance ∆τ∗. Figure 1b complements Fig. 3 initially
published by Moldover in Ref. [13], after normalization

of the vertical axis by (αc)
2
. Figure 1b illustrates the re-

sults of any classical two-parameter corresponding state
theory (here the two characteristic parameters are (βc)

−1

and αc). Figure 1b, shows the failure of the 2-CS prin-
ciple in terms of molecular fluid complexity since, from
xenon to water, the dimensionless Sugden factor covers
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one order of magnitude at the same reduced tempera-
ture distance to the critical point. Moreover, in terms
of classical critical phenomena, using Eq. (1) where

∆ρLV ∝ |∆τ∗|βMF and σ ∝ |∆τ∗|φMF with βMF = 1
2

and φMF = 3
2 [48], we obtain the mean field exponent

ϕMF = 1. This mean-field value associated to the clas-

sical behavior of the correlation length (with exponent
νMF = 1

2 ) expected from Van der Waals-like theories
[48, 49], is unable to describe the experimental results,
even at large temperature distance, as shown by the sig-
nificantly positive slope ϕMF −ϕ ≃ 0.065 reported in Fig.
1b. In addition, the scaling law (d − 1) ν = φ, that ex-
plicitly involve d, is not correct for mean-field exponents
in three dimension. We will turn back on the mean-
field theories in § 4.2 when we will discuss the related
critical-to-critical crossover description of the interfacial
properties.

In the next step, the dimensionless scale factors Yc and
Zc are introduced throughout the scale dilatation method
[37]. Typically, the scale dilatation of the dimensionless
temperature distance,

∆τ∗ = kBβc (T − Tc) (13)

leads to the renormalized thermal field,

T ∗ = Yc∆τ∗ (14)

The scale dilatation of the dimensionless order parameter
density

∆m∗ = (αc)
d
(n − nc) = (Zc)

−1
∆ρ̃ (15)

leads to the renormalized order parameter density

M∗ = (Zc)
d
2 ∆m∗ = (Zc)

1
2 ∆ρ̃ (16)

In addition, the renormalized form ℓ∗ ≡ ξ∗ = ξ
αc

of the

correlation length ξ [38], leads to the renormalized form,
noted Σ∗, of the surface tension σ such that [50]

Σ∗ ≡ σ∗ = σβc (αc)
d−1 (17)

Taking into account Eqs. (1) and (12), the renormalized
Sugden factor S∗

g∗ reads as follows [50]

S∗
g∗ = g∗ (Zc)

− 3
2 (ℓ∗Ca)

d−1
= g∗ (Zc)

− 3
2 S∗

g (18)

with g∗ = mp̄βcαcg. Therefore, after application of the
scale dilatation method, the renormalized form of Eq. (1)
is given by

S∗
g∗ =

Σ∗

M∗
LV

(19)

As expected [36], the collapse on the master curve ob-
tained from the scale transformations

∆τ∗ → T ∗ = Yc∆τ∗

S∗
g → S∗

g∗ = g∗ (Zc)
− 3

2 S∗
g (T 1 case)

→ S∗
g∗ × |T ∗|−ϕ (T 2 case)

(20)

is shown in Fig. 1c (T 1 case) and 1d (T 2 case), inde-

pendently of any theoretical form used to represent this

master behavior. Now the scatter of the collapsed data
corresponds to the estimated precision (10%) for the Sug-
den factor of each fluid.

2.3. Predictive power of the scale dilatation

method within the Ising-like preasymptotic domain

As initially shown in Ref. [37], we can expect to fit the
master singular behavior of S∗

g∗ observed asymptotically
close to the critical temperature by a restricted (two-
term) Wegner-like expansion given by

S∗
g∗ = ZS |T ∗|φ

[

1 + Z1
S |T ∗|∆

]

(21)

where φ ≈ 0.935 and ∆ ≈ 0.51 are the universal crit-
ical exponents while ZS and Z1

S are the master (i.e.
unique) leading and confluent amplitudes, respectively,
for all one-components fluids. By term to term compari-
son of Eqs. (4) and (21) using Eqs. (20), we obtain the
following relations

ZS = g∗ (αc)
1−d

(Zc)
− 3

2 (Yc)
−ϕ

S0 (22)

Z1
S = (Yc)

−∆
S1 (23)

which shows the unequivocal link between master ampli-
tudes and system-dependent amplitudes, through Qmin

c

[(Eq. (7)].
In other words, only when the fluid-dependent set

Qmin
c and the master amplitudes ZS and Z1

S are
known, the restricted Wegner-like expansion [Eq. (4)
with i ≤ 1] of Sg can be determined for any one-
component fluid by inverting Eqs.(22) and (23), such that

S0 = (αc)
d−1 (g∗)−1 (Zc)

3
2 (Yc)

ϕ ZS and S1 = (Yc)
∆ Z1

S .
Then, the master values of ZS and Z1

S conform to the
universal features calculated for the Ising-like universal-
ity class (i.e., some combinations and ratios of ZS and
Z1

S take universal values, in agreement with the two-
scale-factor universality). We will detail this point in §
4. Before, in the next Section, the scale transformations
of Eq. (20) are reported in conformity with the asymp-
totic linearization [39] of the two relevant fields needed
by the renormalization group theory. That leads indeed
to the correct account for universal features estimated in
the preasymptotic domain and the accurate determina-
tion of ZS using the present theoretical status provided
by the MR scheme [9, 24].

3. ISING-LIKE CROSSOVER FUNCTIONS FOR

THE SUGDEN FACTOR

To our knowledge, the theoretical function giving the
classical-to-critical crossover of the interfacial tension
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Figure 1: (Color online) a) Singular behavior (log-log scale) of
Sg

(Tc−T )ϕ (expressed in m2 K−ϕ, with ϕ = 0.935), as a function

of the temperature distance Tc −T , for nonhomogeneous one-component fluids (see Tables I and II). For each fluid, the arrows
indicate the arbitrary temperature distances of Tc −T = 0.01Tc (left) and Tc −T = 0.3Tc (rigth); Inserted Table gives the color
indexation for each fluid (see Table I and text for details); b) Log-Log scale of the respective dimensionless variables using αc as
a length unit and (βc)

−1 as a energy unit. Each distinguishable curve illustrates the failure of the classical corresponding state
scheme. The expected slopes of a classical power law with mean field exponent ϕMF are given by the directions labelled MF

(see text); c) Master singular behavior (log-log scale) of the renormalized Sugden factor S∗
g∗ = g∗ (Zc)

− 3
2 S∗

g (with S∗
g =

Sg

(αc)2

and g∗ = mp̄βcαcg), as a function of the renormalized thermal field T ∗ = Yc |∆τ∗| [see text and Eq. (20)]; d) Master

“confluent” behavior of the rescaled quantity
S∗

g∗

|T ∗|ϕ
, as a function of the renormalized thermal field T ∗ = Yc |∆τ∗|, [see text

and Eq. (20)]. In c) and d): The curve labelled MR+ corresponds to the Eq. (40) using crossover Eqs. (32) and (33) for the

correlation length and the susceptibility, respectively, in the homogeneous domain; L
{1f}
PAD [Eq. (39)] and L{1f} [see Eq. (55)]

correspond to the extension of the preasymptotic domain and the extended asymptotic domain, respectively; The graduation

of the upper horizontal axis gives
ℓ∗(T ∗>0)

1.96
calculated from master crossover Eq. (32); At large values of the renormalized

thermal field (T ∗ ≥ 0.2) which correspond to
ℓ∗(T ∗>0)

1.96
. 1, the restricted range labelled DEC indicates the effective crossover

for the exponent β, while the vertical index labelled m gives a rough estimate of the microscopic limit
ℓ∗(T ∗>0)

1.96
≈ 1

2
where the

correlation length ξ in the nonhomogeneous domain will reach the order of magnitude of the two particle equilibrium position
re (with re ' σ, where σ is the size of the particle); See inserted Table and legend of a) for fluid color indexation; See legend
of b) for arrows in lower horizontal axis.
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σ (∆τ∗) is not available from the MR scheme, while the
one of the coexisting density ∆ρLV (∆τ∗) [25] remains
affected by a large uncertainty on the value of the first
confluent amplitude. Therefore, using either Eq. (1) for
physical properties or Eq. (19) for renormalized proper-
ties, the related crossover functions of the physical and
renormalized Sugden factor remain undetermined. Es-
pecially the value of Z1

S [S1, respectively] in Eq. (21)
[Eq. (4), respectively] cannot be estimated from theo-
retical prediction of the universal value of the confluent
amplitude ratios related to the lowest confluent exponent
∆ (see also our discussion in Section 4.1). However, hy-

perscaling related to the two-scale-factor universality of
the asymptotic Ising-like description provides unambigu-
ous determination of the values of ZS [S0, respectively]
in Eq. (21) [Eq. (4), respectively]. This determination
is presented below using the master forms of Ising-like
crossover functions obtained from the massive renormal-
ization (MR) scheme.

However, we note that a form equivalent to Eq. (21)
was also recovered in the crossover approach of Belyakov
et al [51], who uses adjustable parameters as scale factors
of the physical variables. The solution was obtained on
the basis of the ǫ-expansion in first order ǫ and was not
considered here due to the arbitrary of the phenomeno-
logical adjustement to provide the crossover to a classical
behavior.

3.1. Asymptotic hyperscaling description of the

Sugden factor

It is well-established experimentally [12, 13] and the-
oretically [1, 52, 53, 55], that the asymptotic limit for
∆τ∗ → 0 of the product of the interfacial tension by
the squared correlation length takes a universal value,
noted R±

σξ, for the Ising-like universality class. This re-
sult proceeds from the Widom’s scaling law between the
corresponding critical exponents ν and µ given by

(d − 1) ν = φ (24)

with d = 3 in our present study. Therefore, we can in-
troduce R±

σξ as follows

R±
σξ = βc × lim

[

σ (|∆τ∗|) × [ξ (∆τ∗)]d−1
]

∆τ∗→0±
(25)

where the superscript ± refers to the singular behavior
of ξ above (+) or below (−) Tc. As a matter of fact, ac-

counting for the universal ratio ξ(∆τ∗>0)
ξ(∆τ∗<0) = 1.96 for the

Ising-like universality class [8], the amplitude combina-

tion R+
σξ = (1.96)

d−1
R−

σξ shows that an interfacial prop-

erty (here σ ∝ |∆τ∗|φ) in the non-homogeneous domain
(∆τ∗ < 0) is related in a universal manner to the corre-
lation length in the homogeneous domain (∆τ∗ > 0).

Considering the scaling law

dν = γ + 2β (26)

it is also well-established that the amplitude combina-

tion
(

ξ
+
0

αc

)−d
Γ+

B2 , noted
R

+

C

(R
+

ξ )d , (using customary nota-

tions [7]) corresponds to the universal value of the asymp-
totic limit for ∆τ∗ → 0 of the following combination of
singular properties

R
+

C

(R
+

ξ )d = 4βc (ρc)
2 ×

lim
[

κT (∆τ∗)×[ξ(∆τ∗)]−d

[∆ρLV (|∆τ∗|)]2

]

∆τ∗→0±

(27)

Equation (27) relates the singular behaviors of the cor-
relation length ξ (∆τ∗) [with critical exponent ν and
leading amplitude ξ+

0 ] in the homogeneous domain, the
isothermal compressibility κT (∆τ∗) [with critical expo-

nent γ and leading amplitude Γ+
0 = Γ+

pc
] in the ho-

mogeneous domain and the order parameter density
∆ρLV (|∆τ∗|) [with critical exponent β and leading am-
plitude B0 = 2ρcB] in the non-homogeneous domain.

Using Eqs. (1), (25), and (27) to eliminate both prop-
erties σ (|∆τ∗|) and ∆ρLV (|∆τ∗|) of nonhomogeneous
domain, we obtain the following asymptotic equation

lim [Sg]∆τ∗→0− = R+
σξ

(R
+

C)
1
2

(R
+

ξ )
d
2

× 1

2(βc)
3
2 ρcg

×

lim

[

1

[κT (∆τ∗)×ξ(∆τ∗)]
1
2

]

∆τ∗→0+

(28)
which relates the asymtotical singular behavior of the
Sugden factor in the nonhomogeneous domain to the ones
of κT (∆τ∗) and ξ (∆τ∗) in the homogeneous domain.
The corresponding scaling law reads

(

d

2
− 1

)

ν = ϕ − γ

2
(29)

The scaling laws given by Eqs. (24), (26), and (29), where
explicit reference to the space dimension is needed to
connect correlation exponents and thermodynamic expo-
nents, are characteristic of hyperscaling and reflect the
universal features related to the two-scale-factor univer-
sality, which do not depend on the (homogeneous or non-
homogeneous) domain (see also Ref. [56]).

3.2. The master crossover of the one-component

fluid subclass

We are now able to construct one pseudo-crossover
function based on Eq. (28). This pseudo-crossover
function for the Sugden factor accounts exactly for the
asymptotic two-scale factor universality but agrees only
qualitatively with the one-parameter Ising-like critical
crossover description at finite distance to CP. As a matter
of fact, accurate expressions of the complete classical-
to-critical crossover were recently proposed by Bagnuls
and Bervillier [24] and written in appropriate Ising-like
asymptotic forms by Garrabos and Bervillier [25] to ac-
count for error-bars associated with the estimations of the
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universal exponents near the non-Gaussian fixed point.
Moreover, introducing only three characteristic numbers,
L
{1f}, Θ{1f}, and Ψ{1f} (see Ref. [35] for details),

these crossover functions can be easily modified to accu-
rately describe the master singular behavior of the one-
component fluid subclass. In this master description, two
leading amplitudes Z+

χ , Z+
ξ , and one confluent amplitude

among Z1,+
χ and Z1,+

ξ , can be selected as characteristic
parameters of the Ising-like universal features observed
in the Ising-like preasymptotic domain. Z+

χ , Z+
ξ , Z1,+

χ ,

and Z1,+
ξ are associated to the asymptotic crossover be-

havior of the correlation length and the susceptibility
in the homogeneous domain. We recall that the corre-
sponding master crossover functions are asymptotically
approximated by the restricted (two terms) Wegner like
expansions given by the respective equations

ℓ∗ (T ∗) = Z+
ξ (T ∗)

−ν
[

1 + Z1,+
ξ (T ∗)

∆
]

(30)

κ
∗ (T ∗) = Z+

χ (T ∗)
−γ
[

1 + Z1,+
χ (T ∗)

∆
]

(31)

where Z+
χ = 0.119, Z+

ξ = 0.570, Z1,+
χ = 0.555 and

Z1,+
ξ = 0.377 are the constant values of the master (i.e.

fluid independent) amplitudes, with the universal ratio
Z1,+

ξ

Z1,+
χ

= 0.68 [9]. Accordingly, the modified crossover

functions are given by the following equations

1
ℓ∗(T ∗) = Z

{1f}
ξ Z

+
ξ tν

×
i=3
∏

i=1

[

1 + Xξ,it
D(t)

]Yξ,i
(32)

1
κ∗(T ∗) = Z

{1f}
χ Z

+
χ tγ

×
i=3
∏

i=1

[

1 + Xχ,it
D(t)

]Yχ,i
(33)

with

D (t) =
∆ + ∆MF S2

√
t

1 + S2

√
t

(34)

and

t = Θ{1f}T ∗ (35)

All the critical exponents (ν, γ, ∆, ∆MF ) and the con-
stants (Z+

ξ , Z
+
χ , Xξ,i, Yξ,i, Xχ,i, Yχ,i, S2) of the initial

crossover functions defined in Ref. [25] are reported in
Table III. Furthermore, in Eqs. (32) and (33), the prefac-

tors Z
{1f}
ξ and Z

{1f}
χ relate the asymptotic master behav-

ior given by Eqs. (30) and (31), respectively, and satisfy
to unequivocal estimations from the three characteristic

numbers L
{1f}, Θ{1f}, and Ψ{1f} of the one-component

fluid subclass [35], such that,

Z
{1f}
ξ =

[

Z+
ξ Z

+
ξ

(

Θ{1f}
)ν]−1

≡ L
{1f} (36)

Z
{1f}
χ =

[

Z+
X Z

+
χ

(

Θ{1f}
)γ
]−1

=
[

(

L
{1f}

)d (
Ψ{1f}

)2
]−1 (37)

The scale factor Θ{1f} is defined from the following ratios
of the confluent amplitudes

Θ{1f} =

(

Z1,+
ξ

Z
1,+
ξ

)
1
∆

=

(

Z1,+
X

Z
1,+
X

)
1
∆

(38)

where Z
1,+
ξ = −∑i=3

i=1 Xξ,iYξ,i and Z
1,+
χ =

−∑i=3
i=1 Xχ,iYχ,i, with

Z
1,+

ξ

Z
1,+
χ

= 0.68 [25]. All the

values of these master constants are shown in Table IV.
We also note that the master prefactors Z

{1f}
ξ and

Z
{1f}
χ , as all the other prefactors which modify the initial

crossover functions to account for master behavior of the
renormalized properties of the one-compenent fluid sub-
class, take the same value above and below the critical
temperature, while only two of them are characteristic
of this subclass. In addition, the single master crossover

parameter Θ{1f} is the same for any property along the
critical isochore, above and below the critical tempera-
ture. As demonstrated in Refs. [25, 35], it is possible to

define unambiguously the extension T ∗ . L{1f}
PAD of the

preasymptotic domain where each master crossover func-
tion can be approximated by its restricted (two-term)
expansion. Using Θ{1f} (see Table IV) we obtain

T ∗ . L{1f}
PAD =

LIsing
PAD

Θ{1f}
=

10−3

(S2)
2
Θ{1f}

≈ 5 10−4 (39)

where LIsing
PAD = 10−3

(S2)
2 is defined in Ref. [25].

After appropriate rescaling of the master form of each
property included in Eq. (28), we define the following
master quantity

Ŝ (T ∗) = R+
σξ

(

R+
C

)
1
2

(

R+
ξ

)
d
2

[

1

κ∗ (T ∗)
× 1

ℓ∗ (T ∗)

]
1
2

(40)

where the correlation length and the susceptibility are
given by Eqs. (32) and (33), respectively. Ŝ (T ∗)
[Eq. (40)] is the pseudo-crossover function of the Sug-
den factor which accounts for the MR description of
the classical-to-critical crossover, in the homogeneous do-
main (see the discussion in next section). The corre-
sponding curves labelled MR+ in Figs. 1c and 1d, con-
firm the perfect agreement with the master behavior of
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(a) exponent Z
+
ξ S2 i Xξ,i Yξ,i

ν = 0.6303875 2.121008 22.9007 1 40.0606 −0.098968

∆ = 0.50189 2 11.9321 −0.15391

νMF = 0.5 3 1.90235 −0.00789505

Z
1,+
ξ 5.81623

(b) exponent Z
+
χ S2 i Xχ,i Yχ,i

γ = 1.2395935 3.709601 22.9007 1 29.1778 −0.178403

∆ = 0.50189 2 11.7625 −0.282241

γMF = 1.0 3 2.05948 −0.0185424

Z
1,+
χ 8.56347

Table III: Values of the universal exponents and universal parameters for the crossover functions estimated in Ref. [25]; Part
(a) correlation length case in the homogeneous domain; Part (b) susceptibility case in the homogeneous domain.

Correlation length Susceptibility

ν = 0.6303875 γ = 1.2396935
(

Z
+
ξ

)−1

= 0.471474
(

Z
+
χ

)−1
= 0.269571 Θ{1f} = 4.288 10−3

Z+
ξ =

[

Z
+
ξ L

{1f}
(

Θ{1f}
)ν]−1

= 0.57 Z+
χ =

[

Z
+
χ

(

L
{1f}

)−d (

Ψ{1f}
)−2 (

Θ{1f}
)γ
]−1

= 0.119 Ψ{1f} = 1.74 10−4

Z
{1f}
ξ ≡ L

{1f} = 25.6988 Z
{1f}
χ =

[

(

L
{1f}

)d (

Ψ{1f}
)2
]−1

= 1950.7 L
{1f} = 25.6988

∆ = 0.50189

Z
1,+
ξ = 0.68Z

1,+
χ = 5.81623 Z

1,+
χ = 8.56347

Z1,+
ξ = Z

1,+
ξ

(

Θ{1f}
)∆

= 0.68Z1,+
χ = 0.377 Z1,+

χ = Z
1,+
χ

(

Θ{1f}
)∆

= 0.555

Table IV: Universal and master constants of Eqs. (32) and (33) for the correlation length and the susceptibility, respectively,
in the homogeneous domain (see text and Refs. [25, 35] for details). Upper part (lines 1 to 4) refers to the Ising-like leading
term; The values of the three characteristic numbers of the one component fluid “subclass” are reported in column 3, that
demonstrates the unequivocal relation between the “master” crossover functions [35] and the “MR” crossover functions [25].
Lower part (lines 5 to 7) refers to the first term of the confluent correction to scaling.

the one-component fluid subclass when the asymptotic
term of Ŝ (T ∗) corresponds to the one of S∗

g∗ (T ∗) for
T ∗ → 0.

3.3. The master leading power law of the

renormalized Sugden factor

In the preasymptotic domain defined by Eq. (39),
the above formulation of the master singular behavior
of Ŝ (T ∗), with T ∗ > 0, can be approximated by a re-
stricted (two term) expansion of equation

Ŝ (T ∗) = ZS (T ∗)
φ
[

1 + Ẑ1,+
S (T ∗)

∆
]

(41)

where the decorated hat labels pseudo-physical quanti-
ties. Equation (41) contains the asymptotic constraint
of Eq. (28), written following the master description

lim
[

Ŝ (T ∗)
]

T ∗→0+
= lim

[

S∗
g∗ (|T ∗|)

]

T ∗→0− (42)

where S∗
g∗ (|T ∗|), with T ∗ < 0, is given by Eq. (21), while

the difference occuring to the first order of the confluent
corrections to scaling is discussed below (see § 4.1). The
leading amplitude ZS has the master form

ZS = R±
σξ

(

R+
C

)
1
2

(

R+
ξ

)
d
2

(

Z+
χ Z+

ξ

)− 1
2

(43)

Using the universal values R+
σξ = 0.376 (±0.017) [7,

12, 13, 55], R+
C = 0.0574 (±0.0020) [24], R+

ξ =

0.2696 (±0.0007) [24], estimated for the Ising-like univer-
sality class, and the values Z+

χ = 0.119, Z+
ξ = 0.57 (see

Table IV), we obtain

ZS = 2.47 (±0.17) (44)

We note that the error-bar reported for each univer-
sal amplitude combination only account for theoretical
uncertainties on the estimated values of the universal
combinations R+

σξ, R+
C , and R+

ξ , while the “best” cen-

tral values of the master amplitudes Z+
χ and Z+

ξ are
estimated using xenon as a standard one component
fluid . The large error-bar (±5%) on R+

σξ accounts

for the theoretical values R+
σξ ≃ 0.367 (±0.009) and

R+
σξ ≃ 0.372 (±0.009) estimated by Zinn and Fisher [54]

from numerical studies of three-dimensional Ising mod-
els, the (min and max central) values R+

σξ ≃ 0.36 (±0.01)

and R+
σξ ≃ 0.39 (±0.03) quoted by Privman et al [7]

on the basis of previous theoretical calculations, and
the median values R+

σξ ≃ 0.386 (±0.1) [13] and R+
σξ ≃

0.381 (±0.01) [12] which were initialy obtained from the
analysis of the experimental situation for fluids (see Refs.
[11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22]).

The published data of the effective exponent-amplitude
pair {ϕe; S0,e} reported in Table I (colums 3 & 4) allows
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one to validate this leading master description at finite

distance to the critical point, using a method equiva-
lent to the one proposed by Moldover [13] to estimate

S0 by averaging the values of
Sg

|∆τ∗|0.935 in the vicinity

of |∆τ∗| = 0.01. The corresponding Moldover’s val-
ues (noted S0,ϕ to recall for the use of the theoretical
value ϕ = 0.935), are given in column 5 of Table I. In
our present work, we have estimated S0,ϕ by the follow-

ing relation S0,ϕ = S0,e (0.01)
ϕe−0.935

(see also column
5, Table I). From these “measured” amplitude data at
|∆τ∗| = 0.01, the corresponding calculated values (col-

umn 6) of ZS,ϕ = (αc)
1−d (g∗)1 (Zc)

− 3
2 (Yc)

−ϕ
S0,ϕ [see

Eq. (22)], are in close agreement with the asymptotic
limit ZS = 2.47 estimated from above hyperscaling con-
siderations. The mean value of the data reported in col-
umn 6 is 〈ZS,ϕ〉 = 2.450. The residuals δZS,ϕ (column
7), expressed in %, are of the same order of magnitude
(±3.1‘%) than the experimental uncertainty (±5‘%) [see
for example the review of Moldover [13] for a detailed
analysis of the realistic experimental errors].

This extended master behavior is illustrated in Figs.
1c and 1d by the curve labelled MR0 which corresponds
to the pure power law of equation

S∗
g∗ = ZS |T ∗|ϕ (45)

where ZS = 2.47 [see Eq. (44)]. In Fig. 1d, the two
lines labelled up [Eq. (44) with ZS = 2.64] and down
[Eq. (44) with ZS = 2.30], respectively, account for the
theoretical error-bar attached to this central value of ZS .
Therefore, at least for a temperature-like range such that
|T ∗| < 0.1, all the experimental results measured at fi-
nite temperature distance to the critical point appears
“condensed” within these two lines. As noted previously,
such a good agreement result from the “universal” me-
dian value ϕe ≡ ϕ = 0.935 of the effective exponent in
the vicinity of ∆τ∗ = 0.01. De facto, the asymptotical
universal features can be observed in an extended asymp-
totic domain, since the confluent corrections to scaling
attached to the exponent ∆ are i) only governed by the
single scale factor Yc whatever the singular property (as
already shown for the correlation length, the susceptibil-
ity, and the order parameter density), and, ii) certainly
very small in amplitude for the Sudgen factor case. How-
ever, the present theoretical and experimental levels of
uncertainties are of same order of magnitude and remain
too high to provide an accurate estimation of the sign
and the amplitude of these (small) confluent corrections.

As our explicit Eq. (40) is restricted only to the uni-
versal features related to hyperscaling, there is a need for
theoretical studies in the future to directly estimate the
classical-to-critical crossover of the surface tension and
the Sudgen factor in the non-homogeneous domain. An-
ticipating these investigations, the following discussion
gives some complementary quantitative evaluations on
the extended temperature-like range where the asymp-
totic leading power law of Eq. (45) can be correctly used
to predict the Sudgen factor behavior (since the applica-

bility of the scale dilatation method goes far beyond the
one of the unvalid corresponding state principle).

4. DISCUSSION

4.1. Ising-like universal features within the

preasymptotic domain

As demonstrated in Refs. [25, 35], each crossover func-
tion obtained from the MR scheme can be approximated
by a restricted (two term) Wegner-like expansion in the
Ising-like preasymptotic domain which extends up to

|T ∗| . L{1f}
PAD =

LIsing
PAD

Θ{1f}
≃ 5 10−4

(see the corresponding arrows in |T ∗| axis of Fig. 1c
and 1d). Therefore, in addition to Eq. (21) related to
the master singular behavior of the renormalized Sug-
den factor, we are also interested by the following similar
equations

M∗
LV = ZM |T ∗|β

[

1 + Z1
M |T ∗|∆

]

(46)

Σ∗ = ZΣ |T ∗|µ
[

1 + Z1
Σ |T ∗|∆

]

(47)

related to the master singular behaviors of the renor-
malized order parameter density [see Eq. (16)] and
renormalized surface tension [see Eq. (17)], respectively.
Obviously, the hyperscaling law dν = γ + 2β provides

the universal combination
(

Z+
ξ

)−d Z+
χ

(ZM )2
= R+

C

(

R+
ξ

)d

,

while Eq. (19) provides the “trivial” relation ZS =
ZΣ

ZM
. Both of these amplitude combinations relate un-

equivocally ZM and ZΣ to the selected characteristic
leading amplitudes Z+

χ and Z+
ξ of the one-component

fluid subclass. Alternatively, ZΣ and Z+
ξ are unequiv-

ocally related by the universal amplitude combination

R+
σξ = ZΣ

(

Z+
ξ

)d−1

. In such a case, we can also cal-

culate the universal values ZΣ = R+
σξ

(

Z
+
ξ

)d−1

= 1.750

and ZS = ZΣ

ZM
= 1.867 of the corresponding leading am-

plitudes for the respective crossover functions estimated
in the MR scheme [with Z

+
ξ = 2.121, Z

+
χ = 3.7096, and

ZM =
(

R+
CZ

+
χ

)− 1
2

(

Z
+

ξ

R+

ξ

)
d
2

= 0.9375; see Ref. [25] for de-

tail]. Furthermore, in the relations [similar to Eqs. (32)
and (33)] which define the master crossover functions for
the order parameter density, the surface tension and the

Sugden factor, the respective prefactors Z
{1f}
M , Z

{1f}
Σ , and

Z
{1f}
S account for their unequivocal estimation only us-

ing the three characteristic numbers L
{1f}, Θ{1f}, and
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Order parameter density Interfacial tension Sugden factor

β = 0.3257845 φ = 2ν = 1.260775 ϕ = φ − β = 0.9349905

ZM =
(

R+
CZ

+
χ

)− 1
2

(

Z
+

ξ

R
+
ξ

) d
2

= 0.937528 ZΣ = R+
σξ

(

Z
+
ξ

)d−1

= 1.6915 ZS = R±
σξ

(

R
+

ξ

) d
2

(R
+
C)

1
2

(

Z
+
χ Z

+
ξ

) 1
2

= 1.8042

ZM = ZM

(

L
{1f}

)d

Ψ{1f}
(

Θ{1f}
)β

= 0.468 ZΣ = ZΣ

(

L
{1f}

)d−1 (

Θ{1f}
)φ

= 1.1558 ZS = ZS
(Θ{1f})

ϕ

L{1f}Ψ{1f} = 2.47

Z
{1f}
M =

(

L
{1f}

)d

Ψ{1f} = 2.94878 Z
{1f}
Σ ≡

(

L
{1f}

)d−1

= 660.428 Z
{1f}
S =

[

L
{1f}Ψ{1f}

]−1

= 223.634
(

Z
{1f}
ξ

)d

Z
{1f}
χ

(

Z
{1f}
M

)2 = 1
Z
{1f}
Σ

(

Z
{1f}
ξ

)d−1 = 1
Z
{1f}
S

(

Z
{1f}
ξ

Z
{1f}
χ

) 1
2

= 1

∆ = 0.50189

Z
1
M = 0.9Z

1,+
χ = 7.70712

Z
1
Σ

Z
1,+
χ

(?)
Z
1
S

Z
1,+
χ

(?)

Z1
M = Z

1
M

(

Θ{1f}
)∆

= 0.9Z1,+
χ ≈ 0.5

Z1
Σ ≈ Z1

M →
Z1

Σ

Z1
M

≈ 1 (seeEq. 1)

Z1
Σ

Z
1,+
χ

≈ 0.9 → Z1
Σ ≈ 0.5

Z1
S ≈ 0 (seeF ig. 1)

Z1
S

Z
1,+
χ

= 0.9
Z1

S

Z1
M

≈ 0

Table V: Universal and master constants for the order parameter density (column 1), the surface tension (column 2), and the
Sugden factor (column 3), in the nonhomogeneous domain. Upper part (lines 2 to 6) refers to the Ising-like leading term; The
unity value of the combinations between the master prefactors reported in line 5 demonstrates that the asymptotic master
crossover agrees with the two-scale-factor universality of the Ising-like systems. Lower part (lines 7 to 9) refers to the first term
of the confluent correction to scaling (see text for detail).

Ψ{1f} of the one-component fluid subclass, such that,

Z
{1f}
M = ZM

ZM(Θ{1f})β

=
(

L
{1f}

)d
Ψ{1f}

(48)

Z
{1f}
Σ =

ZΣ

Z
+
Σ

(

Θ{1f}
)φ

≡
(

L
{1f}

)d−1

(49)

Z
{1f}
S = ZS

ZS(Θ{1f})
ϕ

=
[

L
{1f}Ψ{1f}

]−1
(50)

Equations (48) to (50) close the master representation
of the singular behavior of the renormalized interfacial
properties in the nonhomogeneous domain, in agreement
with the two-scale factor universality of the Ising-like sys-
tems [see the corresponding values of the universal and
master quantities reported in Table V].

Now, using Eq. (19) to compare the respective first
confluent amplitudes of Eqs. (21), (47), (46), we obtain
Z1

S = Z1
Σ − Z1

M . ¿From Fig. 1d, the asymptotic master
singular behavior expected for S∗

g∗ (|T ∗|) is compatible
with the following universal values of the corresponding
amplitude ratios

Z1
Σ

Z1
M

≃ 1
Z1

S

Z1
M

= 0.9
Z1

S

Z1,+
χ

≃ 0
(51)

Such hypothesized “universal ratios” of Eq. (51) are con-
sistent with Ising-like universal features of the asymp-
totic crossover estimated from the MR scheme, which are
only characterized by a single confluent amplitude within

the Ising-like preasymptotic domain. Here these univer-
sal features are preserved via the universal ratio value
Z1

M

Z1,+
χ

≃ 0.9, selecting Z1,+
χ as a characteristic confluent

amplitude (see § 3.2 above). However, it is also impor-
tant to note that this expected crossover must satisfy
the scaling law ϕ = φ− β in the infinite limit |T ∗| → ∞,
which leads to the mean field value ϕMF = 1, using the
mean-field values βMF = 1

2 and φMF = 3
2 [48]. In the

range |T ∗| > ∞, the experimental results reported in
Fig. 1a to 1d are in disagreement with such a mean-field
prediction (see also below the § 4.3).

In addition, we note that the hyperscaling descrip-
tion using a pseudo-crossver function issued from sin-
gular properties in the homogeneous domain generates
uncorrect results in the complete temperature range, i.e.
from the first-order contribution of Ising-like confluent
exponent ∆ until the leading contribution related to the
mean-field exponent ϕMF .

For example, in our scheme based on the hyperscal-
ing law ϕ = γ+ν

2 [see Eq. (29)], the confluent ampli-

tude Ẑ1,+
S in Eq. (41) can be made equal to Ẑ1,+

S =
1
2

(

Z1,+
χ + Z1,+

ξ

)

≈ 0.466, leading to a universal ratio

Ẑ1,+
S

Z1,+
χ

= 1
2

(

1 +
Z1,+

ξ

Z1,+
χ

)

≃ 0.84 which is different from zero.

Similarly, a description based only on the hyperscaling
law ϕ = 2ν − β [see Eq. (24)] needs to replace the inter-
facial tension by the inverse squared correlation length
in Eq. (19), and provides another pseudo-crossover func-
tion, given by the equation

S̃ (|T ∗|) = R+
σξ ×

1

M∗
LV (|T ∗|) ×

[

1

ℓ∗ (T ∗)

]2

(52)

where the decorated tilde distinguishs new pseudo-
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physical quantities from those of Eq. (40). In that case,
a mixing occurs between properties in the homogeneous
(ℓ∗ (T ∗)) and nonhomogeneous (M∗

LV (|T ∗|)) domains.
In the Ising-like preasymptotic domain, accounting for

the relation with ZS = R±
σξZM

(

Z+
ξ

)−2

, Eq. (52) can

be approximated by

S̃ (T ∗) = ZS (|T ∗|)φ
[

1 + Z̃1
S (|T ∗|)∆

]

(53)

In this latter scheme, the confluent amplitude Z̃1
S in Eq.

(53) was estimated equal to Z̃1
S = Z1

M + 2Z1,+
ξ ≈ 1.254,

leading to a universal ratio
Ẑ1

S

Z1,+
χ

= 0.9 + 2
Z1,+

ξ

Z1,+
χ

≃ 2.26

which is also significantly different from zero.
Looking now to the contribution of the leading term

close to the Gaussian fixed point, our pseudo-crossover
functions estimated above does not account for the ap-
propriate mean-field-like description due to the failure
of the two hyperscaling laws ϕ = γ+ν

2 (which gives un-

correct value ϕMF = 3
4 ) and ϕ = 2ν − β (which gives

uncorrect value ϕMF = 1
2 ) when we use the correspond-

ing mean-field values γMF = 1, νMF = 1
2 and βMF = 1

2
.

4.2. Ising-like master behavior in the extended

asymptotic domain

In spite of the absence of accurate theoretical mod-
elling for interfacial tension and Sugden factor along the
VLE line, the MR description of the master crossover ob-
served for the one-component fluid subclass can be used
to provides a reasonable estimation of the renormalized
correlation length in the nonhomogeneous domain, using
the following equation

ℓ∗ (T ∗ < 0) =
ℓ∗ (T ∗ > 0)

1.96
(54)

where ℓ∗ (T ∗ > 0) of Eq. (32) is the renormalized cor-
relation length in the homogeneous domain. Eq. (54)

assumes that the universal ratio ℓ∗(T ∗>0)
ℓ∗(T ∗<0) = 1.96 is inde-

pendent of the renormalized temperature like field. The
result (for T ∗ < 0) is illustrated as a ℓ∗ (T ∗ < 0) gradua-
tion of the upper horizontal axis of Figs. 1c and 1d. We
recall that ℓ∗ gives the best estimate of the ratio ξ

αc
be-

tween the effective size (ξ) of the critical fluctuations and
the effective size (αc) of the attractive molecular interac-
tion, the latter one being approximated by the dispersion
forces in Lennard-Jones-like fluids which extend over a
short range slighly greater than twice the equilibrium dis-
tance re between two interacting particles of finite hard
core size σ (thus αc ≈ 2re, with re ' σ). Therefore,
ℓ∗ (|T ∗| = LCIC) ∼ 1 in the upper axis of Figs 1c and 1d
is a rough estimate of the microscopic range of the molec-
ular attractive interaction between fluid particles. Such a
thermal field limit corresponds to the value LCIC ≈ 0.15

(here the supscript CIC recall that the effective extend
of the short-ranged molecular interaction corresponds to
the size of the critical interaction cell). Looking then to
the “Ising-like” nature of S∗

g∗ (|T ∗|), we observe in Figs.
1c and 1d a noticeable extension of the critical range as-
sociated to the condition ℓ∗ (|T ∗|) & 3. Therefore, the
extended asymptotic domain (labelled EAD) goes up to
the limit

|T ∗| . L{1f} ≈ 0.03 (55)

(see the corresponding arrow noted L{1f} in |T ∗| axis).
Within |T ∗| . L{1f}, the observed master behavior can

be well-represented by S∗
g∗ = ZS |T ∗|φ [see Eq. (45)],

in conformity with the Ising-like universal features esti-
mated from the MR scheme. We note that such Ising-like
nature of S∗

g∗ in this extended |T ∗| range complements
in a self-consistent manner our previous analysis [57] of
the master behavior of the renormalized order parameter
density along the VLE line.

4.3. Non-critical behavior beyond the Ising-like

extended asymptotic domain

In Ref. [57], it was observed for the xenon case,
that the real crossover for the effective exponent βe ap-
pears in the thermal field range |D∗

CO| ≈ 0.1 − 1 where

ℓ∗ (|T ∗|) T 1 (see Fig. 1d). In terms of comparison be-

tween the correlation length and the range of the micro-
scopic intermolecular interaction, the situation is similar
to the one encountered in the homogeneous domain for
the real crossover for the effective exponent γe [33]. In-
deed, when ℓ∗ < 1, any MR crossover function is not
appropriate to account for the real non-universal behav-
ior of the one-component fluids. We recall for example
that ℓ∗ ∼= 1

2 (see the limiting curve m in Fig. 1d) corre-
sponds to a (non-master) microscopic arrangement where
the direct correlation distance between two interacting
particles is ≈ re (i.e., ξ (∆τ∗ < 0) ≈ re ' σ). As pre-
viously noted in Ref. [57], the nonhomogeneous fluid is
then made of coexisting gas and liquid which show sig-
nificant differences in the averaged quantity of particles
inside the critical interaction cell. Moreover, these differ-
ences increase approaching the triple point temperature,
since the low density gas tends to behave as a perfect gas
with one (i.e. non-interacting) particle within the CIC
volume, while the condensed liquid tends to minimize the
configuration energy of one particle by enclosing them in
a particle cage made with an increasing number (up to
twelve for rare gas case) of the closest neighboring (re-
pulsive) particles (i.e. the mean size d of the cage is such
that re < d ≈ σ). For such “low” and “high” local den-
sities, cooperative density fluctuations have no physical
sense at length scale larger than αc and the non-universal
characteristics of each fluid are only involved in the ther-
modynamic properties, as clearly illustrated in Fig. 1d
for the Sugden factor case by the significative increasing
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differences between the rescaled data for xenon and water
in the range |T ∗| > 0.2.

5. CONCLUSION

We have provided an asymptotic description of the sin-
gular behavior of the renormalized Sugden factor (i.e.

the renormalized squared capillary length) of the one-
component fluid subclass. This master crossover behav-
ior can be observed up to |T ∗| ≈ 0.03 (or ℓ∗ ≈ 3) in
the non-homogeneous domain, as already noted for the
renormalized order parameter density. In a future work,
we will show that this master crossover behavior can be
useful to estimate the parachor correlation along the VLE
line.
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