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ESTIMATES FOR THE OPTIMAL CONSTANTS IN MULTIPOLAR HARDY

INEQUALITIES FOR SCHRÖDINGER AND DIRAC OPERATORS

ROBERTA BOSI1, JEAN DOLBEAULT2, AND MARIA J. ESTEBAN2

Abstract. By expanding squares, we prove several Hardy inequalities with two critical singu-
larities and constants which explicitly depend upon the distance between the two singularities.
These inequalities involve the L

2 norm. Such results are generalized to an arbitrary number of

singularities and compared with standard results given by the IMS method. The generalized
version of Hardy inequalities with several singularities is equivalent to some spectral information
on a Schrödinger operator involving a potential with several inverse square singularities. We also
give a generalized Hardy inequality for Dirac operators in the case of a potential having several
singularities of Coulomb type, which are critical for Dirac operators.

Introduction

For N ≥ 3, the simplest form of Hardy’s inequality is easily obtained by the “expansion of the
square” method as follows: for any function u ∈ H1(RN ),

0 ≤
∫

RN

∣∣∣∣∇u+ α
x

|x|2 u
∣∣∣∣
2

dx =

∫

RN

|∇u|2 dx+
[
α2 − (N − 2)α

] ∫

RN

|u|2
|x|2 dx ,

which shows for α = (N − 2)/2 that, for all u ∈ H1(RN ),
∫

RN

|∇u|2 dx ≥ (N − 2)2

4

∫

RN

|u|2
|x|2 dx ,

and it is well known that the constant (N − 2)2/4 is optimal. With two singularities located at
±y ∈ R

N , from the above inequality we get without effort that
∫

RN |∇u|2 dx− (N−2)2

8

∫
RN

(
1

|x−y|2 + 1
|x+y|2

)
|u|2 dx = 1

2

∑
±
∫

RN |∇u±|2 − (N−2)2

4
|u±|2
|x|2 dx ≥ 0

where u±(·) = u(· ± y). For a given function u with compact support and d := |y| large enough,
it is however clear that the constant (N − 2)2/8 can be replaced by (N − 2)2/4. To improve upon
(N − 2)2/8 for general functions and in presence of two singularities, one has to break the scaling
invariance by introducing a new scale. This can be done by adding a lower order term. One of the
goals in this paper is to obtain estimates for the best constant λ = λ(µ, d), that is, the smallest
positive constant, in the inequality

µ

∫

RN

(
1

|x− y|2 +
1

|x+ y|2
)
|u|2 dx ≤

∫

RN

|∇u|2 dx+ λ

∫

RN

|u|2 dx ∀ u ∈ H1(RN ) ,

for any µ ∈ (0, (N − 2)2/4] and any y ∈ RN with d := |y| > 0.

The above result can of course be reinterpreted as a lower estimate on the spectrum of the
Schrödinger operator

−∆ − µ

(
1

|x− y|2 +
1

|x+ y|2
)

since for a fixed µ ∈ (0, (N − 2)2/4), −λ is the bottom of the spectrum of this operator. Such an
operator is indeed semi-bounded from below, as we shall see below. By a simple rescaling argument,
it is easy to see that λ(µ, d)/d2 is independent of d. A similar fact also holds in the case of more
than two singularities. In such a case, after division by the correct scaling parameter, the best
constant does not depend on the distances between the singularities anymore, but still depends on
the relative position of each of them, i.e., on the geometric pattern of the singularity points.
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It is certainly out of the scope of this introduction to present all various forms of Hardy’s inequal-
ity. One can for instance refer to [45] for an up-to-date introduction. Multipolar potentials have
recently been studied in [28], in a different context. Huge efforts have been done over the past years
to improve on Hardy’s inequality, but mostly in the case of a single singularity: see [22, 3, 4, 15, 23].
Also see [21, 20, 19] and references therein for some existence results of ground states for linear
and nonlinear Schrödinger equations with multipolar inverse square singular potentials, and [19] for
questions related to the self-adjointness of the operators. Among other results, it is proved in these

papers that the operator −∆ −∑M
k=1 µk |x − yk|−2 is positive if

∑M
k=1 µ

+
k < (N − 2)2/4, where

{yk : k = 1, 2 , . . . M} is any set of disjoint poles. Reciprocally, if
∑M

k=1 µ
+
k > (N − 2)2/4, there

exists a configuration of poles such that −∆ −∑M
k=1 µk |x− yk|−2 is not positive. Moreover, there

exists a configuration of poles such that this operator is positive if and only if µ+
k < (N − 2)2/4

for all k and
∑M

k=1 µ
+
k < (N − 2)2/4. Felli, Marchini and Terracini also consider in [21] modified

potentials which are sums of inverse square potentials restricted to compact supports around a given
number of singularities. In this case, they discuss again the positivity of the operator and, in some
cases, also give estimates for the lowest eigenvalue of the corresponding Schödinger operator.

Our purpose in the case of the Schrödinger operators is to give an as good as possible estimate

for the lower bound of the spectrum of the operator −∆−∑M
k=1

µ
|x−yk|2 , µ ∈ (0, (N−2)2/4], M ≥ 2,

y1 , . . . yM ∈ RN . We will use two different methods, the so-called IMS method, see Section 1, and
the “expansion of the squares” method, see Section 2, which has already been introduced above in
the case of a single singularity.

From a mathematical point of view, inverse square potentials are interesting because of their
criticality. There are various motivations for applications in physics, see for instance a list of topics
in [21, 19], and related nonlinear problems in PDEs. On the other hand, the 1/|x|2 term appears in
the linearization of critical nonlinear PDEs, see for instance [5, 43, 7], and plays a crucial role for
understanding the asymptotic behavior of branches of solutions in some bifurcation problems.

The second topic of this paper is concerned with Hardy inequalities for Dirac equations in the
framework of relativistic quantum mechanics. In such a setting, the Coulomb potential is critical.
Hardy inequalities have been studied long ago for simplified relativistic equations coupled with
multipolar potentials of quantum chemistry for instance in [9, 34], motivated by the question of the
stability of matter. A key estimate in such a case is a Hardy inequality which was derived by Kato
in [30]:

(−∆ + 1)1/2 ≥ 2

π

1

|x| ,

in dimension N = 3. A refined relativistic operator was introduced by Brown and Ravenhall
and optimal corresponding inequalities have been derived in [6, 24]. Also see [26, 2] for some
consequences. In the case of the Dirac operator coupled to Coulomb interactions, Hardy type
inequalities are much more recent, see [13, 12]. For a pure Coulomb singularity these inequalities

read as follows. For all ν ∈ (0, 1], for all φ ∈ L2(R3,C2), with S(ν) :=
√

1 − ν2,
∫

R3

|~σ · ∇φ|2
1 + S(ν) + ν

|x|
dx+

[
1 − S(ν)

] ∫

R3

|φ|2dx ≥
∫

R3

ν

|x| |φ|
2 dx .

Here some of the terms can be infinite and the matrices σi, i = 1, 2, 3 are the so-called Pauli
matrices. See Section 3 for more precisions and explanations on these matrices and the above
inequality. In particular, exactly as in the case of the Schrödinger operator, the constant S(ν) is the
smallest eigenvalue of H − ν/|x|, where H is the Dirac operator and ν ∈ (0, 1). We postpone the
precise explanation of the relation of the optimal value of S(ν) and the spectrum of H to Section 3,
as well as some comments on the self-adjointness of the operators. For a general introduction to
the Dirac equation we refer to [44].

Scaling properties explain why inverse square potentials and Coulomb potentials are critical
respectively for the Schrödinger and the Dirac operators. It is clear that 1/|x|2 has the same scaling
law as −∆. As for Dirac’s operator, the principal part of H scales like 1/|x|, which can also be seen
in the above inequality at the level of the operator φ 7→ −(~σ · ∇)(|x|~σ · ∇φ). Some further details
will be given at the beginning of Section 3. More strikingly, one can also prove that the standard
Hardy inequality for the Schrödinger operator is a consequence of the Hardy-like inequality for the
Dirac operator coupled to one Coulomb singularity. For the convenience of the reader, we reproduce
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here some computations which already appeared in [12]. By taking the limit as ν → 1, we get
∫

R3

|~σ · ∇φ|2
1 + 1

|x|
dx+

∫

R3

|φ|2 dx ≥
∫

R3

|φ|2
|x| dx ∀φ ∈ H1(R3,C2) .

If we replace φ(·) by ε−1φ(ε−1·) and take the limit as ε→ 0, we obtain
∫

R3

|x| |~σ · ∇φ|2 dx ≥
∫

R3

|φ|2
|x| dx .

By taking φ = (f, 0) with f purely real, we end up with
∫

R3

|x| |∇f |2 dx ≥
∫

R3

|f |2
|x| dx

for all f ∈ H1(R3,C), which is itself equivalent to
∫

R3

|∇u|2 dx ≥ 1

4

∫

R3

|u|2
|x|2 dx ∀ u ∈ H1(R3,C) ,

as shown by considering u =
√
|x| f . We observe that (N − 2)2/4 = 1/4 if N = 3, so that we

recover the optimal constant, and even corrective terms at all orders. See [22, 12] for more details
and further references.

A major difference between Dirac and Schrödinger operators coupled respectively to Coulomb
type interactions and to multiple inverse square singular potentials lies in the structure of the
continuous spectrum. While the Schrödinger operators are semi-bounded from below, thus allowing
only for some positive continuous spectrum, Dirac operators have continuous spectrum everywhere
except in a gap. There is therefore a natural limitation of the coupling constant, called the coupling

constant threshold, which has been studied in [32] for smooth potentials and in [11] in the case of
one Coulomb singularity and a constant magnetic field.

Our purpose in the case of Dirac operators is to give estimates of the lowest energy level for a
Dirac-Coulomb operator in terms of the interdistance between the M singularities, or equivalently
to determine estimates of the coupling threshold. Such a coupling threshold can be seen from two
points of view:

(i) Either we fix the configuration of the singularities and look for estimates of the largest
coupling constant ν for which the lowest eigenvalue is above −1, the upper bound of the
negative continuous spectrum.

(ii) Or we fix the coupling constant ν to some value in (0, 1) and look for estimates that guar-
antee that the lowest eigenvalue of the operator is above −1. This determines a minimal
distance between singularities if νM > 1.

Both approaches are equivalent and amount to finding estimates for the optimal constant in Hardy
type inequalities for Dirac operators with multiple Coulomb singularities.

In the Schrödinger and in the Dirac case, we investigate the asymptotics d → +∞ when the
singularities are asymptotically far from each other, and also the limit d → 0 corresponding to
all singularities merged in a single point (further assumptions are however needed for the Dirac
operator).

From a physical point of view, the multipolar Dirac-Coulomb operator describes the state of
one charged particle in a molecule with M fixed nuclei, in the Born-Oppenheimer approximation.
In atomic units, ν = αZ, Z is the nuclear charge number and α is the Sommerfeld fine-structure
constant, whose value is 1/137.037 . . . Hence the condition ν < 1 means that the nuclear charge
cannot be larger than 1/α. Finding the lowest energy level in the gap of the Dirac-Coulomb operator
is a basic question for studying stability, computing energy levels and getting estimates for related
nonlinear models.

To our knowledge, when there is more than one singularity, no explicit estimates for the lowest
eigenvalue of Dirac operators have been derived yet. In the case of a crystal, which is a slightly
different setting, Hardy inequalities for Dirac type operators are currently under investigation,
see [8]. Estimates could be deduced from Kato’s inequality or from the inequality stated in [6, 24]
for the Brown-Ravenhall Hamiltonian and their extensions to the multipolar case, but they would
anyway not cover the whole range of the coupling constant, as we do here.

In [31], Klaus studied conditions under which the Dirac operator coupled to a potential with
several Coulomb singularities is self-adjoint. The case of two singularities when they are far apart
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from each other has been studied in [25]. Also see [10] for a more general approach of double well
Hamiltonians, and [46] for a semi-classical analysis in the case of potentials with multiple wells.

The paper is organized as follows. In Section 1 we use the well-known IMS method to derive some

lower estimates on the lowest eigenvalue of the operator −∆ −∑M
k=1

µ
|x−yk|2 , µ ∈ (0, (N − 2)2/4],

M ≥ 2 and y1 , . . . yM ∈ RN . This method consists in localizing the wave functions around the
singularities by using a well chosen partition of R

N . In some cases the geometric pattern defined
by the singularity centers allows for better estimates than the general ones.

In Section 2 we expand some well chosen squared quantities and integrate by parts to prove
another type of estimates, which in some cases improve those obtained by the IMS method. The

idea here is to show that for some function Q(x, y1, . . . yM ), the operator −∆−∑M
k=1

µ
|x−yk|2 +Q is

nonnegative. The constant λ is then defined as the infimum of Q. Of course, this procedure cannot
provide the best constant λ, since it is based on a pointwise estimate of Q.

Section 3 deals with Hardy-type inequalities for Dirac operator with Coulomb singularities. Due
to the non homogeneity of the Dirac operator, the best constant heavily depends on the interdistance
between the singularities, and not only on the geometric pattern defined by them. In this case we
are only able to use the IMS method, which gives good results only for large interdistances, that is,
for very distant singularities. For nearby singularities, we introduce a slightly modified version of
the Hardy inequality.

When dealing with the Schrödinger operator, we always consider dimensions N ≥ 3. The Dirac
case is studied only in the physical space with N = 3. Also note that in the case of Dirac operators,
the essential spectrum is not bounded from below, and so, when we speak of the lowest eigenvalue,
we always mean the lowest eigenvalue in the gap of the essential spectrum. All estimates can
be worked out for complex valued functions and spinors, but since we do not consider evolution
equations, results will be stated for real valued functions whenever possible, and without further
notice. For simplicity, we have assumed that coupling constants are the same for all singularities.
The extension to the case when they differ can be worked out by the same methods, but is left to
the reader.

1. Hardy inequalities for the Schrödinger operator and the IMS method

The results of this section rely on the so-called “IMS” (for Ismagilov, Morgan, Morgan-Simon,
Sigal, see [35, 41]) truncation method. Our goal is to obtain estimates for the lowest eigenvalue of

−∆ − µVM (x), where VM (x) =
∑M

k=1
1

|x−yk|2 , M ≥ 2 and y1 , . . . yM are M points of RN . Notice

that the Hamiltonian is essentially self-adjoint if µ ≤ (N − 2)2/4 − 1, otherwise one has to use the
corresponding Friedrichs extension. See [29, 19] for more details. Define d by

d := min
1≤j 6=k≤M

|yk − yj|/2 .

Theorem 1. Consider µ ∈ (0, (N − 2)2/4]. For any M ≥ 2, there is a nonnegative constant

KM < π2 such that, for any u ∈ H1(RN ),
∫

RN

|∇u|2 dx+
KM + (M + 1)µ

d2

∫

RN

|u|2 dx ≥ µ

∫

RN

VM (x) |u|2 dx .

A partition of unity in R
N is a finite set {Jk}M+1

k=1 of real valued functions Jk ∈W 1,∞(RN ), such

that
∑M+1

k=1 J2
k = 1. Under these conditions, we have:

(a)
∑M+1

k=1 Jk ∂aJk = 0 for any a = 1 , . . . N ,

(b) JM+1 :=
√

1 −∑M
k=1 J

2
k ,

(c)
∑M+1

k=1 |∇Jk|2 ∈ L∞(RN ).

If we additionally require that

(1) Ωk ∩ Ωl = ∅ for any k, l = 1 , . . . M, k 6= l ,

where Ωk := Int (supp(Jk)), k = 1 , . . . M, then we obtain an explicit formula for the sum of the
gradients:

(d)

M+1∑

k=1

|∇Jk|2 =

M∑

k=1

|∇Jk|2 +

M∑

k=1

J2
k

1 − J2
k

|∇Jk|2 =

M∑

k=1

|∇Jk|2
1 − J2

k

,



HARDY INEQUALITIES WITH SEVERAL SINGULARITIES 5

where we have computed

N∑

a=1

|JM+1 ∂aJM+1|2 =
N∑

a=1

∣∣∣
M∑

k=1

Jk ∂aJk

∣∣∣
2

=
N∑

a=1

M∑

k=1

|Jk ∂aJk|2 =⇒ |∇JM+1|2 =
M∑

k=1

J2
k

1 − J2
k

|∇Jk|2.

In the sequel we will always use partitions of unity that satisfy (1).
Note that to avoid a singularity for the gradient of JM+1 at the points where 1−J2

k = 0, from (d)
we shall assume that the additional constraint |∇Jk|2 = F (x)(1 − J2

k ), for k = 1 , . . . M and for
some F ∈ L∞(RN ). The functions sinus and cosinus, for example, satisfy this last requirement.

Partitions of unity can be used to localize the Schrödinger operator. Here is a statement taken
from [41], with its proof.

Lemma 2. Let (Jk)M+1
k=1 be a partition of unity satisfying (1). For any u ∈ H1(RN ) and any

V ∈ L1
loc(R

N ),

∫

RN

(
|∇u|2 − V |u|2

)
dx =

M+1∑

k=1

∫

RN

(
|∇(Jk u)|2 − V |Jk u|2

)
dx−

∫

RN

(
M+1∑

k=1

|∇Jk|2
)
|u|2 dx .

Proof. On the one hand,

∫

RN

V

(
M+1∑

k=1

|Jk u|2
)
dx =

∫

RN

V

(
M+1∑

k=1

|Jk|2
)

|u|2 dx =

∫

RN

V |u|2 dx .

On the other hand,

M+1∑

k=1

|∇(Jk u)|2 = |∇u|2 +

(
M+1∑

k=1

|∇Jk|2
)
|u|2 +

(
M+1∑

k=1

Jk ∇Jk

)
∇(|u|2) .

Combined with Property (a), this proves the result. �

Thanks to Lemma 2 and Property (d), we can write

Q[u] :=

∫

RN

(
|∇u|2 − µVM |u|2

)
dx =

M∑

k=1

Q[Jk u] + RM ,

where

RM =

∫

RN

|∇(JM+1 u)|2 dx− µ

∫

RN

VM |JM+1 u|2 dx−
M+1∑

k=1

∫

RN

|∇Jk|2 |u|2 dx

=

∫

RN

|∇(JM+1 u)|2 dx− µ

∫

RN

VM

(
1 −∑M

k=1 J
2
k

)
|u|2 dx−

M∑

k=1

∫

RN

|∇Jk|2
1 − J2

k

|u|2 dx ,

RM ≥ −
M∑

k=1

∫

RN

|∇Jk|2
1 − J2

k

|u|2 dx − µ

∫

RN

VM

(
1 −∑M

k=1 J
2
k

)
|u|2 dx .

Here we successively used Properties (b) and (d) and |∇(JM+1 u)|2 ≥ 0. Using the fact that
Ωj ∩ Ωk = ∅ for any j, k = 1 , . . . M, j 6= k, then the above inequality can be rewritten as

RM ≥ −
M∑

k=1

∫

Ωk

[ |∇Jk|2
1 − J2

k

+ µ (1 − J2
k )VM (x)

]
|u|2 dx−

∫

Υ

µVM (x) |u|2 dx ,

with Υ := RN \ ∪M
k=1Ωk. Consider now the case M = 2, y1 = y, y2 = −y and assume that

0 < d ≤ |y|.
Lemma 3. There is a partition of unity {Jk}3

k=1 satisfying (1) with J1 ≡ 1 on B(y, d/2), J1 ≡ 0
on B(y, d)c, J2(x) = J1(−x) for any x ∈ RN , 0 < d ≤ |y|, such that, for any µ > 0, there exists a

constant K2 ∈ [0, π2) for which, almost everywhere for all x ∈ Ω := supp(J1) ∪ supp(J2), we have

3∑

k=1

|∇Jk|2 + µJ2
3 V2(x) =

∑

k=1,2

|∇Jk|2
1 − J2

k

+ µJ2
3 V2(x) ≤

K2 + 2µ

d2
.
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In the proof of this result, we use first a partition of unity defined as follows. Let

(2) J(r) :=





1 if r ≤ 1/2

sin(π r) if 1/2 ≤ r ≤ 1

0 if r ≥ 1

and define J1(x) := J(|x− y|/d), J2(x) := J(|x + y|/d), and J3 :=
√

1 − J2
1 − J2

2 .

Proof. The lower bound K2 ≥ 0 immediately follows by evaluating the l.h.s. at x = 0. As for the
upper bound, consider the above partition of unity. Thus defined, {J1, J2, J3} is a partition of unity
of RN satisfying (1). Let θ := |y|/d ≥ 1 and Ω+ := {x ∈ Ω , x · y > 0}. By Property (d), using the
symmetry with respect to the hyperplane {x ∈ R

N : x · y = 0}, we get

sup
Ω

[
3∑

k=1

|∇Jk|2 + µJ2
3 V2

]
= sup

Ω+

[ |∇J1|2
1 − J2

1

+ µ
(
1 − J2

1

)
V2

]

=
1

d2
sup

t∈(1/2,1)

[
|J ′(t)|2

1 − |J(t)|2 + µ
(
1 − |J(t)|2

)( 1

(s+ θ)2
+

1

(s− θ)2

)

|s=θ−t

]

=
1

d2
sup

t∈(1/2,1)

[ |J ′(t)|2
1 − |J(t)|2 + µ

(
1 − |J(t)|2

)( 1

(2θ − t)2
+

1

t2

)]

≤ 1

d2
sup

t∈(1/2,1)

[ |J ′(t)|2
1 − |J(t)|2 + µ

(
1 − |J(t)|2

)( 1

(2 − t)2
+

1

t2

)]

=
π2

d2
+
µ

d2
max

1/2≤t≤1

[
cos2(π t)

(
1

(2 − t)2
+

1

t2

)]
=
π2 + 2µ

d2
.

The choice (2) is not optimal and can be improved by taking

J(r) :=






1 if r ≤ 1/2

g(r) if 1/2 ≤ r ≤ 1

0 if r ≥ 1 ,

and g as the solution to the ODE

|g′(t)|2
1 − g2(t)

= A− µ
(
1 − g2(t)

)( 1

(2θ − t)2
+

1

t2

)

with g(1/2) = 1, and by adjusting A > 0 such that g(1) = 0 and g(t) > 0 for any t ∈ (1/2, 1).
Hence we can slightly improve the value of the constant K2, but this value now depends on µ. �

Consider the case M = 2, V = V2. With the notations of Lemma 3, we observe that

2∑

k=1

Q[Jk u] ≥ − µ

d2

∫

Ω

|u|2 dx

using the Hardy inequality for one singularity, for µ ≤ (N − 2)2/4. As a consequence, we obtain

R2 ≥ −K2 + 2µ

d2

∫

Ω

|u|2 dx− 2µ

d2

∫

RN\Ω
|u|2 dx ,

since |x− yk| ≥ d on RN \ Ω for k = 1, 2. This proves that
∫

RN

|∇u|2 dx+
K2 + 3µ

d2

∫

RN

|u|2 dx ≥ µ

∫

RN

V2(x) |u|2 dx .

Theorem 1 is a generalization of this inequality to M ≥ 3.

Proof of Theorem 1. Consider a partition of unity {Jk}M+1
k=1 satisfying (1) such that Jk(x) =

J(|x − yk|/d) for all x ∈ RN , 1 ≤ k ≤ M, with J as in Lemma 3 and recall that Ωk := B(yk, d) so
that Ωk is the support of Jk, k = 1 , . . . M . Let Υ := R

N \ ∪M
k=1Ωk. For every k = 1 , . . . M, the

Hardy inequality for one singularity and the estimate |x− yl| ≥ d on Ωk for l 6= k, give

∫

RN

|∇(Jk u)|2 dx − µ

∫

RN

[
1

|x− yk|2
+
∑

l 6=k

1

|x− yl|2

]
|Jk u|2 dx ≥ − µ (M − 1)

d2

∫

Ωk

|Jk u|2 dx
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and thus provide a lower bound for Q[Jk u]:

Q[Jk u] ≥ − µ (M − 1)

d2

∫

Ωk

|Jk u|2 dx .

Now, observe that VM ≤ M/d2 on Υ. For every k = 1, 2 , . . ., M, we can apply Lemma 3 on Ωk

with (yk, yl) = (−y, y) up to a change of coordinates, for some yl 6= yk, and for all j 6= k, l, bound
|x− yj |−2 by 1/d2. Hence we get

RM ≥ −
M∑

k=1

∫

Ωk

[
K2 + 2µ

d2
+
µ (M − 2)

d2
(1 − J2

k )

]
|u|2 − µM

d2

∫

Υ

|u|2 dx .

Collecting the terms, that is (K2 + 2µ) + µ (M − 2) (1 − J2
k ) + µ (M − 1)J2

k ≤ K2 + µ (M + 1), we
obtain

M∑

k=1

Q[Jk u] + RM ≥ −K2 + µ (M + 1)

d2

M∑

k=1

∫

Ωk

|u|2 dx− µM

d2

∫

Υ

|u|2 dx ,

from which the result follows. �

Remarks. There are many possibilities for improving the result of Theorem 1 for M ≥ 2 and
µ < (N − 2)2/4.

(1) One can notice that when applying the Hardy inequality for one singularity, we can write

∫

RN

|∇(Jk u)|2 dx − µ

∫

RN

|Jk u|2
|x− yk|2

dx ≥
(
(N − 2)2/4 − µ

) ∫

RN

|Jk u|2
|x− yk|2

dx

using the optimal constant in the inequality. Consequently,

Q[Jk u] ≥ min
x∈Ωk

[(
(N − 2)2

4
− µ

)
1

|x− yk|2
− µ

∑

l=1 ,... M

l 6=k

1

|x− yl|2
] ∫

RN

|Jk u|2 dx

≥ 1

d2

(
(N − 2)2

4
− µM

)∫

RN

|Jk u|2 dx .

On the other hand, we know that

RM ≥ − 1

d2

M∑

k=1

∫

Ωk

[
(K2 + 2µ) + µ (M − 2) (1 − J2

k )
]
|u|2 dx− µM

d2

∫

Υ

|u|2 dx .

Collecting these estimates, with µ̃ := 2µ− (N − 2)2/4 < µ, this proves that

∫

RN

|∇u|2 dx+
1

d2
[(K2 + µ̃)+ + µM ]

∫

RN

|u|2 dx ≥ µ

∫

RN

VM (x) |u|2 dx

for any u ∈ H1(RN ).
(2) The estimate |x− yl| ≥ d on Ωk for l 6= k is certainly extremely rough for large values of M,

due to volume filling effects.
(3) Other partitions of unity can be considered. For a given set of poles y1, y2 , . . . yM ∈ R

N ,
define for instance the corresponding Voronoi cells Γk by

Γk :=
{
x ∈ R

N : |x− yk| ≤ |x− yl| , ∀ l 6= k
}

and let dk := dist(yk, ∂Γk). Then the truncation functions Jk can be defined such that
Jk(x) = J(dist(x,Γc

k)/dk), 1 ≤ k ≤ M, for some continuous truncation function J with
J ≡ 1 in [1/2,∞), 0 ≤ J ≤ 1 and J(0) = 0. For any k = 1 , . . . M, Jk is supported in the
closure of Γk.

(4) In some cases, it is also possible to introduce an artificial singularity in the component Υ,
in order to control VM on Υ by an additional Hardy inequality.
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We now illustrate points (3) and (4) in the simple case M = 2, y1 = y and y2 = −y. Consider
the partition of the unity {Jk}3

k=1 such that

J1(x) =





1 if |x− y| ≤ |x| ,
sin(π

(
x · y)/d2) if 0 ≤ x · y ≤ d2/2 ,

0 otherwise ,

J2(x) = J1(−x) ,
J3(x) =

√
1 − J1(x)2 − J2(x)2 .

(3)

Proposition 4. Let M = 2 and assume that µ ∈ (0, (N − 2)2/4]. Then for any u ∈ H1(RN ),
∫

RN

|∇u|2 dx+
π2 + µ

d2

∫

RN

|u|2 dx ≥ µ

∫

RN

V2(x) |u|2 dx .

Proof. Up to a translation, we can work with y1 = y and y2 = −y, that is with the potential
µV2(x) = µ

|x+y| + µ
|x−y| . Property (d) implies

3∑

k=1

|∇Jk|2 =
|∇J1|2
1 − J2

1

+
|∇J2|2
1 − J2

2

≤ π2

d2
Isupp(∇J3) ,

where IΩ is the characteristic function of the set Ω = Ω1 ∪Ω2. Our aim is to estimate Q[Jk u] from
below. Observing that V2(x) ≤ |x− yk|−2 + d−2 for any x ∈ Ωk, k = 1, 2, we derive

Q[Jk u] ≥
∫

RN

|∇(Jk u)|2 dx− µ

∫

RN

(
1

|x− yk|2
+

1

d2

)
|Jk u|2 dx for k = 1 , 2 .

By Hardy’s inequality, we get

Q[Jk u] ≥ − µ

d2

∫

RN

|Jk u|2 dx for k = 1 , 2 .

Further, for any x ∈ supp(J3),

1

|x|2 − 1

|x− y|2 − 1

|x+ y|2 ≥ 1

d2
min

s∈[0,1/2]

(
1

s2
− 1

|s− 1|2 − 1

)
≥ − 1

d2
.

Hence we obtain

R2 ≥
∫

RN

|∇(J3 u)|2 dx− µ

∫

RN

(
1

|x|2 +
1

d2

)
|J3 u|2 dx− π2

d2

∫

RN

Isupp(∇J3) |u|2 dx .

Applying again the Hardy’s inequality, it results that

R2 ≥ − µ

d2

∫

RN

|J3 u|2 dx− π2

d2

∫

RN

|u|2 dx

and the proof is complete. �

2. “Expansion of the square” and Hardy inequalities for the Schrödinger operator

The estimates of Theorem 1 are not very good when Mµ is close to (N − 2)2/4. The goal of this
section is to remedy to this problem by the “expansion of the square” method, already used in the
introduction in the case of a single singularity. We start with an elementary computation in the case
of two singularities, see Lemma 5, (see Lemma 8 in case M ≥ 2). Then we show how the optimal
constant in the multipolar Hardy inequality can be estimated. The result is twofold: we establish
some qualitative properties of the best constant, see Lemmas 6 and 9, and then explicitly estimate
it in Theorems 7 and 10. This is done first in the case of two singularities, and then extended to
M ≥ 2 singularities.

Lemma 5. For any u ∈ H1(RN ), for any y ∈ RN ,

(N − 2)2

8

∫

RN

|u|2
(

1

|x− y|2 +
1

|x+ y|2
)(

1 +
|y|2

|x|2 + |y|2
)
dx ≤

∫

RN

|∇u|2 dx .

When y = 0 we recover the standard Hardy inequality with one singularity.
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Proof. Assume that u ∈ D(RN ) and α > 0. We compute

(4)

0 ≤
∫

RN

∣∣∣∣∇u + α
x− y

|x− y|2 u+ α
x+ y

|x+ y|2 u
∣∣∣∣
2

dx

=

∫

RN

|∇u|2 dx +
[
α2 − (N − 2)α

] ∫

RN

|u|2
(

1

|x− y|2 +
1

|x+ y|2
)
dx

+ 2α2

∫

RN

|u|2 (x− y) · (x+ y)

|x− y|2 |x+ y|2 dx

where we have used an integration by parts. From the parallelogram law, |x − y|2 + |x + y|2 =
2 |x|2 + 2 |y|2, we get

(x− y) · (x + y)

|x − y|2 |x+ y|2 =
|x|2 − |y|2

|x− y|2 |x+ y|2 =
1

|x− y|2 |x+ y|2
( |x− y|2

2
+

|x+ y|2
2

− 2 |y|2
)

=
1

2 |x+ y|2 +
1

2 |x− y|2 − 2 |y|2
|x− y|2 |x+ y|2 .

Hence

0 ≤
∫

RN

|∇u|2 dx+
[
2α2−(N−2)α

] ∫

RN

|u|2
(

1

|x− y|2 +
1

|x+ y|2
)
dx−4α2

∫

RN

|u|2 |y|2
|x− y|2 |x+ y|2 dx .

We also have

2α2 − (N − 2)α ≥ −1

8
(N − 2)2 ,

with equality if and only if α = (N − 2)/4. By choosing this value and writing

2 |y|2
|x− y|2 |x+ y|2 =

( 1

|x+ y|2 +
1

|x− y|2
) |y|2
|x|2 + |y|2 ,

we get the result. By density, we extend the inequality to any u ∈ H1(RN ). �

With y = 0, the inequality in Lemma 5 covers the optimal case with only one singularity. For a

given u, the optimal case is also recovered in the limit d = |y| → +∞. The factor |y|2
|x|2+|y|2 indeed

converges to 1 for any x ∈ RN as d→ +∞. Hence, replacing u by u(· − y), we recover

(N − 2)2

4

∫

RN

|u|2
|x|2 dx ≤

∫

RN

|∇u|2 dx .

The inequality in Lemma 5 is therefore an optimal interpolation inequality, with a weight, which
interpolates between the case y = 0 and the limit d → +∞. It is however not very useful in the
sense that for a fixed value of |y|, one cannot obtain improved values (uniformly with respect to u)
of the constant (N − 2)2/8, as a simple scaling argument shows.

To do better than this we look for estimates of the positive constant L(µ,N) such that the
following inequality

µ

∫

RN

|u|2
(

1

|x− y|2 +
1

|x+ y|2
)
dx ≤

∫

RN

|∇u|2 dx+
L(µ,N)

d2

∫

RN

|u|2 dx

holds for any u ∈ H1(RN ) and any y ∈ R
N , d := |y| > 0. Let V2(x) := 1

|x−y|2 + 1
|x+y|2 and define

L(µ,N) := d2 sup
u∈H1(RN )\{0}

µ
∫

RN V2 |u|2 dx−
∫

RN |∇u|2 dx∫
RN |u|2 dx ,

so that −L(µ,N)/d2 is the first eigenvalue of the operator −∆ − µV2.

Lemma 6. Let N ≥ 3 and let µ ∈ R, y ∈ RN \ {0} and d := |y|. With the above definition, the

map µ 7→ L(µ,N) is nondecreasing, independent of d and satisfies:

(i) If µ ≤ (N − 2)2/8, L(µ,N) = 0.
(ii) If (N − 2)2/8 < µ ≤ (N − 2)2/4, L(µ,N) takes finite positive values.

(iii) L(µ,N) = +∞, for all µ > (N − 2)2/4.
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Proof. As a function of µ, L(µ,N) is nondecreasing by its definition, using the fact that V2 is
positive. (i) is a consequence of Lemma 5.

By Theorem 1, L(µ,N) takes finite nonnegative values in case (ii). Let us prove that L(µ,N)
has to be positive. If it were not the case for some µ ∈ ((N − 2)2/8 < µ ≤ (N − 2)2/4), by applying
the inequality to uε(x) = u(x/ε), we would be able to write

µ

∫

RN

|u|2
(

1

|x− ε y|2 +
1

|x+ ε y|2
)
dx ≤

∫

RN

|∇u|2 dx .

Letting ε → 0, this would prove that Hardy’s inequality with only one singularity holds for some
µ > (N − 2)2/4, a contradiction with the fact that (N − 2)2/4 is optimal.

Concerning (iii), if the inequality were true for some µ > (N − 2)2/4, we could also consider
uλ(x) := u(λ (x−y)). Taking the limit λ→ ∞, this would prove that Hardy’s inequality holds with
constant µ, again a contradiction with the optimality on (N − 2)2/4. The independence of L(µ,N)
in terms of d is also a consequence of the scaling properties of the inequality. By considering u(·/d),
the problem can indeed be reduced to the case d = 1 without loss of generality. �

The “expansion of the square” method goes beyond these estimates. We shall establish in The-
orem 7 an explicit expression of a nondecreasing function µ 7→ K(µ,N) such that

L(µ,N) ≤ K(µ,N) ∀ µ ∈ R

and

(i) If µ ≤ (N − 2)2/8, K(µ,N) = 0.
(ii) If (N − 2)2/8 < µ < (N − 2)2/4, K(µ,N) takes finite positive values.

Assume that u ∈ D(RN ), y ∈ RN . In (4), we want to estimate pointwise the last term by a
combination of the bipolar potential and a constant. For this purpose, we choose any β ∈ (0, 1) and
look for an optimal pointwise upper estimate of

F (x) := 2
|x|2 − |y|2

|x− y|2 |x+ y|2 − β

(
1

|x− y|2 +
1

|x+ y|2
)
.

Let r := |x|, |y| = d and cos θ = x · y/(r d). We can rewrite F as

F (x) =
2 (|x|2 − |y|2) − 2 β (|x|2 + |y|2)

|x− y|2 |x+ y|2 ,

and since

|x− y|2 |x+ y|2 = (r2 + d2)2 − 4 r2 d2 cos2 θ

is nonnegative, we get

F (x) = 2
(1 − β) r2 − (1 + β) d2

(r2 + d2)2 − 4 r2 d2 cos2 θ

and F achieves its maximum for cos θ = 1:

F (x) ≤ 2
(1 − β) r2 − (1 + β) d2

(r2 − d2)2
=: f(r)

under the condition

r ≥
√

1 + β

1 − β
d > d .

Using

(r2 − d2)3 f ′(r) = 4 r [d2 (1 + 3 β) − (1 − β) r2 ] ,

we see that f realizes its maximum on
(√

1+β
1−β d,∞

)
at r =

√
1+3 β
1−β d and get

f(r) ≤ f

(√
1 + 3 β

1 − β
d

)
=

(1 − β)2

4 β d2
.

This shows the pointwise inequality

2
(x− y) · (x+ y)

|x− y|2 |x+ y|2 ≤ β

(
1

|x− y|2 +
1

|x+ y|2
)

+
(1 − β)2

4 β

1

|y|2 ∀ (x, y) ∈ R
N × R

N .
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Recall that V2(x) = 1
|x−y|2 + 1

|x+y|2 and inject the above estimate in

0 ≤
∫

RN

|∇u|2 dx+
[
α2 − (N − 2)α

] ∫

RN

V2 |u|2 dx+ 2α2

∫

RN

|u|2 (x− y) · (x+ y)

|x− y|2 |x+ y|2 dx .

We thus get

[
(N − 2)α− α2 (1 + β)

] ∫

RN

V2 |u|2 dx ≤
∫

RN

|∇u|2 dx + γ α2

∫

RN

|u|2 dx ,

where

γ =
(1 − β)2

4 β

1

d2
.

Let us fix

µ = (N − 2)α− α2 (1 + β) ∈
(

0,
(N − 2)2

4

)
,

or equivalently

β =
(N − 2)α− α2 − µ

α2
∈ (0, 1) .

From the conditions µ > 0, β ∈ (0, 1) we deduce that

t :=
N − 2√

µ
∈ (2,∞) .

In terms of α and µ, we have

µ

∫

RN

V2 |u|2 dx ≤
∫

RN

|∇u|2 dx+ λ

∫

RN

|u|2 dx

with

λ =
1

4 d2

[
(N − 2)α− 2α2 − µ

]2

(N − 2)α− α2 − µ
=

µ

4 d2

[
t a− 2 a2 − 1

]2

t a− a2 − 1
,

where a = α√
µ . Recall that t, a and β are related by

1 = t a− a2 (1 + β) , β ∈ (0, 1) ,

which means that at t fixed, a has to be taken such that

(1 + β) a2 − t a+ 1 = 0 .

Solving the equation, we get

a = a±β =
t±
√
t2 − 4 (1 + β)

2 (1 + β)

for some β ∈ (0, 1). The admissible domain D for a is therefore given by

a−0 (t) < a < a+
0 (t) if 2 < t < 2

√
2 ,

a−0 (t) < a < a−1 (t) or a+
1 (t) < a < a+

0 (t) if t ≥ 2
√

2 .

Notice that on such a domain, 2 a2 − t a+ 1 > 0. The function

a 7→
(
t a− 2 a2 − 1

)2

t a− a2 − 1
=: g(a)

achieves its infimum on D at a = 1
4

(
t±

√
t2 − 8

)
, that is for β = 1. This is admissible only for

t ≥ 2
√

2. Since

−
(
a2 − t a+ 1

)2
g′(a) =

(
2 a2 − t a+ 1

)
h(a)

with h(a) := 4 a3 − 6 t a2 + (t2 + 6) a − t, the sign of g′ is therefore the same as the one of −h
on D. For any given t > 2, h changes sign at three different values ā1(t) < ā2(t) < ā3(t). For t > 2,
the curves t 7→ ā1(t) and t 7→ ā3(t) do not intersect D, while the curve t 7→ ā2(t) intersects D for

2 < t < 2
√

2. The minimum of g on D is therefore achieved for a = ā2(t), 2 < t ≤ 2
√

2, and is 0

for t ≥ 2
√

2.
The curve t 7→ ā2(t) is explicitly given for t > 2 by

ā2(t) =
t

2
− 2−4/3 3−2/3 ρ1/3(t)Re

(
(1 + i

√
3) eiθ(t)/3

)
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where

A(t) = 9 t (t2 − 4) ,

B(t) =
√

3 (5 t6 − 72 t4 + 432 t2 − 864) ,

ρ(t) eiθ(t) = A(t) + i B(t) ,

ρ(t) = 96 (3 − t2)3/2 .

Notice that the curves t 7→ ā1(t) and t 7→ ā3(t) can also be computed

ā1(t) =
t

2
− 2−4/3 3−2/3 ρ1/3(t)Re

(
(1 − i

√
3) eiθ(t)/3

)
,

ā3(t) =
t

2
+ 2−1/3 3−2/3 ρ1/3(t) cos(θ(t)/3) .

Define the function κ by

κ(t) = 0 if t ≥ 2
√

2 ⇐⇒ µ ≤ (N − 2)2/8 ,

κ(t) = g(ā2(t)) if 2 < t < 2
√

2 ⇐⇒ (N − 2)2/8 < µ < (N − 2)2/4 .

We have therefore proved the following result.

Theorem 7. With the above notations, let K(µ,N) := 1
4 κ
(

N−2√
µ

)
. If µ ∈ (0, (N − 2)2/4), then

µ

∫

RN

|u|2
(

1

|x− y|2 +
1

|x+ y|2
)
dx ≤

∫

RN

|∇u|2 dx+
K(µ,N)

d2

∫

RN

|u|2 dx

holds for any u ∈ H1(RN ) and any y ∈ RN , d := |y| > 0.

2.5 3 3.5 4 4.5 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Figure 1. Curves t 7→ a±0 (t), a±1 (t), ā1(t), ā2(t), ā3(t).

2.2 2.4 2.6 2.8

2

4

6

8

10

Figure 2. The curve t 7→ g(ā2(t)) =: κ(t), 2 < t < 2
√

2 ≈ 2.82843 . . .
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Notice that the estimate of Theorem 7 is optimal as long as one uses only a local estimate of the
potential. Next we prove an inequality in the case of a potential with M ≥ 2 singularities. As a
first step, we state the M -poles version of Lemma 5.

Lemma 8. For any u ∈ H1(RN ) and any set of poles y1, y2 , . . . yM ∈ RN , M ≥ 2,

(N − 2)2

4M

∫

RN

M∑

k=1

|u|2
|x− yk|2

dx+
(N − 2)2

8M2

∫

RN

M∑

j,k=1

j 6=k

|yj − yk|2
|x− yj|2 |x− yk|2

|u|2 dx ≤
∫

RN

|∇u|2 dx .

When yk = yl for all k, l, one recovers the standard Hardy inequality with one singularity.

Proof. The proof is similar to the one of Lemma 5. Assume that u ∈ D(RN ) and α > 0. We
compute

0 ≤
∫

RN

∣∣∣∣∣∇u+ α

M∑

k=1

x− yk

|x− yk|2
u

∣∣∣∣∣

2

dx

=

∫

RN

|∇u|2 dx+
[
α2 − (N − 2)α

] ∫

RN

|u|2
(

M∑

k=1

1

|x− yk|2

)
dx(5)

+ α2

∫

RN

|u|2
M∑

j,k=1

j 6=k

(x− yk) · (x− yj)

|x− yk|2 |x− yj |2
dx ,

where we have applied an integration by parts. To rewrite the mixed term

M∑

j,k=1

j 6=k

(x− yk) · (x− yj)

|x− yk|2 |x− yj |2
=

M∑

j,k=1

j 6=k

|x|2 − x · yk − x · yj + yj · yk

|x− yk|2 |x− yj |2
,

we use the identity

|x|2
2

+
|x|2
2

− x · yk − x · yj + yj · yk =
|x− yj |2

2
+

|x− yk|2
2

− |yk − yj |2
2

,

and note that
M∑

j,k=1

j 6=k

( 1

|x− yk|2
+

1

|x− yj |2
)

= 2 (M − 1)

M∑

k=1

1

|x− yk|2
.

As a consequence,

0 ≤
∫

RN

|∇u|2 dx+
[
Mα2−(N−2)α

] ∫

RN

M∑

k=1

|u|2
|x− yk|2

dx−α
2

2

∫

RN

M∑

j,k=1

j 6=k

|yk − yj |2
|x− yk|2 |x− yj |2

|u|2 dx

and we conclude by using Mα2 − (N − 2)α ≥ −(N − 2)2/(4M), with equality if and only if
α = (N − 2)/(2M). By density we extend the proof to any u ∈ H1(RN ). �

Define the characteristic length scale D by

1

D2
:= 2

∑

1≤j 6=k≤M

1

|yj − yk|2

and consider the potential VM :=
∑M

j=1
1

|x−yj|2 . Notice that in case M = 2, D2 = d2. With these

notations, we can now state the following result in the case of more than two singularities.

Lemma 9. Let N ≥ 3, µ ∈ R and consider a set of distinct points of RN , y1, . . . yM, M ≥ 2.
With D as above, there exists a constant K(µ,N,M) ≥ 0 such that

µ

∫

RN

VM |u|2 dx ≤
∫

RN

|∇u|2 dx+
K(µ,N,M)

D2

∫

RN

|u|2 dx
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and the map µ 7→ K(µ,N,M) is nondecreasing and satisfies:

(i) If µ ≤ (N − 2)2/(4M), K(µ,N,M) = 0.
(ii) If (N − 2)2/(4M) < µ ≤ (N − 2)2/4, K(µ,N,M) takes finite positive values.

If µ > (N − 2)2/4, then µ
∫

RN VM |u|2 dx −
∫

RN |∇u|2 dx can be taken arbitrarily large for a well

chosen u ∈ H1(RN ) with ‖u‖L2(RN ) = 1.

The proof of this lemma is straighforward and follows the same lines as the one of Lemma 6.
The best constant

L := sup
u∈H1(RN ), ‖u‖

L2(RN )
=1

(
µ

∫

RN

VM |u|2 dx−
∫

RN

|∇u|2 dx
)

a priori depends on the detail of the configuration of the singularities {y1 , . . . yM}, up to translations
and rotations. Lemma 9 only gives an upper bound for L. We are now going to give an explicit
expression for K(µ,N,M), which extends to M ≥ 2 the result of Theorem 7. See Theorem 10 below
for the precise statement.

Let us consider the square expansion (5) and look for an optimal pointwise upper estimate of

2
(x− yk) · (x− yj)

|x− yk|2 |x− yj |2
− β

(
1

|x− yk|2
+

1

|x− yj |2
)
.

If we notice that x − yk = (x − (yj + yk)/2) − (yk − (yj + yk)/2) = (x − (yj + yk)/2) − y with
y := (yk − yj)/2 and x− yj = (x− (yj + yk)/2)− (yj − (yj + yk)/2) = (x− (yj + yk)/2) + y, up to
a translation of (yj + yk)/2, what we have to estimate is

2
(x− y) · (x+ y)

|x− y|2 |x+ y|2 − β

(
1

|x− y|2 +
1

|x+ y|2
)
.

and exactly as in the proof of Lemma 6, we get

2
(x − y) · (x+ y)

|x − y|2 |x+ y|2 ≤ β

(
1

|x− y|2 +
1

|x+ y|2
)

+
(1 − β)2

4 β

1

|y|2 a.e. in R
N .

Returning to the original coordinates we find

(x− yk) · (x− yj)

|x− yk|2 |x− yj|2
≤ β

(
1

|x− yk|2
+

1

|x− yj|2
)

+
(1 − β)2

β

1

|yj − yk|2

∑

1≤j 6=k≤M

(x− yk) · (x− yj)

|x− yk|2 |x− yj|2
≤

∑

1≤j 6=k≤M

[
β

(
1

2 |x− yk|2
+

1

2 |x− yj |2
)

+
(1 − β)2

2 β |yj − yk|2
]

= (M − 1)β

M∑

k=1

1

|x− yk|2
+

(1 − β)2

β

∑

1≤j 6=k≤M

1

2 |yj − yk|2

= βM

M∑

k=1

1

|x− yk|2
+ γM ,

where we set βM := (M−1)β, γM := β−1 (1−β)2/(4D2), where D−2 = 2
∑

1≤j 6=k≤M |yj −yk|−2.

From the previous estimate and (5) we obtain

[
(N − 2)α− α2 (1 + βM )

] ∫

RN

|u|2
(

M∑

k=1

1

|x− yk|2

)
dx ≤

∫

RN

|∇u|2 dx+ γM α2

∫

RN

|u|2 dx .

Now, as in the case with 2 poles, we set (N − 2)α− α2 (1 + βM ) =: µ to get

µ

∫

RN

|u|2
(

M∑

k=1

1

|x− yk|2

)
dx ≤

∫

RN

|∇u|2 dx+ λM

∫

RN

|u|2 dx ,

with

λM =
1

4 (M − 1)

[
(N − 2)α−Mα2 − µ

]2

(N − 2)α− α2 − µ

1

D2
=

1

4 (M − 1)

(
t a−M a2 − 1

)2

t a− a2 − 1

1

D2
,

where a = α√
µ , t = N−2√

µ . Recall that t, a, M and β are related by

1 = t a− a2 (1 + β (M − 1)) , β ∈ (0, 1) ,
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which means that at t fixed, a has to be taken such that

(1 + β (M − 1)) a2 − t a+ 1 = 0 ,

i.e., for some β ∈ (0, 1),

a = a±β =
t±

√
t2 − 4 (1 + β (M − 1))

2 (1 + β (M − 1))
.

As in the case of 2 poles we investigate the function gM (a) = (t a−M a2−1)2

t a−a2−1 and see that its infimum

is equal to 0 for t ≥ 2
√
M , that is, for µ ∈

(
0, (N−2)2/(4M)

)
, while for µ ∈

(
(N−2)2/(4M), (N−

2)2/4
)
, the infimum of gM in its interval of definition is equal to the value of gM at the second root

ā2,M = ā2,M (t) of the function

hM (a) := 2M a3 − 3M ta2 + (t2 + 4M − 2) a− t

in the interval
((
t−

√
t2 − 4

)
/4,
(
t+

√
t2 − 4

)
/4
)
. Define the function κM by

κM (t) = 0 if t ≥ 2
√
M ⇐⇒ µ ≤ (N − 2)2/(4M) ,

κ(t) = gM (ā2,M (t)) if 2 < t < 2
√
M ⇐⇒ (N − 2)2/(4M) < µ < (N − 2)2/4 .

The result of this computation can be summarized into the following statement.

Theorem 10. With the above notations, let K(µ,N,M) := 1
4 (M−1) κM

(
N−2√

µ

)
. If µ ∈ (0, (N −

2)2/4), then

µ

∫

RN

VM |u|2 dx ≤
∫

RN

|∇u|2 dx+
K(µ,N,M)

D2

∫

RN

|u|2 dx

holds for any u ∈ H1(RN ) and any y1 , . . . yM in RN .

3. Hardy inequalities for the Dirac operator

3.1. The Dirac-Coulomb operator. In this section we deal with Hardy-like inequalities for
the Dirac operator with the multipolar Coulomb potential ν WM, with ν ∈ (0, 1) and WM (x) =∑M

k=1
1

|x−yk| . Coulomb singularities are fixed at y1 , . . . yM ∈ R3. The Dirac-Coulomb operator

takes the form

Hν,WM
:= H − ν WM (x) I4 ,

H := −i ~α · ∇ + β where β :=

(
I2 0
0 −I2

)
αk :=

(
0 σk

σk 0

)
, k = 1 , 2 , 3 .

Here In the identity matrix in (C3)n and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the

Pauli matrices.

If W is a bounded function which tends to 0 at infinity, one can easily prove that the operator
H −W with domain H1(R3) is self-adjoint. If W has singularities, as it is the case for instance
if W = ν WM , one is interested in defining self-adjoint extensions of (H − W ) ↾C∞

0 (R3). The
method used to do this depends on the singularity. Let us for instance consider Coulomb potentials
ν W1(x) = ν/|x|, ν > 0. Then for ν ∈ (0, π/2] one can use the pseudo-Friedrich extension method
to define an extension which satisfies

D(Hν,W1 ) ⊂ D(|H |1/2) = H1/2(R3) .

This result is obtained by using Kato’s inequality : |H | ≥ 2
π |x| . Actually one can prove that Hν,W1

is essentially self-adjoint if ν <
√

3/2 ([40]).

When the singularities are stronger, that is for ν ≥
√

3/2, other methods need to be used. Various
works have dealt with this issue, and it appears that for potentials W which have a singularity at
the origin, the condition

(6) sup
x 6=0

|x|W (x) < 1 ,

is sufficient to define a distinguished extension of (H − W ) ↾ C∞
0 (R3). This has been done by

various methods : see [47, 48, 49] in the case of semibounded potentials W and [39] without this

assumption. The extension T̃ is then defined as T̃ := T ∗↾D(T ∗) ∩D(|x|−1/2). On the other hand,

under Assumption (6), Nenciu proved in [38] the existence of a unique extension T̃ with domain
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contained in H1/2(R3,C4). Finally, in the case of semibounded potentials satisfying (6), Klaus and
Wüst proved in [33] that the aforementioned methods lead to the same self-adjoint extension.

As in the case of the Schrödinger operator, Hardy inequalities for Dirac operators provide us with
lower estimates for some eigenvalues. If ψ =

(
φ
χ

)
is an eigenfunction of Hν,W with eigenvalue λ, the

eigenvalue equation can be rewritten as

Kχ+ φ−W φ = λφ ,

Kφ− χ−W χ = λχ ,

where K := −i ~σ · ∇. We can eliminate the lower component χ. The equation for φ is

K

(
Kφ

1 + λ+W

)
+ φ−W φ = λφ

and so, φ appears as a critical point of φ 7→
∫

R3

|~σ·∇φ|2
1+λ+W dx + (1 − λ)

∫
R3 |φ|2 dx −

∫
R3 W |φ|2 dx,

with critical value 0. Such a functional is monotone decreasing as a function of λ. Hence if Λ = λ1

is the smallest eigenvalue of Hν,W in (−1, 1), then

(7)

∫

R3

|~σ · ∇φ|2
1 + Λ +W

dx+ (1 − Λ)

∫

R3

|φ|2 dx ≥
∫

R3

W |φ|2 dx

holds with Λ = λ1. Reciprocally, for a large class of potentials W, any eigenvalue of Hν,W in (−1, 1)

can be characterized as a min-max of the Rayleigh quotient (Hν,W ψ, ψ) /‖ψ‖2
L2(R3,C4) where ψ =

(
φ
χ

)

is decomposed into an upper component φ and a lower one, χ. Under appropriate conditions,
see [13, 14],

λ

∫

R3

|φ|2 dx = max
χ

(Hν,Wψ, ψ)

‖ψ‖2
L2(R3,C4)

=

∫

R3

|~σ · ∇φ|2
1 + λ+W

dx+

∫

R3

|φ|2 dx ≥
∫

R3

W |φ|2 dx ,

which implicitly determines λ = λ[φ]. The minimization step is then reduced to establish that

λ1 = min
φ 6=0

λ[φ] .

This completes the proof, at least at a formal level, that finding the lowest eigenvalue of Hν,W in
the gap (−1, 1) is equivalent to getting the best constant in Inequality (7). It was proved in [13, 14]
that for a large class of potentials with at most one singularity, the first eigenvalue of H −W in the
spectral gap (−1, 1) is the largest constant Λ for which (7) holds. For instance, in the case of the
radial Coulomb potential, −ν/|x|, for all ν ∈ (0, 1),

(8)

∫

R3

|~σ · ∇φ|2
1 + S(ν) + ν

|x|
dx +

[
1 − S(ν)

] ∫

R3

|φ|2 dx ≥
∫

R3

ν

|x| |φ|
2 dx ,

where S(ν) :=
√

1 − ν2 is the best possible constant. Passing to the limit ν → 1−, Inequality (8)
also holds for ν = 1.

In this section we show that inequalities like (7) can be proved for the multipolar potentials
ν WM and provide us with lower estimates for the eigenvalues of H − ν WM in the interval (−1, 1).
We shall use the IMS method to localize the integrals and to reduce the problem to locally radial
potentials.

3.2. A priori estimates. Consider as in Section 1 a partition of unity defined by (2). The operator

Hν,WM
acts on the 4-spinors ψ =

(
φ
χ

)
∈ H1(R3,C4). If we write φ =

(
φ1

φ2

)
with φ1, φ2 ∈ H1(R3,C),

the expressions |φ|2, |∇φ|2, |~σ ·∇φ|2 denote respectively the quantities |φ1|2 + |φ2|2,
∑3

k=1 |∂kφ1|2 +
|∂kφ2|2 and |∂3φ1 + ∂1φ2 − i ∂2φ2|2 + |∂1φ1 + i ∂2φ1 − ∂3φ2|2 where the notation ∂k denotes ∂/∂xk

,
k = 1, 2, 3. Denoting by L := −i∇∧ x the angular momentum operator, we recall that

(9) ~σ · ∇ =
(
~σ · x|x|

)(
∂r −

1

r
~σ · L

)
,

with r = |x| and ∂r = x
r · ∇. The spectrum of ~σ · L + 1 is the discrete set {l ∈ Z : l 6= 0}. See

[12] and [44] for more details. If Pl is the spectral projection onto the eigenspace of H1(R3,C2)
corresponding to the eigenvalue l of ~σ ·L+ 1, then, in analogy with Lemma 5 of [12], we can prove
that

Pk (~σ · ∇)2 Pl = Pl (~σ · ∇)2 Pk ≡ 0 in H1(R3,C2) ∀ k , l ∈ Z \ {0} , k 6= l .
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This implies that 〈Pk φ, Pl φ〉L2(R3,m dx) = 0, for k 6= l and for each measurable radial function

m = m(|x|). Hence the L2-norm of ~σ · ∇φ can be written in terms of the above-mentioned spectral
decomposition as

(10) ‖(~σ · ∇)φ‖2
L2(R3, m dx) =

∑

l∈Z\{0}
‖(~σ · ∇)Plφ‖2

L2(R3, m dx) =
∑

l∈Z\{0}
‖(∂r− (l−1)

r
)Plφ ‖2

L2(R3, m dx) ,

where we have used |~σ · x/|x| | = 1.

We now decompose the term |~σ · ∇φ|2 by using the partition of unity defined in Section 1 and
take advantage of the fact that the function J is scalar and takes real values.

Lemma 11. Let {Jk}M+1
k=1 be any partition of unity such that Int (supp(Jk)) ∩ Int (supp(Jl)) = ∅ if

1 ≤ k 6= l ≤M . Then

|~σ · ∇φ|2 =

M+1∑

k=1

|~σ · ∇ (Jkφ)|2 −
M+1∑

k=1

|∇Jk|2 |φ|2 .

Proof. We first denote by J an arbitrary element of the partition of unity. By applying the definition
of |~σ · ∇ (Jφ)|2 and grouping the terms with J2,

∑3
a=1 |∂aJ |2 and J ∂aJ , we obtain the following:

|~σ · ∇ (Jφ)|2 = J2 |~σ · ∇φ|2 + |∇J |2|φ|2 + f1(φ) (J ∂1J) + f2(φ) (J ∂2J) + f3(φ) (J ∂3J) ,

with f1, f2, f3 the real valued functions

f1(φ) := 2 Re (〈φ2, ∂1φ2 − i ∂2φ2 + ∂3φ1〉) + 2 Re (〈φ1, ∂1φ1 + i ∂2φ1 − ∂3φ2〉) ,
f2(φ) := 2 Re (〈−i φ2, ∂1φ2 − i ∂2φ2 + ∂3φ1〉) + 2 Re (〈i φ1, ∂1φ1 + i ∂2φ1 − ∂3φ2〉) ,
f3(φ) := 2 Re (〈φ1, ∂1φ2 − i ∂2φ2 + ∂3φ1〉) + 2 Re (〈−φ2, ∂1φ1 + i ∂2φ1 − ∂3φ2〉) ,

where 〈a, b〉 = a b and Re(z) denotes the real part of the complex number z. To obtain the result

we have to sum over all the indexes k = 1 , . . . M + 1 and remember that
∑M+1

k=1 Jk ∂aJk = 0 for
a = 1, 2, 3.

�

The next result is a local estimate on domains where the potential W admits a radial dominant
potential.

Lemma 12. Let W ≥ 0 and J ∈ W 1,∞(R3) be such that for some z ∈ R3, CW ∈ R+ and ν ∈ (0, 1),

(11) W (x) ≤ ν

|x− z| + CW on supp(J) .

Then, for any φ ∈ H1(R3,C2) and any λ > −1,
∫

R3

|~σ · ∇ (Jφ)|2
1 + λ+W (x)

dx ≥
∫

R3

W |Jφ|2 dx− C1

∫

R3

|Jφ|2 dx

where C1 = C1(λ,CW ) := (1 + λ+ CW )
[
1 − S(ν)

]2
/ν2 + CW .

Proof. The proof is divided into three steps.

Step 1: Spectral decomposition. From (11), we know that
∫

R3

|~σ · ∇ (Jφ)|2
1 + λ+W (x)

dx ≥
∫

R3

|~σ · ∇ϕ|2
1 + λ+ CW + ν

r

dx

for ϕ(x) := (Jφ)(x+z). In order to apply (10) to the last integral, we write ϕ as a linear combination
of eigenfunctions ϕl := Pl ϕ of the operator ~σ · L + 1 with corresponding eigenvalues l ∈ Z \ {0}.
Set g(r) := 1/(b r + ν), b = 1 + λ+ CW , and use (9) to get

∫

R3

|~σ · ∇ϕl|2
1 + λ+ CW + ν

r

dx =

∫

R3

r |~σ · ∇ϕl|2
b r + ν

dx

=

∫

R3

g(r) r
∣∣∣∂rϕl − (l − 1)

1

r
ϕl

∣∣∣
2

dx

=

∫

R3

g(r) r |∂rϕl|2 dx +

∫

R3

(l − 1)2

r
g(r) |ϕl|2 dx+ (l − 1)

∫

R3

(
g′(r) +

2 g(r)

r

)
|ϕl|2 dx

=

∫

R3

g(r) r |∂rϕl|2 dx +

∫

R3

[
(l2 − 1)

g(r)

r
+ (l − 1) g′(r)

]
|ϕl|2 dx ,
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where we have integrated by parts in the variable r. Since the last integral is non-negative for every
l ∈ Z \ {0}, we obtain ∫

R3

r |~σ · ∇ϕl|2
b r + ν

dx ≥
∫

R3

g(r) r |∂rϕl|2 dx .

Step 2. Completing the square. Let h ∈ C(R+,R+) be a measurable radial function, a.e. differen-
tiable, and consider the following square expansion,

0 ≤
∫

R3

∣∣∣
√
r g(r) ∂rϕl +

h(r)√
r g(r)

ϕl

∣∣∣
2

dx

=

∫

R3

r g(r) |∂rϕl|2 dx−
∫

R3

(
h′(r) +

2 h(r)

r
− (b r + ν)

h2(r)

r

)
|ϕl|2 dx .

If h(r) = 1−S(ν)
ν , it holds

∫

R3

g(r) r |∂rϕl|2 dx ≥
∫

R3

(ν
r
− b

[
1 − S(ν)

]2

ν2

)
|ϕl|2 dx .

Hence we have shown that for every l ∈ Z \ {0}, for every b > 0, the eigenfunction ϕl satisfies the
inequality ∫

R3

r |~σ · ∇ϕl|2
b r + ν

dx ≥
∫

R3

ν

r
|ϕl|2 dx− b

[1 − S(ν)]2

ν2

∫

R3

|ϕl|2 dx .

Step 3. Recomposition. A sum over l ∈ Z \ {0} gives
∫

R3

r |~σ · ∇ϕ|2
b r + ν

dx ≥
∫

R3

ν

r
|ϕ|2 dx− b [1 − S(ν)]2

ν2

∫

R3

|ϕ|2 dx .

Now we return to the original coordinates with b = 1+λ+CW , we add and subtract CW

∫
R3 |Jφ|2 dx

to the right hand side. From a last application of (11) we get the result with C1 = b [1−S(ν)]2/ν2 +
CW . �

3.3. Case d large. We consider an arbitrary configuration of poles yk ∈ R3, and define the following
quantities :

a :=
ν M

d
, b :=

[
1 − S(ν)

]2

ν2
, c := 2

1 − S(ν)

ν2
,

d∗(ν) =
1

2
M ν c+ π

√
c ,

λ∗(d, ν,M) :=
1

c

[
1 +

√
c (a2ν−2 − π2 d−2 − a) + 1 − a2 ν−2

]
− 1 − a

2
,

with S(ν) =
√

1 − ν2 and d := mini6=k |yi − yj|/2.

Theorem 13. With the above notations, for all ν ∈ (0, 1), M ≥ 2, if d ≥ d∗(ν), then for all

φ ∈ H1(R3,C2) we have
∫

R3

|~σ · ∇φ|2
1 + λ∗ + ν WM

dx + (1 − λ∗)

∫

R3

|φ|2 dx ≥ ν

∫

R3

WM |φ|2 dx .

We observe that λ∗ > −1 for every d ≥ d∗(ν) and that λ∗ = 0 for

d = d̄ :=
1

c− 2

(
− 1

2
M ν c−

√
M2 (c− 1) − π2 (c− 2)

)
.

Proof. Let {Jk}M+1
k=1 be a partition of unity supported on balls defined as in Section 1, namely

Jk(x) = J(|x− yk|/d) for all x ∈ R3, 1 ≤ k ≤M, with J as in (2) and JM+1 =

√∑M
k=1 J

2
k . For any

k = 1 , . . . M, the function Jk is supported in B(yk, d). Note that

ν WM (x) ≤






ν

|x− yk|
+
M − 1

d
ν on supp(Jk) ∀ k = 1 , . . . M ,

ν

|x− y1|
+
M

d
ν on supp(JM+1) .

On supp(JM+1) we observe indeed that

(1) Either x ∈ supp(JM+1)\ ∪M
k=2 supp(Jk): ν WM (x) ≤ ν/|x− y1| + ν (M − 1)/d.
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(2) Or x ∈ supp(JM+1)∩ supp(Jk) for some k = 2 , . . . M : dist(x, yk) ≥ d/2 and dist(x, yj) ≥ d
for j 6= k.

We can then apply Lemma 12 to
∫

R3

|~σ·∇ (Jkφ)|2
1+λ+ν WM

dx with

C1 =
(
1 + λ+

M − 1

d
ν
) [1 − S(ν)

]2

ν2
+
ν (M − 1)

d
=: K1(λ, ν, d,M) ,

for k = 1 , . . . M, and

C1 =
(
1 + λ+

νM

d

) [1 − S(ν)
]2

ν2
+
ν M

d
=: K2(λ, ν, d,M)

for k = M + 1. From this and Lemma 11, it follows that
∫

R3

|~σ · ∇φ|2
1 + λ+ ν WM

dx =
M+1∑

k=1

∫

R3

|~σ · ∇ (Jkφ)|2
1 + λ+ ν WM

−
∫

R3

M+1∑

k=1

|∇Jk|2
|φ|2

1 + λ+ ν WM
dx

≥
∫

R3

ν WM |φ|2 dx−K1

M∑

k=1

∫

R3

|Jkφ|2 dx−K2

∫

R3

|JM+1φ|2 dx−
∫

R3

M+1∑

k=1

|∇Jk|2
|φ|2

1 + λ
dx .

Property (d) of the partition of unity, see Section 1, gives

M+1∑

k=1

|∇Jk|2 ≤ π2

d2
Isupp(|∇JM+1|) ,

thus implying

(12)

∫

R3

|~σ · ∇φ|2
1 + λ+ ν WM

dx ≥
∫

R3

ν WM |φ|2 dx−K2

∫

R3

|φ|2 dx−
∫

R3

π2

d2 (1 + λ)
|φ|2 dx ,

since K2 > K1. To get λ∗, we now choose the largest possible λ such that

K2(λ, ν, d,M) +
π2

d2 (1 + λ)
≤ 1 − λ ,

that is the largest root of

(13) (1 + b)λ2 +
[
a+ (2 + a) b

]
λ+ (1 + a) b+ a+

π2

d2
− 1 = 0 .

The value d∗(ν) is the minimal d for which the discriminant of the second order equation (13) is
nonnegative. For such a d, one can check that λ∗ > −1. �

In the case M = 2, a better result can be achieved by considering the partition of unity {Jk}3
k=1

defined by (3), i.e. such that

J1(x) =





1 if |x− y| ≤ |x| ,
sin(π

(
x · y)/d2) if 0 ≤ x · y ≤ d2/2 ,

0 otherwise ,

J2(x) := J1(−x) for any x ∈ R3, and J3 :=
√

1 − J2
1 − J2

2

Corollary 14. If M = 2, the results of Theorem 13 hold with a = ν/d and d∗(ν) = ν c
2 + π

√
c.

Proof. From Property (d) of Section 1 we derive

3∑

k=1

|∇Jk|2 =
|∇J1|2
1 − J2

1

+
|∇J2|2
1 − J2

2

≤ π2

d2
Isupp(∇J3) .(14)

Moreover, we have the estimate

(15) W2(x) ≤





1
|x−y| + 1

d on supp(J1) ,

1
|x+y| + 1

d on supp(J2) ,

1
|x| + 1

d on supp(J3) .

The first inequality holds because |x + y| ≥ d on supp(J1) = {x ∈ R3 : |x − y| ≤ |x + y|}. The
second inequality is similar. The last one can be obtained as in the proof of Proposition 4. The
proof is then the same as the one of Theorem 13, with K2(λ, ν, d, 2) replaced by K2(λ, ν, d, 1). �
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In the case M > 2, if one wants to improve on Theorem 13, one has to make a geometric
assumption, which is always satisfied for M = 2.

Corollary 15. Let M ≥ 2. Assume that there exists a partition of unity {Jk}M+1
k=1 such that for

some z1 , . . . zM , zM+1 ∈ R3,

WM (x) ≤ 1

|x− zk|
+

(M − 1)

d
on supp(Jk) ∀ k = 1 , . . . M + 1 ,

and
∑M+1

k=1 |∇Jk|2 ≤ π2/d2. Then the results of Theorem 13 hold with a = (M − 1) ν/d and

d∗(ν) = ν c (M − 1)/2 + π
√
c.

Proof. One proceeds as in the proof of Theorem 13, with K2 replaced by K2(λ, ν, d,M − 1) =
K1(λ, ν, d,M). �

Theorem 13 has several consequences. Assume first that bM = M .

Corollary 16 (Asymptotics for λ∗). For ν → 1, we find d̄ → +∞ and d∗(ν) → bM + π
√

2, while

for ν → 0, d̄→ π and d∗(ν) → π. Moreover, for fixed ν ∈ (0, 1), M ≥ 2,

λ∗ =
√

1 − ν2 − bM
ν

d
+O

(
1

d2

)
as d→ ∞ .

Under the assumption of Corollaries 14 (M = 2) and 15, we can take bM = M − 1. We also
observe that λ∗ provides a lower bound for the lowest eigenvalue in the spectral gap of Hν,WM

. As

d → +∞, λ∗ converges to S(ν) =
√

1 − ν2 and one recovers the Hardy-like inequality (8) for the
1-pole potential.

3.4. Further estimates. One can actually use Lemma 12 to obtain slightly different inequalities
which are not Hardy inequalities for Dirac operators as (7). The difference lies in the fact that the
coefficient in front of the L2 term is taken bigger than in (7). Such inequalities are valid for all d > 0
and are useful to obtain asymptotics both in the cases d→ +∞ and d→ 0, for ν small enough.

With the same notations as in Corollary 16, let

Λ(d, ν) :=
2
[
1 − S(ν)

]

ν d
bM +

π2

d2 (1 + S(ν))
.

By taking λ = S(ν) instead of λ∗ in (12), we obtain the following result. Note that for d→ ∞, one
recovers the Hardy-like inequality (8) for 1-pole.

Corollary 17. For all φ ∈ H1(R3,C2) and ν ∈ (0, 1),
∫

R3

|~σ · ∇φ|2
1 + S(ν) + ν WM (x)

dx+
[
1 − S(ν)

] ∫

R3

|φ|2 dx+ Λ(d, ν)

∫

R3

|φ|2 dx ≥ ν

∫

R3

WM |φ|2 dx .

Motivated by the asymptotics corresponding to d = |y2 − y1| → 0 in case M = 2, we can
prove another inequality for the bipolar Coulomb potential, which also holds for any d > 0. Let
W2(x) = 1

|x−y| + 1
|x+y| with y = (d, 0, 0) ∈ R

3, d > 0 and define Ω(d) := {x ∈ R
3 : |(x · y)| ≤ d2/2}.

Theorem 18. With the above notations, for any ν ∈ (0, 1/2) and any φ ∈ H1(R3,C2),
∫

R3

|~σ · ∇φ|2
1 + S(2ν) + ν W2

dx+
[
1−S(2ν)

] ∫

R3

|φ|2 dx+
π2

d2
[
1 + S(2ν)

]
∫

Ω(d)

|φ|2 dx ≥ ν

∫

R3

W2 |φ|2 dx .

Proof. We consider (Jk)3k=1 the partition of unity (3). From Lemma 11 we get
∫

R3

|~σ · ∇φ|2
1 + λ+ ν W2(x)

dx =

3∑

k=1

∫

R3

|~σ · ∇ (Jkφ)|2
1 + λ+ ν W2(x)

dx−
∫

R3

3∑

k=1

|∇Jk|2
|φ|2

1 + λ+ ν W2(x)
dx ,

and observe that

W2(x) ≤





2
|x−y| on supp(J1) ,

2
|x+y| on supp(J2) ,

2
|x| on supp(J3) .

We apply Lemma 12 to (Jk u), k = 1, 2, 3, with CW = 0 and ν replaced by 2ν:
∫

R3

|~σ · ∇ (Jkφ)|2
1 + S(2ν) + ν W2

dx ≥ ν

∫

R3

W2 |Jkφ|2 dx−
[
1 − S(2ν)

] ∫

R3

|Jkφ|2 dx .



HARDY INEQUALITIES WITH SEVERAL SINGULARITIES 21

On the other hand, on Ω(d) := {x ∈ R3 : |(x · y)| ≤ d2/2}, we have the estimate

3∑

k=1

|∇Jk|2
1

1 + S(2ν) + ν W2
≤ π2

d2

1

1 + S(2ν)
.

Putting the above estimates together we complete the proof. �

We are able to recover the Hardy-like inequality for the Dirac operator with a radial Coulomb
potential (8) by taking the limit as d→ 0 only under the following technical assumption:

lim
d→0

1

d2

∫

|(x·y)|≤d2/2

|φ|2 dx = 0 .

A sufficient condition is φ(0, x2, x3) = 0 for almost any (x2, x3) ∈ R2. Namely, choose φ =(
φ1

φ2

)
∈ C1(R3,C2) and apply Poincaré’s inequality. With the notations y = (d, 0, 0) and Ω(d) :=

[−d/2, d/2]× R2, we can write

|φ(x1, x2, x3)| ≤ |φ(0, x2, x3)| +
∣∣∣∣
∫ x1

0

∂1φ(s, x2, x3) ds

∣∣∣∣ ,

|φ(x)|2 ≤ 2 |φ(0, x2, x3)|2 + 2 d

∫ d/2

−d/2

|∂1φ(s, x2, x3)|2 ds ,

where we have used |a + b|2 ≤ 2 |a|2 + 2 |b|2 and Cauchy-Schwartz’s inequality. Integrating both
terms over Ω(d), it results

∫

Ω(d)

|φ|2 dx ≤ 2 d

∫

R2

|φ(0, x2, x3)|2 dx2 dx3 + 2 d2

∫

Ω(d)

|∂1φ|2 dx .

We know that
∫
Ω(d) |∂1φ|2 dx ≤

∫
Ω(d) |∇φ|2 dx→ 0 as d→ 0, which completes the proof. By density,

we can extend the result to all φ ∈ { f ∈ H1(R3,C2) : f(0, x2, x3) = 0 a.e. }.

Acknowledgments. This work has been partially supported by the PAI Procope # 09608ZL. J.D.

and M.J.E. acknowledge support from ANR Accquarel project and European Program “Analysis

and Quantum” HPRN-CT # 2002-00277.

c© 2006 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

References

[1] Adimurthi and K. Sandeep, Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev
operator, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), pp. 1021–1043.

[2] A. A. Balinsky and W. D. Evans, Stability of one-electron molecules in the Brown-Ravenhall model, Comm.
Math. Phys., 202 (1999), pp. 481–500.

[3] G. Barbatis, S. Filippas, and A. Tertikas, Series expansion for L
p Hardy inequalities, Indiana Univ. Math.

J., 52 (2003), pp. 171–190.
[4] , A unified approach to improved L

p Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356
(2004), pp. 2169–2196 (electronic).

[5] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut.
Madrid, 10 (1997), pp. 443–469.

[6] V. I. Burenkov and W. D. Evans, On the evaluation of the norm of an integral operator associated with the
stability of one-electron atoms, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), pp. 993–1005.
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Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), pp. 295–308.
[42] B. Simon, Errata: “Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic

expansions”, Ann. Inst. H. Poincaré Phys. Théor., 40 (1984), p. 224.
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[47] R. Wüst, A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials,
Math. Z., 131 (1973), pp. 339–349.

[48] , Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math.
Z., 141 (1975), pp. 93–98.

[49] , Dirac operators with strongly singular potentials. Distinguished self-adjoint extensions constructed with
a spectral gap theorem and cut-off potentials, Math. Z., 152 (1977), pp. 259–271.

1Institut für Analysis und Scientific Computing, Wiedner Hauptstr. 8, A 1040 Wien, Österreich
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