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A new sufficient condition for the existence of a stationary causal solution of an ARCH(∞) equation is provided. This condition allows to consider coefficients with power-law decay, so that it can be applied to the so-called FIGARCH processes, whose existence is thus proved.

Introduction

It can arguably be said that autoregressive conditionnally heteroskedastic (ARCH) and long memory processes are two success stories of the nineties, so that they were bound to meet. Their tentative offspring was the FIGARCH process, introduced by [START_REF] Baillie | Fractionally integrated generalized autoregressive conditional heteroskedasticity[END_REF] without proving its existence, which has remained controversial up to now. More precisely, the FIGARCH(p, d, q) process is the solution of the equations

X n = σ n z n , (1) 
σ 2 n = a 0 + I -(I -L) d θ(L) φ(L) X 2 n , (2) 
where {z n } is an i.i.d. sequence with zero mean and unit variance, a 0 > 0, d ∈ (0, 1), L is the backshift operator and (I -L) d is the fractional differencing operator:

(I -L) d = I + ∞ j=1 (-d)(1 -d) • • • (j -1 -d) j! L j ,
and θ and φ are polynomials such that θ(0) = φ(0) = 1, φ(z) = 0 for all complex number z in the closed unit disk and the coefficients of the series expansion of 1 -(1 -z) d θ(z)/φ(z) are nonnegative. Then the coefficients {a j } j≥1 defined by ∞ j=1 a j L j = I -(I -L) d θ(L)/φ(L) satisfy a j ∼ cj -d-1 for some constant c > 0 and ∞ j=1 a j = 1.

These processes are subcases of what can be called IARCH(∞), defined as solutions of the equations (1) and

σ 2 n = a 0 + ∞ j=1 a j X 2 n-j , (3) 
for some sequence {a j } such that a 0 > 0 and ∞ j=1 a j = 1. The letter I stands for integrated, by analogy to ARIMA processes. An important property of such processes is that a stationary solution necessarily has infinite variance.

Indeed, if σ 2 = E[σ 2 n ] < ∞, then E[X 2 n ] = σ 2 and (3) implies σ 2 = a 0 + σ 2 ,
wich is impossible. If the condition ∞ j=1 a j = 1 is not imposed, a solution to equations ( 1) and ( 3) is simply called an ARCH(∞) process.

A solution of an ARCH(∞) equation is said to be causal with respect to the i.i.d. sequence {z n } if for all n, σ n is F z n-1 measurable, where F z n is the sigmafield generated by {z n , z n-1 , . . .}. Note that to avoid trivialities, here and in the following, σ n is the positive square root of σ 2 n . There exists an important literature on ARCH(∞), IARCH(∞) and FIGARCH processes. For a recent review, see for instance [START_REF] Giraitis | ARCH(∞) models and long memory properties[END_REF]. The known conditions for the existence of stationary causal conditions to ARCH equations are always a compromise between conditions on the distribution of the innovation sequence {z n } and summability conditions on the coefficients {a j , j ≥ 1}. [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF] provides a necessary and sufficient condition for the solution to have finite fourth moment. The only rigorous result in the IARCH(∞) case was obtained by [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF]. They prove the existence of a causal stationary solution under the condition that the coefficients a j decay geometrically fast, which rules out FIGARCH processes, and on a mild condition on the distribution of z 0 .

The purpose of this paper is to provide a new sufficient condition for the existence of a stationary solution to an ARCH(∞) equation, which allows power-law decay of the coefficients a j s, even in the IARCH(∞) case. This condition is stated in Section 2. It is applied to the IARCH(∞) case in Section 3 and the existence of a stationary solution to the FIGARCH equation is proved. Further research directions are given in Section 4. In particular, the memory properties of FIGARCH processes are still to be investigated. This is an important issue, since the original motivation of these processes was the modelling of long memory in volatility.

Theorem 1 Let {a j } j≥0 be a sequence of nonnegative real numbers and {z k } k∈Z a sequence of i.i.d. random variables. For p > 0, define

A p = ∞ j=1 a p j and µ p = E[z 2p 0 ] .
If there exists p ∈ (0, 1] such that

A p µ p < 1, (4) 
then there exists a strictly stationary solution of the ARCH(∞) equation:

X n = σ n z n , (5) 
σ 2 n = a 0 + ∞ j=1 a j X 2 n-j , (6) 
given by ( 5) and

σ 2 n = a 0 + a 0 ∞ k=1 j 1 ,...,j k ≥1 a j 1 . . . a j k z 2 n-j 1 . . . z 2 n-j 1 -•••-j k . (7) 
The process {X n } so defined is the unique causal stationary solution to equations ( 5) and ( 6)

such that E[|X n | 2p ] < ∞. Proof. Denote ξ k = z 2 k , so that E[ξ p k ] = µ p , and define the [0, ∞]-valued r.v. S 0 = a 0 + a 0 ∞ k=1 j 1 ,...,j k ≥1 a j 1 . . . a j k ξ -j 1 . . . ξ -j 1 -•••-j k (8)
Since p ∈ (0, 1], we apply the inequality (a + b) p ≤ a p + b p valid for all a, b ≥ 0 to S p 0 :

S p 0 ≤ a p 0 + a p 0 ∞ k=1 j 1 ,...,j k ≥1 a p j 1 . . . a p j k ξ p -j 1 . . . ξ p -j 1 -•••-j k .
Then, by independence of the ξ j 's, we obtain

E[S p 0 ] ≤ a p 0 + a p 0 ∞ k=1 j 1 ,...,j k ≥1 a p j 1 . . . a p j k E[ξ p -j 1 . . . ξ p -j 1 -•••-j k ] = a p 0 1 + ∞ k=1 (µ p A p ) k = a p 0 1 -A p µ p , (9) 
where we used (4). This bound shows that S 0 < ∞ a.s. and the sequence

S n = a 0 + a 0 ∞ k=1 j 1 ,...,j k ≥1 a j 1 . . . a j k ξ n-j 1 . . . ξ n-j 1 -•••-j k , n ∈ Z ,
is a sequence of a.s. finite r.v.'s. Since only nonnegative numbers are involved in the summation, we may write

∞ j=1 a j S n-j ξ n-j = a 0 ∞ j 0 =1 a j 0 ξ n-j 0 + a 0 ∞ j 0 =1 a j 0 ξ n-j 0 ∞ k=1 j 1 ,...,j k ≥1 a j 1 . . . a j k ξ n-j 0 -j 1 . . . ξ n-j 0 -j 1 -•••-j k = a 0 ∞ k=0 j 0 ,j 1 ,...,j k ≥1 a j 0 . . . a j k ξ n-j 0 . . . ξ n-j 0 -j 1 -•••-j k .
Hence {S n , n ∈ Z} satisfies the recurrence equation

S n = a 0 + ∞ j=1 a j S n-j ξ n-j .
The technique of infinite chaotic expansions used here is standard; it was already used in the proof of (Kokoszka and Leipus, 2000, Theorem 2.1). This proves the existence of a strictly stationary solution for ( 5) and ( 6) by setting

σ 2 n = S n and X n = σ n z n . Using (9), we moreover have E[|X n | 2p ] ≤ µ p a p 0 /(1 - A p µ p ).
Suppose now that {X n } is a strictly stationary causal solutions of the ARCH(∞) equations ( 5) and ( 6). Then, for any q ≥ 1, the following expansion holds:

σ 2 n = a 0 + a 0 q k=0 j 1 ,...,j k ≥1 a j 1 . . . a j k ξ n-j 1 . . . ξ n-j 1 -•••-j k (10) + j 1 ,...,j q+1 ≥1 a j 1 . . . a j q+1 ξ n-j 1 . . . ξ n-j 1 -•••-jq X 2 n-j 1 -•••-j q+1 . (11) 
The last display implies that the series on the right-hand side of (10) converges to S n as q → ∞. Denote by R n,q the remainder term in (11

). Since {X n } is a causal solution, X n-j 1 -•••-j q+1 is independent of ξ n-j 1 . . . ξ n-j 1 -•••-jq for all j 1 , . . . , j q+1 ≥ 1. Hence, for any p ≤ 1, E[R p n,q ] ≤ (A p µ p ) q E[X 2p 0 ] . If Assumption (4) holds and E[X 2p 0 ] < ∞, then E[ q≥1 R p n,q ] < ∞ so that, as q → ∞, R n,q → 0 a.s., implying σ 2 n = S n a.s. 2 3 IARCH(∞) processes
IARCH (Integrated ARCH) processes are particular ARCH(∞) processes for which A 1 µ 1 = 1, or, equivalently up to a scale factor,

A 1 = 1 and µ 1 = 1 (12)
To the best of our knowledge, the only rigorous general result on IARCH(∞)

processes was obtained by [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF]. See [START_REF] Giraitis | ARCH(∞) models and long memory properties[END_REF] for a recent review. In Theorem 2.1 of [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF],

it is proved that if

E[| log(z 0 )| 2 ] < ∞ , ( 13 
) i a i q i < ∞ for some q > 1 , (14) 
equations ( 5)-( 6). Condition (13) on the distribution of z 0 is mild, but the condition ( 14) rules out power-law decay of the coefficients {a j }.

Theorem 1 yields the following sufficient condition for the existence of a IARCH(∞) process.

Corollary 2 If A 1 = 1 and µ 1 = 1, (4) holds for some p ∈ (0, 1] if and only if there exists p * < 1 such that A p * < ∞ and

∞ j=1 a i log(a i ) + E[z 2 0 log(z 2 0 )] ∈ (0, ∞] . (15) 
Then, the process defined by ( 5) and ( 7) is a solution of the ARCH(∞) equa-

tion and E[|X n | q ] < ∞ for all q ∈ [0, 2) and E[X 2 n ] = ∞.
Proof. Since a i ≤ 1 for all i ≥ 1, it holds that ∞ j=1 a i log(a i ) ≤ 0 and the convexity of the function x → x log(x) implies E[z 2 0 log(z 2 0 )] ≥ 0.

First assume that there exists p ∈ (0, 1] such that (4) holds. Since A 1 = µ 1 = 1, then necessarily, p < 1 and for all q ∈ [p, 1], A q < ∞. Thus we can define the

function φ : [p, 1] → R by φ(q) = log(A q µ q ) = log ∞ j=1 a q j + log E[z 2q 0 ] .
Hölder inequality implies that the functions q → log ∞ j=1 a q j and q → log E[z 2q 0 ] are both convex on [p, 1]. Thus φ is also convex on [p, 1] and, since φ(p) < 0 and φ(1) = 0, the left derivative of φ at 1, which is given by the left-hand side of (15), is positive (possibly infinite).

Conversely suppose that there exists p * < 1 such that A p * < ∞ and that (15) holds. Then φ is a convex function on [p * , 1] and (15) implies that φ(q) < 0 for q < 1 sufficiently close to 1.

By convexity of φ and since φ(1) = 0, we also get that A p µ p < 1 implies A q µ q < 1 for all q ∈ [p, 1). Then, by Theorem 1, the process {X n , n ∈ Z} defined by ( 7) and ( 6) is a solution to the ARCH(∞) equation and satisfies

E[|X 0 | q ] < ∞ for all positive q < 2. 2.
Comments on Corollary 2.

(i) Condition ( 15) is not easily comparable to conditions ( 13) and ( 14) of [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF]. Condition ( 15) is not necessary to prove the existence of a causal stationary solution if the coefficients a j decay geometrically fast (in particular if there are only finitely many nonvanishing coefficients), as a consequence of [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF] Theorem 2.1); however, this result does not prove that any moments of X n are finite, contrary to Corollary 2.

(ii) It might also be of interest to note that the Lyapounov exponent of the FIGARCH process as defined in [START_REF] Kazakevičius | A new theorem on the existence of invariant distributions with applications to ARCH processes[END_REF] is zero.

So our result proves that such a feature is not in contradiction with strict stationarity.

(iii) In the specific case of IGARCH processes, which are particular parametric subclasses of IARCH(∞) processes, [START_REF] Bougerol | Stationarity of GARCH processes and of some nonnegative time series[END_REF] have a different set of assumptions on the distribution of z 0 : they assume that P(z 2 0 = 0) = 0 and that the support of the distribution of z 2 0 is unbounded.

(iv) The moment E[z 2 0 log(z 2 0 )] can be arbitrarily large (possibly infinite) if the distribution of z 2 0 has a sufficiently heavy tail. It is infinite for instance if the distribution of z 2 0 is absolutely continuous with a density bounded from below by 1/(x 2 log 2 (x)) for x large enough. In that case, condition (15) holds for any sequence {a j } such that A p * < ∞ for some p * < 1. This conditions allows for a power-law decay of the coeffficients a j , for instance a j ∼ cj -δ , for some δ > 1.

Corollary 2 can be used to prove the existence of a causal strictly stationary solution to some FIGARCH(p, d, q) equations. Let us illustrate this in the case of the FIGARCH(0, d, 0) equation, that is ( 5) and ( 6) with d ∈ (0, 1), a 0 > 0 and a j = π j (d) for all j ≥ 1, where Proof. For d ∈ (0, 1] and p ∈ (1/(d + 1), 1], denote

π 1 (d) = d , π j (d) = d(1 -d) • • • (j -1 -d) j! , j ≥ 2 .
H(p, d) = log ∞ j=1 π p j (d) , L(d) = ∞ j=1 π j (d) log(π j (d)) .
For d ∈ (0, 1), π j (d) ∼ cj -d-1 , so that H(p, d) is defined on (1/(d+1 (ii) Tail behaviour of the marginal distribution of GARCH processes have been investigated by [START_REF] Basrak | Regular variation of GARCH processes[END_REF], following [START_REF] Nelson | Stationarity and persistence in the GARCH(1, 1) model[END_REF], but there are no such results in the ARCH(∞) case. Under suitable conditions, we have shown that the squares of the FIGARCH process X 2 n have finite moments of all order p < 1, but necessarily, E[X 2 n ] = ∞. Thus, it is natural to conjecture that perhaps under additional conditions on the distribution of z 0 , the function x → P(X ) is a parametric model, so the issue of estimation of its parameter is naturally raised. Also, if d is linked to some memory property of the process, semi-parametric estimation of d would be of interest.

Corollary 3

 3 Assume that {z k } k∈Z a sequence of i.i.d. random variables, such that E[z 2 0 ] = 1 and P{|z 0 | = 1} < 1. Then there exists d * ∈ [0, 1) such that, for all d ∈ (d * , 1), the FIGARCH(0, d, 0) equation has a unique causal stationary solution satisfying E[|X n | 2p ] < ∞ for all p < 1.

  We conjecture, but could not prove, that L(d) is increasing, so that (15) holds if and only if d > d * (withd * = 0 if E[ξ 0 log(ξ 0 )] = ∞). But this does not prove that the FIGARCH(0, d, 0) does not exist for d ≤ d * .The problem remains open to know if there exist a stationary solution under a mild assumption on z 0 , such as (13) for instance. If a solution exists, say {X n }, then, as seen in the proof of Theorem 1, the sequence {S n } defined in (8) is well defined and Y n =

	that there exists d * ∈ (0, 1) such that L(d) + E[z 2 0 log(z 2 0 )] > 0 (i.e. (15)
	holds) if d > d * . Thus Corollary 2 proves the existence of the corresponding
	FIGARCH(0, d, 0) processes.		2.
	Remark. It easily seen that L(d) ≤ log(d) so that lim d→0 L(d) = -∞, i.e. (15)
	does not hold for small d. 4 Open problems		
	Now that a proof of existence of some FIGARCH and related processes is
	obtained under certain conditions, there still remain some open questions. We
	state a few of them here.			
	(i) Condition (15) is not necessary for the existence of a stationary causal
	solution, but it implies finiteness of all moments up to 1 of X 2 n (with of
	course E[X 2			), 1]. More-
	over, it is decreasing and convex with respect to p, H(1, d) = 0 and ∂ p H(1, d) =
	L(d). Also, π j (d)/d is a decreasing function of d and lim d→1 π j (d) = 0 for all
	j ≥ 2. Thus, by bounded (and monotone) convergence, for all p ∈ (1/2, 1), it
	holds that lim d→1,d<1 H(p, d) = 0. By convexity of H with respect to p, the S 1/2 n z n is also a stationary causal solution wich satisfies moreover Y 2 n ≤
	following bound holds: X 2 n . But we cannot prove without more assumptions that these solutions
	are equal.	0 ≤ -L(d) ≤	1 -p H(p, d)	.
	Hence lim d→1 L(d) = 0. By assumption, we have E[z 2 0 log(z 2 0 )] > 0. This implies

n ] = ∞).

  The memory properties of the FIGARCH process are of course of great interest. The sequence {X n } is a strictly stationary martingale increment sequence, but E[X 2 n ] = ∞. So does it hold that the partial sum process n -1/2 [nt] k=1 X k converges weakly to the Brownian motion? For p ∈ [1, 2), do the sequences {|X n | p } have distributional long memory in the sense that n -H [nt] k=1 {|X k | p -E[|X k |

	2 n > x) is regularly varying with
	index -1.
	(iii)

p ]} converge to the fractional Brownian motion with Hurst index H for a suitable H > 1/2? (iv) Statistical inference. The FIGARCH

(p, d, q
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