N

N

The Kato smoothing effect for Schrodinger equations
with unbounded potentials in exterior domains
Luc Robbiano, Claude Zuily

» To cite this version:

Luc Robbiano, Claude Zuily. The Kato smoothing effect for Schrédinger equations with unbounded
potentials in exterior domains. International Mathematics Research Notices, 2009, 9, pp.1636-1698.
hal-00113059

HAL Id: hal-00113059
https://hal.science/hal-00113059
Submitted on 10 Nov 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00113059
https://hal.archives-ouvertes.fr

hal-00113059, version 1 - 10 Nov 2006

The Kato smoothing effect for Schrodinger
equations with unbounded potentials
in exterior domains

by

Luc ROBBIANO!
CLAUDE ZUILY?23

1. Introduction

1
The Kato 5~ smoothing effect for Schrédinger equations has received much attention

during the last years. See Constantin-Saut [C-S], Sjolin [Sj], Vega [V], Yajima [Y] for the
case of the flat Laplacian in R?. It has been successively extended to variable coefficients
operators by Doi (see [D1], [D2]) and to perturbations of such operators by potentials
growing at most quadratically at infinity (see Doi [D3]). The aim of this paper is to con-
sider exterior boundary value problems for variable coefficients operators with unbounded
potentials. The case of potentials decaying at infinity has been considered by Burq [B1]
using resolvent estimates.

Our main smoothing estimate is proved by contradiction. The idea of proving estimates
by contradiction (with the appropriate technology) goes back to Lebeau [L] and it has
been subsequently used with success by several authors, (see e.g. Burq [B2]).

In this paper, some ideas of Gérard-Leichtnam [G-L], Burq [B3] and Miller [Mi]| will be
also used.

Let us briefly outline how this method applies here. Assuming that our estimate is false
gives rise, after renormalization, to a sequence (uk) which is bounded in LZQOC([O, T] x Rd).
To a subsequence we associate a microlocal semi-classical defect measure p in the sense
of Gérard [G]. Then, roughly speaking, there are three main steps in the proof. First
i does not vanish identically. Moreover p vanishes somewhere (in the incoming region).
Finally the support of u is invariant by the generalized bicharacteristic flow (in the sense
of Melrose-Sjostrand [M-S]). Since one of our assumptions (the non trapping condition)
ensures that the backward generalized flow always meet the incoming region (where pu

vanishes) we obtain a contradiction thus proving the desired estimate.
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Let us now describe more precisely the content of each section.

In the next one we describe the assumptions and state the main result of this paper. In
the third section we begin our contradiction argument and we show in the next one how to
obtain a bounded sequence in L?([0, 7], L}, .(R?)). Then in the fifth section we introduce
the semi classical defect measure p and we state without proof the invariance of its support
by the generalized Melrose-Sjostrand bicharacteristic flow. In the next section we show
that p does not vanish identically while in section seven we show that p vanishes in the
incoming region. In the section eight we end the proof of our main result by achieving a
contradiction. Finally in the appendix (section nine) we recall the geometrical framework
we prove the invariance of the support of u and we end by proving some technical Lemmas
used in the preceeding sections.

Aknowledgments : The authors would like to thank Nicolas Burq for useful discussions
at an early stage of this work.

2. Statement of the result

Let K be a compact obstacle in R? whose complement 2 is a connected open set with
C*> boundary 0f).
Let P be a second order differential operator of the form

d
1 0
(2.1) P= ) Dj(a*@)Dy)+V(z) , D;= i
J,k=1 { i

whose coefficients a’¥ and V are assumed (for simplicity) to be in C>°(Q), real valued and
ajk:akj, 1<5,k<d
We shall set

d
(2.2) =Y (@)
J,k=1
and we shall assume that
(2.3) Fe>0 : plx,€) > cle]?, for 2 in Q and € in RY,

To express the remaining assumptions on the coefficients we introduce the metric
daz? de?
7 T 2
(z)” (&)
where (-) = (1+]-° )1/2 and we shall denote by Sq (M, ¢g) the Hormander’s class of symbols

if M is a weight. Then a € So(M, g) iff a € C>(Q x R?) and for all o, 8 in N one can
find C, g > 0 such that

(2.4) 9=

‘DgD?a(x,f)‘ < CopM(z,€) <x>—\[3| <§>—|a|
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for all z in Q and ¢ in R,

Next we assume
05 () o € Sa(1,q), Vea'*(z)= (‘Q 2| — +oo, 1< j,k<d.
(ii) V € Sa( (z)? ,g), V > —Cj for some positive constant Cj.

Under the assumptions (2.3), (2.5) the operator P is essentially self adjoint on {u €
C5°(Q) :ujpn = 0}. We shall denote by Pp (D means Dirichlet) its self adjoint extension.

Let us describe now our geometrical assumptions. We shall assume

(2.6)

the generalized bicharacteristic flow (in the sense of
Melrose-Sjostrand) is not backward trapped.

This assumption needs some explanations. Let M = Q x R;. Let us set T M = T*M \
{0} uT*OM \ {0}. We have a natural restriction map = : T*]RdJrl \ {0} — T}y M which
is the identity on T*]RdJrl \ {0}.

Let ¥ = {( x,t,f,T) e T"RTIN{0}: 2 €Q,t € [0,T], 7+p(z,§) =0} and &y, = 7(X).
For a € ¥}, the generalized bicharacteristic I'(¢, a) lives in X (see section 9.1 for details).
Then (2.6) means the following.

For any a in ¥, there exists sg such that for all s < sy we have I'(s,a) C T*M \{0}, then
I'(s,a) = (x(s),t,&(s), ) where (z(s),£(s)) is the usual flow of p and Sli)moo |z(s)| = 400.

We shall need another assumption on the flow whose precise meaning will be given in
the appendix, section 9.1, Definition 9.3.

@7 { The bicharacteristics have no contact

of infinite order with the boundary 0f2

Now we set

(2.8) AD:«H4MM+HQM

which is well defined by the functionnal calculus of self adjoint positive operators.
We shall consider the problem

U pou—0
Yor THPUTE
2.9
( ) U|t=0 = U0,

upaxr, = 0,

where ug € L?(Q).

Then we can state our main result.



Theorem 2.1. Let T > 0, x € C°(Q), s € [ — 1,1]. Let P be defined by (2.1) satisfy-
ing the assumptions (2.3), (2.5), (2.6) and (2.7). Then one can find a positive constant
C(T,x,s) = C such that

(2.10) /OT HXA?%U(LL)HQ

S 2
LQ(Q)dt < Cl[Apuoll72(q)

for all ug in C§°(£2), where u denotes the solution of (2.9).
Here are some remarks

Remarks 2.2.
(1) Theorem 2.1 can be extended to operators of the form

d
P =" (D; - b)) (2) (D), — by(w)) + V(x)
j.k=1

where b; € Sq((z),9).

(ii)In the case Q = R the above result has been proved by Doi [D3].

(7i7) Without lack of generality one may assume s = 0 in the theorem.

Moreover working with t(t) = e *(1+C0)ty(t) one may assume V > 1 in (2.5)(ii) and
Ap = Pll)/ % which we will assume in that follows.

3. The contradiction argument
Our goal is to begin the proof by contradiction of Theorem 2.1. We shall first consider
a version of the estimate which is localized in frequency.

Let T > 0 and I = ]0,T[. Let 6 € C§°(R) be such that supp 6 C {t D5 <t < 2}.

Theorem 3.1. Let xo € C§° (Rd) be fixed. There exists C' > 0, hg > 0 such that for all h

in }0, ho[ we have

T 2
2 1/4 2
(3.1) /0 HXOe(h Pp) Pk u(t)‘LZ(Q)chUOHLQ(Q)

for all ug € L?(Q).

Here H(hQPD) is defined by the functionnal calculus of selfadjoint operators.
Recall that K is our compact obstacle. We take Ry > 1 so large that

(3.2) K c{zeR" : |z| < Ro}.
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Let Ry > Ry be such that supp xo C {z € R : [z| < Ri}. Let x; € C§°(R?) be such
that 0 < y; <1 and

(3.3) x1(z)=11if |z| <Ry +2
' supp x1 C {z : |z| < Ry + 3}.

Then xox1 = xo- Moreover let us set

1
(3.4) 01(t) =t20(¢t), O2(t) =t *0(¢).
It is easy to see that (3.1) will be implied by the following estimate.

3C > 0,3k > 0 : Vh €0, ho[, Yug € C3°(9),
1

) / k2602 Poyuce)|

dt<C 2.
Lyt S o7,

L ook ken,

We shall prove (3.5) by contradiction. Assuming it is false, taking hg = T

we deduce sequences (hi) — 0, uf) € Cg°(€2), such that

1

[ o Fozramcf,

2> k] -

It follows that the left hand side does not vanish. Therefore if we set

( T _1 2
a2:/ Hh29 12 Pp)u tH dt > 0,
k . X1 1( k D) k(t) L2(9)
1 1
(3.6) Uy = —uy, Uk=—ug,
AL A

1
L WE = h’k 291 (hiPD)ﬁk,

we see that

T
@0 [ Iun®la e =1,

(3.7) :
(i) N7l e < 1

4. The sequence (w;) is bounded in L*(R, L} (R%))

loc

We shall prove in this section the following result.
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Proposition 4.1. For any x € C§° (]Rd) one can find a positive constant C' such that

T
(4.1) | @l ae < €
for all k > 1.

Proof
We begin by extending to the whole R? the operator P given in (2.1).
Let x2 € C5° (Rd) be such that 0 < yo <1 and

(4.2) x2(z) =1if || < Ry, xe2(z)=0if |z| > Ry + 1.

Then we set for x € R,

d d
(4.3) P=>" Dj(x206Dk) + Y Dj ((1 = x2)a’™(@)Di) + x2 + (1= x2)V
Jk=1 4, k=1

where 6§, denotes the Kronecker symbol.
The principal symbol of P is

d
ik
(4.4) - 2 Pt

@ (2) = xa(2)k + (1 — x2(x))a’(2)

According to conditions (2.2), (2.5), (2.6) we have the following,

) P=Pif |z| > R +1,

) Ble,€) 22l x eRLEERE>0,

(4.5) (i) @* € Sga(1,9) = S(1,9), Vad@*(x) = o |z| "), x| — oo,
) V:X2+(1—X2)V€S((x)2,g)and‘~/21,
) The flow of p in non trapping.

Let x3 € C§° (Rd) be such that 0 < x5 < 1 and with R; defined in (3.3),
(4.6) xs(x) =11if |z| <Ry +1, x3(z)=0if |x| > Ry + 2.
Then, according to (3.3), we have for a # 0,

(4.7) supp0%x3 C {z : Ri+1< |z <Ri+2} C{z : xa(z)=1}.

6



Moreover since Ry > Ry (see (3.2)) we have
(4.8) supp (1 —x3) C {z : |z| > Ro +1}.

It follows from (4.5) (i) that

(4.9) P =P on supp (1 — Xg).
Now with wy, defined in (3.6) we set,

(4.10) Uk = (1 — x3)wg.
Then we have

(4.11) Gr = [f’,XB}wk
1

Ui(0) = (1= x3)hy, 201 (h2Pp)l.

1
According to conditions (ii) to (v) in (4.5) we may apply Theorem 2.8 in [D3] with s = —3-
It follows that for any x € Cg° (]Rd) and any v > 0 we have,

14+v

a2 [ ool < ol uol [ e ol )

where E is the pseudo-differential operator with symbol es(z, £) = (1+ p(z, &) + Els )5/2

which belongs to S ((1€] + (2))", g).
To handle the first term in the right hand side of (4.12) we shall need the following
Lemma.
1
Lemme 4.2. Let Q = P}, (1—x3)A_1 where A_; € OpS (( ] + <x>)_1,g>. Then @ is

bounded from L*(R?) to L*(12).

Proof
Let V(Q) = {u € Hj(Q) : V%u € L*(Q)} endowed with the norm || u [,y = [|u |7 +
1
[ V%u |32. It is well known that V() is the domain of Pg and that || u ||y () is equivalent
1
to || Pgu | 2(q)- Moreover since |V|% < C(x) we have,

(1 - xg)va(Q) <C <|| f Al ey ey + ||<~T>f||L2(Rd)>

7



whenever the right hand side is finite.

It follows that we can write

lQullrz(e) < Cr[[(1 = x3)A-rul ), ) < Ca (HA—luHHl(Rd) + H<$>A—1UHL2(Rd)>
< C3)|u ||L2(Rd)

2
Now let us set [ = HE 1 Uk(O)’ . According to (4.11) we have,
T2

L2 (R4)
! . 1
O<cl|B_s (0= *0(iPp)i|| | = C||B_1 (1 = xs) Po0(nEPD) S,
2

2

2

L2

1
Introducing S = FE (1 — Xg)Pg we can write

2
O < ¢ (S0(hiPp)uy, S0(hiPp)iy) = (0(hiPp)S*S6(hiPp)uy,u?y)
0 < C6(n3 )5S0 (k2 Po) | |70,

Now
1 1 1 1 1

575 =Py  Pp(1—x3)A_1(1—xs)Pp = Py " Q(1— x3) Pp

where () has been defined in Lemme 4.2 and A_y = E* | F ;.
173
Using (3.4) we obtain

1 1
0 < |02 02 (h Po) @R, (1= x0)0 (WD) | 10 122

Since the operators 6; (hiPD), j = 1,2, are uniformly bounded in L?(2), using Lemma 4.2
and (3.7) we obtain

2
(4.13) \E_%Ukm)\ oy < ClER ey < €

with a uniforn constant C' > 0.
We claim now that we have (see (4.11)), uniformly in k£ > 1,

S at=oqn).

L(R4)

(4.14) / ' | (@) B1Gy(1)]

By (4.7) we can write Gy, = [ﬁ, Xg] X1Wg. Moreover the symbolic calculus shows that the

symbol of []3, Xg] belongs to S <%,g>.

8



1tv ~
It follows that the symbol of () 2 E_;[P,x3] belongs to S(M, g) where

1+v
2

)
)

_ _
M8 =Ty 318 o) e =

This operator is therefore L? bounded, so using (3.7) we obtain

[ o™ raiel

which proves (4.14).
Using (4.10), (4.12), (4.13) and (4.14) we conclude that

2

T
SUAHMWW@®MSU

dt
L2 (R?)

(4.15) /0 (1 = xa)wr ()] At = OD).

T
Since by (3.7) we have / Hxlwk(t)HQLz(Q) dt = 1 and since by (3.3) and (4.6) we have
0

X1+ (1 — Xg) > 1 we obtain (4.1). The proof of Proposition 4.1 is complete. -

5. The measure ;. and its properties

We shall set

(5.1) {wk(t> = Tqwg (1),

Wi = Tjo, 1) wy,-

It follows from Proposition 4.1 that the sequence (W}) is bounded in L? (R, L7 (R?)).
Now to a symbol a = a(z,t,&, 7) € C§° (T*Rd+1) we associate the semi-classical pseudo-
differential operator (pdo) by the formula

Op(a)(z,t, hDy, h*Dy)v(z,

(5.2) 2oy //

where ¢ € C§° (Rd) is equal to one on a neighborhood of the x-projection of the support

) o(y)a(z,t, &, m)v(y, s)dydsdédr

of a.

We note that by the symbolic calculus the operator Op(a) is, modulo operators bounded
in L? by O(h‘x’), independant of the function ¢. The following result is classical and
introduces the notion of semi-classical defect measure.

9



Proposition 5.1. There exists a subsequence (Wg(k)) and a Radon measure p on T*R4H!
such that for every a € C§°(T*R**!) one has

lim (Op(a) (.’L‘, t ho(k)Dma hi(k)Dt)Wa(k% WJ(k)) < s a > :

k——+o0 L2(Rd+1) -

Here are the two main properties of the measure 1 which will be used later on.

Theorem 5.2. The support of u is contained in the set

%= {(z,t,&7) e T*RITI\{0} : zete [0,T] and 7 + p(z,£) = 0}.

Proof

See section 9.2 in the appendix. o

To state the propagation result let us recall some notations. Let M = Q2 x R;. We set
TyM =T*M \ {0} UT*OM \ {0}.
We have a natural application of restriction
T T*R%l \ {0} = Ty M

which is the identity on T*R‘dj\zl \ {0} (see section 9.1 for details).
With ¥ defined in Theorem 5.2 we set ¥, = m(X). The measure p has its support in
Y C T*Rlc%l \ {0} while for ¢ € ¥} the generalized bicharacteristic I'(¢, ¢) lives in 3.
Then we can state an important result of this paper.

Theorem 5.3. Let ( € 3 and s1,s2 € R. Then we have

7 (D(s1,¢)) Nsuppp = 0 < 7 ' ([(s2,¢)) Nsuppp = 0

For the proof, see the appendix, section 9.2.
6. The measure ; does not vanish identically

The purpose of this section is to prove the following results.
Let A>1, R> 1,94 € CP(R), Pr € C5°(R) be such that 0 < ¢4, Pr <1 and

(6.1) Ya(r)=1if |7] < A, ®r(t)=1if |t| < R.
Proposition 6.1. There exist positive constants Ay, Ry, ko such that
2 1
(6:2) / [oa (D) @ (REA) Tio 1wk ()| 2 gy A > 5,
R

10



when A > Ay, R > Ry, k > ko. Here x1, w,, have been defined in (3.3), (5.1) and A is the
usual Laplacien.

Corollary 6.2. The measure p defined in Proposition 5.1 does not vanish identically.

Proof
Let Y1 € C5°(R%) be such that Y1 = 1 on suppxi1. Let ¢ = ¢(t) € C§°(R) and
a(z,t,&,7) = o(t)x1(2)v3 ()% ( <? )x1- It follows from (6.2) that
~ 1
(CL(CE,t, h'Dw7 tht)Xl]I[O,T]wk“)? ]I[O,T]wk;)Lz(RoHl) > g

Since the left hand side with the subsequence o(k) tends to (u,a) when k — 400 the

Corollary follows.
(I

Proof of Proposition 6.1
We shall need the following Lemma.
Lemma 6.3. Let 6 € C{°(R), x € C5°(R?). Then there exists C > 0 such that

(4) H[ thD ]UHL2(Q) < CHhuHL?(Q)v

(i) (10,6 (> Po)ul gy < C 10" ul| gy -
(iii)  ||0;[0(h* Pp), x]ul| 12y < Cllullzz),

forall j=1,---,d, h >0 and u € L*(Q).

Proof

See the Appendix, section 9.3.

Let us set
I = (Id—a(h*Dy)) Tjp 7x1wh
6.3 ~ 1—
(63 LG

T

Then ¢ € L®(R) and ‘17;( } 1 for all 7 € R.

Now we can write I = zp(hiD Vh2 Dy (Ijo ryx1wk). Using (3.6) and the fact that
D,u, = Ppuy, we deduce that

I= 0+ [0

1~
(6.4) 0= ;zp(hiDt) x1h3 (wr (0)81=0 — wi(T)dp=1)
1
O = 4 (hiDy) Mo ryx1h2 Pphy, > 01 (13 Pp) .

11



Estimate of []
If a € R, we have {ﬂv(hiDt)(st:a =F (J(hiT)e_"‘”), so by Parseval formula we have

’ :cn/‘lz(hiT)‘QdTZCnhlzz/ |¢A(|:_)|2_ 1—‘2(17

)W(hiDt)at:a L2(R)

It follows from (3.6) that

Auﬂﬁmmtscﬁwﬁg%mmw;+mwﬂﬁﬁ

Applying the energy estimate and (3.7) we obtain

(6.5) /R” 012t < Chy ||, = o(1).

Estimate of []

Let 6 € C3°(R) be such that 6 = 1 on the support of #;. Then we can write with

0.(t) = t0(t)

1 - _
D = _J(hiDt) [Xl, 51 (hiPD)} ][]O,T]hk 291 (hiPD)ﬁk — lﬂ(hiDt)@l (h%PD)][[O,T]Xlwk(w

Using Lemma 6.3 (i) and the fact that,

1
—o| =
L2(R)— L2 (R) <A> ’

uniformly in k£ we obtain,

C T 1 2 T
2 2 ~ 2
AHDMWWSZ<AH%m@hmﬁ+éﬂmw@MWMQ

=0(1)

7 2
Hw(h’th) L2(Q)—L2(Q)

‘51 (hiPp) ‘

Using the energy estimate and (3.7) we deduce that

(6.6) /RH O [320)dt = o(1) + O G)

Taking k and A sufficiently large and using (3.7), (6.3), (6.4), (6.5), (6.6) we obtain

1
(6.7) L 04200 Tompaun )]0, = 5

12



Now with ®p defined in (6.1) we set

1

(6.8) T = hy, 2 (Id — B (h2A)) da (hE D) Mo 7yx1wy, (1).
Since supp (1 — ®x(t)) C {t €R : |t| > R} we have by Fourier transform
12 C < 2
(6.9) 1(1d = @R (R2)) i ol o oy < ; 105012y » veE H(R?).
1

Now by (3.6) we have h;iwk = h,:lyk, v = 01 (h%PD)flk.
Thus applying (6.9) we obtain

o
/RH I [|72 oy dt < R Z/R HaﬂﬂA(hQDt)][[O,T]XﬂkHQLZ(Rd)'
j=1

Since vy € HE(2) we have

9; (xavg) = 0; (Taxivk) = 10d; (xavk)

It follows that
c & 2
/RHﬂHiz(Rd)dt < EZ/}RHaij(h'%ﬁDt)]I[O’T]lekHLHQ) d
j=1

Let 6 € C3° (R) be such that 6 = 1 near the support of 6;. Then (1-— g(t))Hl(t) =0. We
first consider

(6.10) D:A’

Using Lemma 6.3 (i7) we obtain

2

dt.
L2()

030(1EPp) o (12 D) T x|

1

T, —5 2
U< C/ |4 (WD) Lo rpxa (B[ o A < C// Hhk 2X1wk(t)’
R 0

dt
L3(Q)

so by (3.6) we obtain
(6.11) O <c'nt.

It remains to consider

2

dt.
L2(9)

(6.12) 0= /R |05 (1= 9(12Pp) ) wa (B2 D) Lo rpavi(t)|

13



Since v (t) = 0, (hiPD)flk and (Id — 5(hiPD)) 0, (hiPD) = (0 we obtain

2

dt
L2(Q)

0< /R |05 812 Po).x1] 4 (42D T v 1)

where X1 € C5° (ﬁ), X1 = 1 on supp x;.
By Lemma 6.3 (iii) we obtain

mgc/W¢4@mmmﬂ%&wﬁ%ﬁum@mﬁt
R

Since the operator 14 (h%Dt) is uniformly L? bounded we obtain by the energy estimate
T
O<c [l = o).
0

It follows from (6.10), (6.11), (6.12) that

(6.13) /RHHH’; dt < %(h,;l + 0(1)).

Using (6.8) we deduce that

(6.14) /R | (1d — @ (h?A)) sz(hQDt)H[O,T]Xlwk(t)u;(m dt < % (1+0(h)) -

Taking R sufficiently large and using (6.7) we obtain

1
/RHQ)R(}LQAW’A(hQDt)][[O,T]X1wk(t)Hi2 dt > 3

which is (6.2). The proof of Proposition 6.1 is complete.

7. The measure ;. vanishes in the incoming set

We pursue here our reasoning by contradiction in proving that the measure p vanishes
in the incoming set. Let us state the main result of this section.
Let P be the operator defined by (4.3) satisfying the conditions (4.5).

Theorem 7.1. Let mo = (.’,E(),to,go,To) € T*Rd+1 be such 50 7& 0, T0 —|—]7(.’E0,£0) = 0,

d
|zo| > 3R, Z a"(z0)wos€or < —30 |70l [€o| (for some § > 0 small enough). Then
Jk=1
mo & supp

The rest of this section will be devoted to the proof of this result. Il will be a consequence
of an estimate which will be proved in constructing an appropriate escape function and

will require several Lemmas.
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Lemma 7.2. Let us set ey(x,§) = Z Zijk(x):ng—k. Then there exist positive constants

d
P (€)

R, Cy, C1 such that
Hﬁe()(x?g) > Co ‘é‘ - Ch, V(.’,E,f) S T*Rd7 |.’13‘ >R
where Hj; denotes the Hamiltonian field of P.

Proof

It is an easy computation which uses the conditions (i7) and (i) in (4.5). o

Lemma 7.3. Under condition (v) in (4.5) there exist e € S((x ), g) and positive constants
C, C’', R such that

(a) Hpe(w,&) > Cl¢|=C", V(z,€) € T*RY,

(b) e(z,&) = eolw,§) if || = R
Proof See Doi [D3].

(I
The symbol e is an escape function. However it is not adapted to our situation because

2
its Poisson bracket with our potentiel V' (see (4.5) (iv)) belongs to S(ﬂ,g> so does

(&)

not correspond to an operator bounded in L? which will be required later on. We shall
describe below a construction by Doi [D3] which will take care of this problem.
Let ¢ € C*°(R) be such that 0 < <1 and

(7.1) Y(t) =1ift >2e, suppe C [e,+o0], ¥'(t) >0 Vt€R,
where € > 0 is a small constant choosen later on.
We set
(7.2 {wawzl—ww—wewzl—wwo
i(t) = (=) —¥(t) = —(sgnt)y([t]).

Then v¢; € C*(R), j = 1,2, and we have
{%(t) = —(sgnt)y’([t])
() = =" ([t]).
Let x € C*°(R) be such that 0 < x <1 and

(7.3)

(7.4) () =1ift < g, X(t)=0ift>p, p>0small

With e defined in Lemma 7.3 we set
e e ., e (x)
15 == (gye(y) - (=) u(G) o)
(z) "\ (z) (z) p(,§)
where v > 0 is an arbitrary small constant and M, is a sufficiently large constant.
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Lemma 7.4 ( Doi [D3], Lemma 8.3).
(A e S1,9)

1 w

— 2(Hp~)\) e Op“S(1,9)

(i13) There exists My > 0 such that for any v > 0 there exist C > 0, C' > 0
such that — HzA(z,€) > C (x) 7" (|| + &) =, V(&) € T*R™

e PO

We must now localize this escape function near the incoming set.

We shall need the following Lemma. Let us set

d
(7.7) a(z,8) = Y @*(x)z&
g, k=1

Let &y # 0 be defined in Theorem 8.1.

Lemma 7.5. There exists a symbol ® € S(1,g) such that 0 < ® <1 and

)
() supp®  {(2.6) € T'RY + [a] > 2R, a(w.) <~ |a] Je]. Je] > 12},

'
)

(i) {(@.€) + ol > 2Ro. a(w.&) < —olal ¢l I¢1= ) e {(@e) + B )= 1,

(7i7) ®(x, h§) = P(x, &) when |hE| > @ and 0 < h <1,

(tv) Hy®(x,&) < 0 on the support of A,
(v) A(z,&) > 0 on the support of ®.

Proof

Let ¢;, j =1,2,3, be such ¢; € C*(R), 0 < ¢; <1 and

;

5)
v1(s) =01if s < Ry, ¢1(s) =1if s > QRO’ 1 increasing,

1
(7.8) wa(s) =0if s > —5(5, wa(s) =1if s < =6, o decreasing,

1 1
cpg(s):0ifs§1|§0|, gpg(s):lifsz§|§0|.

\

Let us set

(7.9) ®(x,€) = p1(]2])p2 (Tg@) e3(1€]).

16



Then (i) and (i) follow immediatly. Now if |h&| > 1] then |£| > 1ol > —=— so

@3(h]€]) = p3(€) =1 and (i) follows.
Let us prove (iv). We have

(Hy®(x,6)= O+ O+ 0O,

7.10 a a
( ) D2901(\$\)90/2(m)ﬂﬁ<m>sﬁ3(\f|),
O =1 (|z])e < )cp 1) Hy €]
1

1

According to (7.4) and (7.5) we have p(x,§) > — (@ ) > 5

on the support of A. Therefore

p p
1
we can choose p so small that || > 5 |€0| on the support of A. It follows that [1 = 0
: , 2a(x, §) ,
on this set. Now an easy computation shows that Hj|z| = 2] when |z| > Ry which

implies that
a

1
On the support of ¢y we have a < —§6 |z| [£]. Since @] >0, g2 >0, @3 > 0, we conclude
that

(7.11) 0 <o.

Let us look to [l. First of all we have on the support of ®

(7.12) Hy [ 2 ' fata i [
) 5 = sa 4+ a
P fxl €] |z [€] Ja €]

Since we have (see (4.5)) (a’*(z)) > C Id, |V, a/*(z)| = o(|x|_1) as |r| — 4oo and
|x| > Ry on the support of ®, taking Ry large enough we obtain by an easy computation

(7.13) Hpa(z,€) > Cy |€)* on supp ®.

We also obtain

N R TGS e B
(7.14) H; ( 7 |£|> = -2 L +o0 ( |x|2> as |z| — +oo0.
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It follows from (7.12), (7.13), (7.14) and |a| < C'|z| || that

H,;( ¢ )zcﬁ PG B |

0 - .
|| |€] || €] |zf? |2]

On the support of ¢, < < —%5 . It follows that

la < 02| [§] so

h by (8.8), —6 <
7] m) we have, by (8.8), =0 < g

L el
ellal® =l

Moreover on the support of o1 ( |#]) we have || > Ry. So taking Ry large enough and &

(e ) ok
Hp(m |§|> “ 2 Tl

) < 0, we conclude that

—2

small, we obtain

Since, by (7.5), we have ¢!
y (7.5) P2 < 2] [€]

(7.15) O <o.

The claim (iv) in Lemma 7.5 follows then from (7.11), (7.15) and (7.10) since [J =0 on
supp A.
Finally let us look to the claim (v).

1 1
On the support of ® we have |z| > Ry, [£] > 1 |€o| and a(z,§) < —§5 |z| |€|. Tt follows

that (z) < V22|, (¢) < C|¢| and a(z,€) < —C'§(x) (€). Moreover since |z| > Ry,
ol2,6) |

e
€]

(7.7). Tt follows that % < —(C"$ which implies that T2y > ('§. Using (7.1), (7.2) and

e

taking ¢ < & we see that 1) (%)) =0 and 9, (m) > 0. It follows from (7.5) that

taking Ry large enough, we deduce from Lemma 7.3 that e(x,&) = ep(z, &) =

A=—(My—{e) ™ )y (%) X <0.

The proof of Lemma 7.5 is complete.

Corollary 7.6. Let \; = ®>)\ where A has been defined in Lemma 7.4. Then
(1) A € 5(1,9),

I P .
(7.16) (id) [P, AY] = =Op" (Hph) € Op“S(1, g),

(i13) There exist two positive constants C, C' such that

— Hph > C(z) 7" & (2, 6) (|| + [¢]) — C'®*(x,€).
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Proof

(i), (1) follow from Lemma 7.4 and the fact that ®2 € S(1,g). Let us look to (iii). We
have
—Hp\ = (— Hz\)®* — 209 H;®.
By Lemma 7.5 we have H;® < 0 on suppA and A > 0 on supp®. It follows that

—2A®H;® > 0. Thus (4i7) follows from (7.6). -

Let now (xo ,50) be given as in Theorem 7.1. We set

Vien.eo) = 1(@,6) € T'R? [ — xo| + |€ — o] < 0}

Since |zg| > 3R, a(x0,§0) < =36 |xo| |€o| we can take € so small that we will have

5
Vizo.60) © {@,5) Hzl 2 SRo, alz,§) < oz €], €] 2 @}

It follows from Lemma 7.5 (ii) that
(7.17) Viwoto) € {(#,6) € T"R? + ®(x,€) =1}.

Let b € C3°(V(zo,60)) be such that b(zo,&) = 1. It follows from (7.17) that one can find
C > 0 such that

(7.18) b(x, &) < CB(z,€), V(x, &) e TR

Therefore we will have |b(z, h€)| < C®(z, h€) for all (z, &) in T*R? and all h € ]0,1]. Now

on the support of b(x,h&) we have h|E| > 1l so it follows from Lemma 7.5(iii) that

2
O(x, he) = ®(x,§). Therefore

There exists C' > 0 such that
(7.19)

b, hE)| < CD(a,€), V(&) € TR, Vhe]0,1].
We deduce from Corollary 7.6 (iii) that
(7.20) —Hzhi > O (x)' 7" |b(x, )P €] — C',  V(x,€) € T*RY, Vh €]0,1]

Let now mg = (mo, to, &o, 7'0) be as in Theorem 7.1.
Let o € C°(R), ¥ € C5°(R), ¢1 € C§°(R?) be such that

0 (tO) 7& 07 w(TO) 7& 07

(7.21) . 4 3
p1(z) =1if [z < gRo, suppp1 C T : |z < g B
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Let

(7.22) bi(z,€) = b(x, &) [¢]2 .
Then by € C§° ( ((xo,fo) )) and bq (mo,fo) # 0.

Finally let us recall for convenience that in (3.6) and (5.1) we have set

{ Wi(t) = T, rywi(t),  wi(t) = Towk(t),
(7.23)

1
wi(t) = Ry, 2op(t),  vg(t) = 01 (2 Pp)ax(t).
Lemma 7.7. We have

/ |00 ()1 (hiDy)by (z, hi Dy ) (1 — <,01(x))VV;.C(t)Hi2 (k) dt =0(1) as k — +o0

Proof
With \; defined in Corollary 7.6 we set

where M is a large constant and A}’ the Weyl quantization of the symbol \; € S(1,g9).
Then there exists C' > 0 such that for £ > 1,

(7.24) ok ()1720) < C N ().

Setting A = M — (1 — 1) AP (1 — ¢1) and (.,.) = (.,.)r2(n) we can write

d d d
dtN() (A&Uk(t%wc(t)) (Avk() o k(t))

d
Since % = iPpvg and Pp is self adjoint in L?(Q) we have

d

dtN( ) i([PD,A]Uk(t),Uk(t))

4
Now on the support of 1 — 1 we have |z| > §R0~ It follows from (4.5)(i) that [Pp,A] =
[]3, A]. Therefore we have,
(d

dtN(>_ O+ O+ 0O where,

0 =i ([P A (1 - o) n®) ui(t))
0= ([]5, Y] (1= 1) og(t), (1 - Wl)vk(t)) ;
= ((1 — 1) A} []3, cpl}vk(t),vk(t)) .

(7.25)
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Since A\; = A®2, Lemma, 7.5 shows that the support of \; is contained in {x x| > 2R0}.
- 4

By (7.21) the Poisson bracket (p,¢:} has its support in {x : ERO <lz| < %RO}. It

follows that {'ﬁ, cpl})\l = 0 from which we deduce that [15, cpl})ﬁl", is a zero'™ order

operator. It follows that

(7.26) | O]+ 1 O] < Clloe@®) 1720 -

Using the sharp Garding inequality, (i7) in Corollary 7.6 and (7.20) we see that
O = — (= (Hpr) " (1 = @1) vk (t), (1 — 1) vk(t)) + O (Hvk(t)HQLZ(Q)>

1+v

(7.27) 0 < —H (2) 2 b(x, heDy)(—A) )

ISP

(L=en)u®| , . +Clo®liae-

L2(R?)
It follows from (7.24), (7.25), (7.26), (7.27) and (7.22) that

_ 1+v

()77 by (@ heD) (1= ) 0

t
dt < C / N(s)ds + N(0).
L2(R%) 0

(7.28) N(1)+ / t

Using the Gronwall inequality we see that N(t) < N(0)e“T.

Now N(0) < C Hvk(O)HiQ(Q) <’ HﬁkHiQ(Q). Thus using again (7.28) we obtain
T 2
_1—‘,—1/

by (3.7), since (x) "2 &1 on the support of by (x, thx).
Now since ¢o(t)1(hiD;) is bounded in L?(R) Lemma 7.7 follows from (7.29) and (7.23).

(I
End of the proof of Theorem 7.1

Applying Lemma 7.7 to the subsequence (Wa(k)) and using Proposition 5.1 we see that
(p,a) =0 with
2
a(z,t,&,7) = [(1 — ¢1(2))po ()Y (T)b1(z, )]

Since by (7.21), (7.22) we have a(mo, to, &0, 7'0) # 0 we conclude that mg ¢ supp pu.
The proof of Theorem 7.1 is thus complete.

8. End of the proofs of Theorem 3.1 and 2.1

8.1 End of the proof of Theorem 3.1
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According to Corollary 6.2 we will reach to a contradiction if we show that the measure
1 vanishes identically. Recall that

Supp,uCE:{(x,t,f,T)GT*RdH, reN, te [O,T}, T—I—p(ac,f):()}.

Let m = (x,t,&,7) € ¥ and a = w(m) € 3. The assumption (2.6) tell us that we can find
so € R such that for all s < so we have I'(s,a) C T*M \ {0}, I'(s,a) = (z(s),t,£(s),7)
where (z(s),£(s)) is the usual flow of p and lim [z(s)| = +oc.

Then we have the following Lemma.

Lemma 8.1. One can find s; < sg such that with the notations of Theorem 7.1

’x(s ’ > 3Ry,

d
)3 @ (s2) ) (s1)6(51) < 36 (s1)] €(sn)].
k=

J,k=1

Let us assume this Lemma for a moment.

Since 7+ p(z(s1),£(s1)) = 7+ p(z(s1),&(s1)) = 0 (because I'(s,a) C ) we deduce
from Theorem 7.1 that (w(sl),t,f(sl)m) = F(sl,a) =7 ( (81, )) ¢ supp p (7 is the
identity on T*R%). By Theorem 5.3 we have 7 1(T(0,a)) = 7 1(a) Nsuppp = 0.
Since m € m1(a) it follows that m ¢ supp p. Therefore supp pu = @ which contradicts
Corollary 6.2 and proves Theorem 3.1.

Proof of Lemma 8.1

Since lim |z(s)| = 400 we can find 5y such that
(8.1) |z(s)| > 3Ry for s < $p.

Let us set for s € ] — 00,50]

F(s) = Fi(s) + F(s),
d

(8.2) Fi(s) = ) o*(x(s))z;(s)€r(s),

jk=1
Fy(s) =30 [z(s)] [£(s)]

Let us remark that since |z(s)| > 3Ry we have a/* (2(s)) = a7* (2(s)).
We have

d
5) =2 ¥ (a(s))E(s)
k=1

)= 3 G 6

(8.3)
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. 1
and by assumption (2.5), |Vya/(z)| =0 <m) as |z| — +o0.

Using (8.1), (8.3), (2.5), the ellipticity condition (2.3) and taking Ry large enough we
find by an easy computation that

(8.4) %m@zcm@ﬁ,sq—mﬁ@

for some fixed constant C' > 0.
Using again (8.3) and the same arguments we see easily that

(85 S Ry(s) < '8 el

It follows from (8.4), (8.5) and (8.2), taking § small enough, that for s € | — 00,50] we
have

d

1) =2C €(s)[* > Cup(a(5),£(5)) = Cap ((30),£(30)) = C2|€(50)|”

Integrating this inequality between s and sy we obtain
F(s) < F(30) + C2[€(30)]” (s — ).

Since the right hand side tends to —oco when s goes to —oo we can find s; < sy such that

F(s) <0 when s < s;. -

8.2 End of the proof of Theorem 2.1
We shall need the following Lemma.
Lemma 8.2. Let 6 € C5°(R), xo € C5°(Q). There exists C > 0 such that

H[‘W’QPD)’XOPE}”! < CRZ ol iaey

L2(0)

for every h € ]0,1] and v € L*(9Q).

Proof

See section 9.3

Now it is classical that one can find 1, 6 in C3°(R) such that

p

1
supplﬂc{t : |t|§1}, SuprC{t : §§|t|§2} and

400
P(t) + 29(2_5”15) =1 for all t € R.

\ p=0
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By the functionnel calculus we see easily that

( +00
Y(Pp)+ ) 6(27"Pp) =1d and

p=0

“+o0
v ||2L2(Q) <C (de(PD)UHiQ(Q) + Z HQ(TPPD)UH;(Q)>
p=0

\
Let u(t) = e®FPugy. Using (8.6) we see that

( 1

1 2
|xoP5u()

< C’( O+ D) where
L2(Q)

1

(8.7) 0= Hw(PD)XOPEU(t)‘ i

L2()
1

0 = Jff ”9(2‘pPD)XoPEU(t)’ 2
p=0

L2(%2)
\

We have

O < 2(” [¢(PD),X0P1%}U(@H; + HXoiﬁ(PD)Péu(t)‘

2
Lz)
1

Using Lemma 8.2 with h = 1, the fact that the operator w(PD)PDZ is L2(2) bounded and
the energy estimate we deduce that

(8.8) 0 < Cfluo Bagey-

On the other hand we have

(U<c(d+ 0O)

-3 e o

2

(8.9) L2(@)

2

L2(Q)

0= io HXOPI%HQ_Z’PD)u(t)‘
p=0

\
Using Lemma 8.2 we can write
+o0
O<c (Zﬂ) lu®) 300
p=0
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so by the energy estimate
2
(8.10) 0 < Clluolage.
To handle the term [J we use the Theorem 3.1. Let 6 € C3° (R) be such that
- 1 - -
suppf C {t P 3 < |t §3}, 6(t) = 1 on the support of # and 0 < 6§ < 1. Then

0(2_pPD)U(t> = 9(2_pPD)eitPD§(2_pPD)UO
It follows from Theorem 3.1 that

T T 2
/ Odt <> H5(2_pPD)uO‘
0 =0

L3(Q)

Now we have

+00
Z[ (2 pt] (Ze (2- pt) <M, foralltcR
p=0
too 9
It follows that the operator Z [9(2_” PD)] is L2(Q) bounded, therefore
p=0
T 2
(8.11) / Ddt < C o)y
0

It follows from (8.7), (8.8), (8.9), (8.10) and (8.11) that

T 1 ) 2
[ orserou
0

L3(Q)

2
dt < Clluollzz(o)
which is the claim in Theorem 2.1. The proof is complete.

9. Appendix
9.1 The geometrical framework

We recall here the definition of the generalized bicharacteristic flow in the sense of
Melrose and Sjostrand. For this purpose we follow Hérmander [HO).

Let M = Q x Ry. We set TyM = T*M \ {0} UT*0OM \ {0}. We have a natural
restriction mapm T*R‘d]\;l — Ty M (which will be describe more precisely in local
coordinates below) which is the identity on T*Rd+1 {0}.

With p defined in (2.2) we introduce the Characterlstlc set
X = {(I,t,f,’]’) S T*Rd+17 YIS ﬁv te [07T}7 T +p($,§> = 0} s
and we set 3 = w(2).
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Definition 9.1. Let ( € T*OM \ {0}. We shall say that
() ¢ is elliptic (or ( € £) iff ( ¢ X
(i7) ¢ is hyperbolic (or ¢ € H) iff # {nx " ({)N T} =2
(i1) € is glancing (or ( € G iff # {7r_1(() N} =1
Let us describe 7 and these sets in local coordinates. As we said before, 7 is the identity
map on T*Rﬁ;l \ {0}.
Near any point of M we can use the geodesical coordinates where M is given by
{(z1,2/,t) eERXx R xR : 27 >0},
OM is given by {(x1,2',t) : 21 =0} and 7+p(x, §) is transformed to & +r(x1,2’, &) +7.
In these coordinates if p € T*Rﬁg}é \ {0} then p = (0,2',¢,&,¢,7) and w(p) =
(2/,t,&,7) € T*OM \ {0}.
Now let ¢ = (2/,¢,&',7) € T*OM \ {0}. Then
(€& = r(0,2,&)+7>0,
(9.1) (eEH <= r(0,2,¢)+7 <0,
(eg = r(0,2/,¢)+7=0.
When ¢ € H then 77 1({)NY = {(O,x’,t,&f,ﬁ’m)} where

(9.2) ¢ = i( — (r(0,2",¢") + 1) )
When ¢ € G then 771(()NYE = {(O,x’,t,O,fl,T)}.
For the purpose of the proofs it is important to decompose the set G of glancing points

into several subsets. The following definition is given in local coordinates but could be
written in an intrinsic way (see [H]). We shall set

(9.3) ro(a’,€') =r(0,2",¢')

. . (97’0 0 67“0 0
and H,, will denote the Hamilton field of 7o namely H,, = a—f/@ — @8—5'

Definition 9.2. Let ¢ = (2/,t,&',7) € G. We shall say that
0
(1) ¢ is diffractive (or ¢ € Gg) iff 6%(0, 2’ ¢') <0,
1

0
(i1) ¢ is gliding (or ¢ € G,) iff 8%(0,30',5') >0, and we set G = G,UG,,
1

(4ii) ¢ belongs to G*, k >3 , iff
Hﬂ},(ar )(ozo, 0<j<k—2 H\)? (ﬁ )(C)%O-

6x1 |z1=0 81;1 |z1=0

We can now give the meaning of the assumption made in (2.7).
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Definition 9.3. We shall say that the bicharacteristics have no contact of infinite order
with the boundary if

+oo
G=Jg"
k=2
We are going now to make a brief description of the generalized bicharacteristic flow
and we refer to [M-S] or [H6] for more details.

First of all we introduce some notations.
We shall denote by v(s) = (z(s),£(s)) the usual bicharacteristic of p in 7% defined by

(#6),€6) = (5 (219)). ~ 5 (1)

We shall denote by v4(s) = (x;(x), f;(s)) the gliding ray in T*0f) defined in the geodesic
coordinates by the equations

(240 €405)) = (o (5D~ 5 ()

where ry has been introduced in (9.3).
The generalized flow lives in ¥, C Ty M and for a € ¥} is denoted by I'(s,a). Since X

is the disjoint union of ¥, NT*M, 3 N'H, Xy N G, X NGy and 3p N U G* | we shall
k>3
consider separatly the case where a belongs to each set. Moreover each description of

I'(s,a) holds for small |s|.
Casel:aeXyNT*M

Here a = (z,t,&,7) where z € Q, t € [O,T}, T+ p(x,£) = 0. Then for small |s| we have
L(s,a) = (2(s),t,&(s),7) C T*M

where (z(s),£(s)) is the bicharacteristic of p starting from the point (z, £).
Case 2:ac X, NH

In the geodesic coordinates we have a = (27, ¢, &', 7) and the equation £ +7(0,27,&') +7 =0
has two distinct roots &7, &, described in (9.2). For s > 0 (resp. s < 0) let 4+ (s) =
(z%(s),&7(s)) (vesp. v~ (s) = (z7(s),£(s)) be the bicharacteristic of p starting for s = 0
at the point (O,x’,é’f’,ﬁ’) (resp. (O,x’,ﬁf,f’)). They are contained in T*Q for small
|s| # 0. Then I'(0, a) = a and

r [ (@ (s), N (s), 7). 0<s<e,
)= (z7(s),t,§ (s),7), —e<s<O.



Here I'(s,a) C T*M for s # 0.

Case 3: a€Xy,NGy

Here a = (m’, t, ¢, 7') and the equation &2 —I—T(O,x', f’) +7 = 0 has a double root & = 0.
Let v(s) = (z(s),£(s)) be the flow of p starting when s = 0 at the point (0,2’,& = 0,¢').

Then we have
[(s,a) = (z(s),t,&(s),7) CT*M, 0<|s]<e.

Case4:ac NG,

As above a = (/,t,&',7) and & = 0 is a double root. Let v4(s) = (#,(s), £} (s)) be the
gliding ray starting when s = 0 at the point (x’ & ) Then we have

[(s,a) = (m;(s),t,fg(s)m) CT oM, |s|<e.

+o0
Case 5: ae€ XN (U gk>
k=3
Let a = (2/,t,&,7). Let v4(s) = (qu(s),ﬁ;(s)) be the gliding ray starting when s = 0
at the point (z',¢’). Then (see Theorem 24.3.9 in [Hg]) one can find € > 0 such that with
I =10, e[ we have cither v4(s) € Gy, Vs € I and then I'(s,a) = (x}(s),t,&)(s),7) C T*OM,
Vs € I, or v4(s) € Ga, Vs € I and then I'(s,a) = (z(s),t,&(s),7) C T*M, Vs € I, where
(x(s), 5(5)) is the bicharacteristic of p starting when s = 0 at the point (O, 2/, & =0, 5’).
The same discussion is independently valid for —e < s < 0.

Remark 9.4. Leta € ¥, and I'(t, a) be the generalized bicharacteristing starting fort = 0
at the point a. Then the above discussion shows that one can find € > 0 such that for
0 < |t| <e we have I'(t,a) C T*M UG,. Let us note (see [M-S]) that the maps s — I'(s, a)
and a — I'(s, a) are continuous, the later when T} M is endowed with the topologie induced
by the projection w. Moreover we have the usual relation I'(t + s, a) = F(t, [(s, a)) for s, t
in R.

9.2 Proofs of Theorem 5.2 and Theorem 5.3

a) Proof of Theorem 5.2

According to (5.1), (5.2) it is obvious that
supp p C {(x,t,f,T) eTRM . zeQandte [O,T}}

Therefore it remains to show that if mg = (xo,to,fo,m) with g € Q, to € [O,T}, but
70 + p(20, &0) # 0 then mq ¢ supp .
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Case 1 : assume xg € ()

Let € > 0 be such that B(xo,s) C Q. Let ¢ € C5° (B(xo,e)), p=1on B (CL’(), %) and

P €C5(Q), p=1onsuppep. Let a € CF° (Rg X R‘g) such that 7, suppa C B <$07 %) and

1
x € C5° (Ry x R7). Recall that we have set Wy = ljo rIqwy with wy = h, 29(thD)ﬁk
and that (wy) is a bounded sequence in L? ([0, 7], L (R?)) (see Proposition 4.1). Now

loc
we set

(9.4) I, = (a(z, hiDy) x (t, hiDy) phi (Dy + P(z, Dy) ) Wi, @“Wk)LQ(RdH)

We have h? (Dt + P(CL’, Dx)) = hiD; + Py (CL’, thm) + hi Py (m, thx) + hiPy(X) where
Pj(x,§) are homogeneous in £ of order j.

Using the semi classical symbolic calculus and the fact that (&Wk) is bounded in
L? (Rd‘H) we see easily that the terms in I corresponding to hx P; (x, thm) and hiPO(m)
tend to zero when k — +o0o. It remains to consider the term P, (x, thx). But by the
semi classical calculus

a(x, thx)X(t, h;%Dt)gp(hiDt + P (x, thw)) = (’)p(ax(T —|—p)) + h Ry,

where R}, is a uniformly bounded semi classical pseudo-differential operator in L? (Rd+1).
Therefore the term in I corresponding to hi Ry tends to zero.
It follows from Proposition 5.1 that

(9-5) o = (p, (7 + plax)

On the other hand we have since [Dt + P(x, Dw)]ﬁk =0in Q x R; and ¢ € C§°(92),
(9.6) ¢(Dy + P(z, D)) Wi, = ¢(wi(0)d=0 — wi(T)d=7)
Lemma 9.5. Let 1 <p < +o00, x € C°(R x R) and ¢ > 1. Then there exists C > 0 such

that
)

(£, h*D¢) 61— <cnr

(P

for every 0 < h < 1.

Proof
Let ¢ € C§°(R), ¢(t) = 1 on a neighborhood of m; supp x. Then ¥x = x. Now

O = x(t, h'Dy)d¢—q = % /ei(t_a)TX(t, h>1)dr
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On the other hand x(¢,7) = ¥(t)x(a, ) + ¥ (t)(t — a)x(t, 7, a) where ¥ € C* has compact
support in 7. It follows that

— t—a .
(9.7)
1 .
= 2—¢(t) /(t — a)e’(t_a)TSZ(t, hr, a)dT
7
. (t_ ) 1 a (t— ) . . . .
Noting that (¢t —a)e’* =97 = A We’ @7 and making an integration by part, we see easily
that
e [19X(, 10 ox
(9.8) | d| < Cly@)|h E(t,h T,a)|dr = C|y(t)] E(lt,T,a) dr

Then the Lemma follows easily from (9.7) and (9.8).
Now we see from (9.6) that [} is a sum of two terms of the form
Jp = (a(x, thx)cpwk(a)hzx(t, hiDt)ét:a, §5Wk) , a=0orT

Since (@Wk) is bounded in L? (Rd‘H) we see that

2

\Jk\z <C Ha(x, thw)ka(a)HQLZ(Rd) Hhix(t’ hiDC)(st:“HLZ(R)

so using Lemma 9.5 with p = 2 and ¢ = 2 we deduce that

— ~ ~0 112
‘Jk‘Q < Chkl Huk<a)”i2(9) h’i < Chy HukHLZ(Q)

by the energy estimate. It follows from (3.7) that

. li I =
) L

Using (9.5) and (9.9) we see that (pu, (7 + p)ax ) = 0. Since 79 + p(x0, &) # 0 and
Co° (RE x RY) ® C3° (Ry x R;)
is dense in C§° (Rd+1 X R‘H’l) we deduce that mg = (mo, to, &0, 7'0) ¢ supp .

Case 2 : assume xq € 9f2

We would like to show that one can find a neighborhood U, of 2o in R? such that for any
a € C§°(Uyy x Ry X Rg x R;) we have

(9.10) {p, (T+pa) =0
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Indeed this will imply that the point mg = (xo, to, &o, 7'0) (with 79 + (xo, 50) # 0) does not
belong to the support of u as claimed.
Now (9.10) will be implied, according to Proposition 5.1 and (4.1) by

lim I,y =0 where

Ik: - (CL(.’B, t, h’kD$7 hiDt)(Phi (Dt + P)Wk, Wk)L2(Rd+1)

where ¢ € C§°(Va, ), ¢ = 1 on 7, supp a.
Now we may choose U, so small that one can find a C*° diffeomorphism F' from U,,
to a neighborhood Uy of the origin in R? such that

F(UxoﬂQ):{y€U03y1>0}
(9.12) F(Ug@NOQ) ={yeclUy : y1 =0}
(P, D)W) o F~* = (D3 + R(y, D')) (Wi 0 F )

where R is a second order differential operator and D’ = (Dg, cee Dd).
Let us set
(9.13) vp =wro F~1, Vi =TTy, >0vk

then we will have

(9.14) { (Dt-I—D%-I—R(y,D'))vk:Oin Uy xRy, y1 >0,

U’f|y1=0 =0

Making the change of variable z = F~1(y) in the right hand side of the second line of
(9.11) we see that

Lo = (b(y, t, he Dy, hg De)bhi (De + DY + R(y, D)) Vi, Vi) 1o s

where b € C§° (UO X Ry x Ry, RT) and ¢ € Cy° (UO), Y = 1 near m, supp b.
To prove (9.11) it is sufficient to prove that

(9.15) lim Jk = lim (T@/)O (y1)¢1 (y/) hi (Dt + D% + R(y, D/))Vk, Vk)Lz(Rd+1) =0

where T' = 0(y1, hiD1)®(y', hie D') x (¢, hiDy), 6®x € C5°(Up x Ry x Rfj X R.), ot €
Cs° (UO) and o)1 = 1 on m, supp 0PE.

Now according to (9.14) we have
(Di+D} + R(y,D')) Vi

(9.16) . . .
= =il 500k (0, )= + ilx, > 0vk (T, -)6i=1 — iljo 7] (D1Vk|21=0) @ Gay—0
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Therefore (9.11) will be proved in we can prove that

klim A{C =0, 7=1,2, where
——+00

(9-17) § At = (0(y, e D1)®(y', b D) x (t, hE Dy ) pop1 3 Ly, = 0vr (@, )dpa, Vi) ya = 0, T
AL = (0(y1, he D1)@(y', ki D") x (t, hi Dy ) o1 hi Ajo 1) (D1vk |y =0) ® 8y, =0, Vi)

Since the operator Q(yl, thl)CID(y', th’) is uniformly bounded in L? (Rd) we can write
with ¢y € C5° (UO), Yo = 1 near m, supp 0P

‘AHQ < C ||hix(t, hiDt)(St:aHia(R) [1oth1 Ty, > 0vk(a, ')HQLz(Rd) H¢2VI<:H2LZ(Rd+1)

By (9.13), the energy estimate and Proposition 4.1 we have
2 2 1~ 2 1 q~012
oty ovn(a, )l < Cllwi(a) 2y < Chi lak(a)llz. < Chit [ag]]]

T
2
H¢2Vk|@2 < C/O H(¢2 © F)wk(ta ')HL2(Q) dt = O(1)
Using Lemma 9.5 with ¢ = 2, p = 2, we obtain

(9.18) AL < O |8

To estimate the term A% we need a Lemma.
With Uy introduced in (9.12) we set Uy = {y € Uy : y1 > 0}. We shall consider
smooth solution of the problem

Di+D?+R(y,D'))u=0 inU xR
(9.19) {( o+ Di+ Ry, D) oo

U"ylzo =0

Lemma 9.6. Let x € C§° (UO) and x1 € Cg° (UO) on supp x. There exists C' > 0 such that
for any solution u of (9.19) and all h in |0,1] we have

T 9 T 1
/ H(xhﬁwhyl_o(wHLZdtsc(/o S (D) ()l + ||h2xu(0)
la| <1 L2(U)
1 1 1
h?2 (hdyu)(0) + ||R2u(T) h2 (hoyu)(T) )
L2(UF) L2(UF) L2(UY)

Corollary 9.7. One can find a constant C' > 0 such that

/OT H(th&vk)m:o(t)H; dt < C (/OT ||§<“wk(t>||2L2(Q) dt + HﬂkHQLz(Q)> = 0(1)
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where vy, has been defined in (9.13) and ¥ € C§°(R?).

Proof of the Corollary
1

We use Lemma 9.6, (9.13), (9.14) the fact that wy = h;iﬁ(h%PD)ﬂk Lemma 6.3(i7)

and the energy estimate for y.
(I

Proof of Lemma 9.6

Let us set with L? = L2 (RZ‘Z X Rz,_1>

I= 3" [xa(hD)*u(t)]3:

| <1

(9.20) 1

m=>"

=0

1
h?xu(a;)

1
hix(hf)lu) (aj) , ag=0,a1 =T

L2

LZ

By (9.19) we have

2 Re/ (xh (Diu(t) + R(y, D')u(t)) , xhdru(t)), ,dt
(9.21) 0

T
0

By integration by part we have

/ (Xhatu(t),xhﬁlu(t))det —/ (Xh81u(t),xh8tu(t))L2
0 0

_ / ' (1) hu(t), hdyu(t)) dt + O(IT)

Since hdyu(t) = —ihD}u(t) — ihR(y, D')u(t) integrating by part and using the fact that
Uy, —o = 0 we find that

/OT ((01x%) hu(t), hdyu(t)) ,, dt = O(I)
It follows that
(9.22) Im /OT (xhoyu(t), xhdru(t)) ,dt = O 41I)
Now

_ /O ' (xhdFu(t), xhoru(t)) dt

— /OT H (xhaw(t))wl:o’

2

o(I) — /0 (xho1u(t), Xh(‘?fu(t))Lz dt

L2(Rd—1)
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from which we deduce that

T 2

(9.23) —2Re /OT (xhd2u(t), xhdyu(t)) ,, dt = /O H(Xhé)lu(t))wlzo’

dt + O(1)

LZ(Rd—l)

Finally using again integration by parts, the fact that R is symmetric and D'uj,,—o = 0
we find that

(9.24) 2Re /OT (xhR(y, D")u(t), xhoru(t)) ,, dt = O(I)

Then the Lemma follows from (9.20) to (9.24).
Let us go back to the estimate of A? defined in (9.17). We have

[92Vill 2 ras)

T
‘Aif S Chi He(yhhle)éyl:OHiz(R)/(; le UlDlvk(t))\yl:O‘

L2(Rd—1)

Applying Lemma 9.5 with p = 2, £ = 1, Corollary 9.7 and Proposition 4.1 we obtain
(9.25) |AZ| < Chy,

Using (9.18) and (9.25) we deduce (9.17) which implies (9.11) thus (9.10). The proof of

Theorem 5.2 is complete. -

The measure on the boundary

Let us denote by ((% the normal derivative at the boundary 0€). By Corollary 9.6 we see

that the sequence (H[O’T]hk(%)aﬂ) is bounded in L?(R; x L*(9Q)). Therefore with
n

the notations in (5.1) and Proposition 5.1 we have the following Lemma.

Lemma 9.8. There exist a subsequence (Wal(k)) of (Wg(k)) and a measure v on 1™ (8(2 X
Rt) such that for every a € C§° (T* (89 X Rt)) we have with

i on "i on

1OW, . 10w,
g = (a (,t, b Dy, h3Dy) b " b ")
L2(99xR,)

(9.26) Jm oy = (v,a)

Proof of Theorem 5.3

We begin this proof by considering the case of points inside T M.
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Proposition 9.9. Let mg = (xo, o, to, 7'0) € T*M and U,,, a neighborhood of this point
in T*M. Then for every a € C3°(U,) we have

(9.27) (p,Hpa) =0

Proof

It is enough to prove (9.27) when a(z,t,&, 7) = ®(z, &) x (¢, 7) with 7, supp ® C V,,, C .
Let ¢ € C§°(€2) be such that ¢ =1 on V,,,. We introduce

Ag = L [ (@ (2, hi Do) x (t, hi Dt ) ohi (Ds + Pp) Ljo rwy,, Tjo rywy,)

(9.28) D, L2(QxR)

— (@ (2, hi D) x(t, hi Dy ) X0 rywy,, b (De + Pp) ]I[O,T]wk)Lz(QxR) } :
We claim that we have

(9.29). Jim A =0

The two terms in Ay are of the same type and will tend both to zero. Moreover since

7, supp @ and ¢ have compact supports contained inside €2 we have in the scalar product
. 1 1

(Dt + PD)M]C = (Dt + PD)wk = 0. Since Dt(]I[07T]wk) = ;wk(O) X 51&:0 — ?wk(T) & 6t:T7

(9.29) will be proved if we show that

lim By =0 where
9.30
( ) By = (X(tv hIQth)at:ahkq)(xathm)(p(x>wk(a)7][[O,T]wk)Lz(QXR) 4 = 07T

Now we have

|Bk|§/O !x(t,hiDt)dt—a}(/hk}cb(a:,hwx) (z)wy(a)] wi )|dx) dt

Using the Cauchy-Schwarz inequality in the second integral and the fact that wg(t) =
1

h; 2y (ki Pp)uy(t) we obtain

|Bi| < C/ (t, e De)dt=a| (@)l 12 oy k()| 12 () At

It follows then from the energy estimate on [O, T} and Lemma 9.4 with £ = 2, p = 1 that

_ c’
Bul < C[[@ a0y < 7 by (B.7)
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Thus (9.29) is proved.

Let us now compute A in another manner. We write
(Ap = AL+ A}

Ay

(9 31> = h_k [((I) (.’13, thw)X(t7 hIQth)SOhIQcQj]I[O,T]wm ]I[O,T]wk)L2(QXR)

— (®(z, heD2) x(t, hiDy) o ljo Tywy,, hiQk][[O:T]wk)LZ(QXR)}
| with Q1 =D, Q2= Pp(z,D,)

We claim that we have

.32 i 1 —

Indeed we have

0
Ap = —hg <(I> (z, thx)a—if(t, hi Dy) T rywy,, ﬂ[o,T]wk>

L2(OxR)

Therefore we have
2

dt
L2()

T
Al <ch [ Fun)

where ¢ € C3°(2), ® =1 on supp ¢ and (9.32) follows from (4.1).
Now since Pp is self adjoint on L?(Q) we can write

i

9.33 A? =
(9.33) k=

([‘I)XSO, hiPD} gﬂ[O,T]wka gﬂ[O,T]wk)L%QXR)

2

It is easy to see that hiPp = Z hi—jpj (x, thl,) where Pj(x,¢) is homogeneous in ¢
j=0

of order j. Moreover in the semi classical pseudo-differential calculus we have [P, Q] =

h
%Op({p, q}) + h2 R where R is L? bounded. Using the fact that the sequence (fp']I[O’T]wk)

is uniformly bounded in L? (]R, L? (Rd)) we see easily that the terms in A% corresponding
to 7 = 0,1 tend to zero when k — +o00. It follows that

A} = (OP({@X,P})ﬁﬂ[O,T]Mka H[O,T]wk) +o(1)

Using (5.1) and Proposition 5.1 we deduce that

(9.34) G m Ay = — (e, Hy(®x) )
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It follows from (9.29), (9.31), (9.32) and (9.34) that (u, Hya) = 0 if a = ®x which implies

our Proposition.
(I

We consider now the case of points mg = (xo, to, o, 7'0) with xy € 0f).

We take a neighborhood U,, so small that we can perform the diffeomorphism F' de-
scribed in (9.12). Let u and v the measures on T*R*! and T* (69 X Rt) defined in
Proposition 5.1 and Lemma 9.7. We shall denote by iz and v the measures on T (UO X Rt)
and T (UO N {y1 = O} X Rt) which are the pull back of © and v by the diffeomorphism F:
(z,t) — (F(z),1).

We first start a Lemma.

Lemma 9.10. Let a € C§° (T* (UO X Rt)). We can find a; € Cg° (UO x Ry x Rf;,_l X RT>,

7 =0,1and ay € C* (T* (Uo X Rt)) with compact support in (y,t,n',T) such that with
the notations of (9.12)

CL(y, t, n, 7-) = Qo (% t, 77/, 7-) + a1 (% t, 77/, 7-)771 + a2(y7 t, , T) (T + 77% + T(y7 77/))
where r is the principal symbol ofR(y, D’).

Proof

We apply a version of the Malgrange preparation theorem given by Theorem 7.5.4 in
Hormander [H6]. With the notations there, for fixed m’ = (y, t,n, 7') we shall take t = ny,
g (m) = aly,t,n,7), k=2,b1 =0, bo =7 +7r(y,n’). According to this theorem we can
write

a(y, t,n,7) = q(m, 0,0, gm') (N +7(y,n') +7) +do(bo, 0, gnr) + M (bo, 0, grmr )

If we multiply both sides by a function ¢ = cp(y,t, 7, 7‘) € C§° which is equal to one on

the support in (y, t,n, 7') of a we obtain the claim of the Lemma. -

In the following Remark we note that we can extend g to symbols which are not with
compact support in 7;.

z

Remark 9.11. Let q(y,t,n,7) = qu (y,t,n’m)n{ where q; € C5°(R?*™1). Let ¢ €
5=0

Ce°(R), ¢(m) = 1 if ;| < 1. Then <ﬁ, qo <%) > does not depend on R for large

Ry Ry
contained in the set { ||+ || < C, || > Ry}. Therefore

oo (o) -+ (1))

c{r+ni+r(y.n) =01+ 7| <C,|m| > R}

R. Indeed let Ry > Ry > 1. Then the symbol g ((b (ﬂ) — ¢ (ﬂ)) has a support
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and the set in the right hand side is empty if Ry is large enough.

We shall set (i, q) = Rlirf <ﬁ, qo (%) >

We can now state the analogue of Proposition 9.9 in the case of boundary points.
Proposition 9.12. With the notations of Lemma 9.10 for any a € C§° (T* (UO X Rt)) we
have

(1, Hpa) = — <;’ CL1|yl:0>
Proof
Let us recall that vy has been defined in (9.13) which satisfies
(D¢ + Pp)op =0in U = {y €Uy : y1 >0}
Vk |y, =0 =0

1

ve =h,, 2 (0(h2Pp)wy) o F~!
For sake of shortness whe shall set
(9.35) Ap = (y.t, Dy, hiDy), L% = L*(Uf x R,)
The Proposition will be a consequence of the following Lemmas.
Lemma 9.13. Let for j = 0,1, a; = a;(y,t,7,7) € C§°(Uy x R¥) and ¢ € C5°(Up),
¢ =1 on m,suppa;. Then

(9.36)

]

I [((ao (Ar) + a1 (Ax)heD1) ohi (Dy + Pp) Tjo 1y, ﬂ[o,T]vk)Lri

— / . < (ao (Ak) + aq (Ak)thl) SO]I[O,T]Uk s hi (Dt + PD)][[O,T]Uk > dy
U,

0

= _hik ([h&(D: + Pp), (ao(Ak) + a1 (Ag)hiD1) @] o vk, ]I[O,T]?Jk;)Lz+

- (al (07 y/, 2 thy’a hiDt)(P\yl:O][[O,T] (thlvkLyl:O) ) ][[O,T] (thl/Uk|y1:0))L2(Rd71 xR)
Here ( , ) denotes the bracket in D'(Ry).
Lemma 9.14. Let b= b(y,t, n, 7') e e (UO de+1) and ¢ € C§° (Uo), ¢ =1onm,suppb

For j = 0,1 we set, with the same notations as in Lemma 9.13

Il = (hglb(Ak)w(thﬁjhi (Dt + Pp) To 1y, ]I[o,T]vk> Lo

+

A= [ (o0 B D+ Po) o )y
0
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Then lim I} = lim J/ =0
k——+o00 k—+o0

Lemma 9.15. Let for j = 0,1,2, b; = b; (y,t,n’,T) € Cg° (UO X Rd) and ¢ € C§° (Uo),
¢ =1 on mysupp b;. Let us set

1= (b3 (An) o (e D2 Ty T,

+

Then with o(k) defined in Proposition 5.1 we have for j =0,1,2

Jim 1y = (7 by )

Proof of Proposition 9.12

Let ¢ be as in Remark 9.11. If R is large enough we have Hya = H,a¢ (%) so by
Lemma 9.10

(i, Hpa) = <ﬁ7 Hp(a0+al771)¢ <%> > + </77 (7 + p)Hpaze (%) >

Since Theorem 5.2 implies that <ﬁ, (T +p)Hpaze <%) > = 0 we deduce from Remark

9.11 that
(i, Hya) = (i, Hy(ao +aim) )

Then Proposition 9.12 will be proved if we can show that

(9.37) (jr, Hy(ag+arm) ) =—(v, ar,, =0)

By Lemma 9.14 the left hand side of (9.36) tends to zero when k — +o0.
Now by the semi classical symbolic calculus we can write

L [03(Dy + Pp) (ao(Ax) + a1 (Ak)hkDy) o] = 22: bj (Ax)er (D1 )’

k =0

2
where b; € Cg° (UO X Rd+1), w1 = 1 on supp ¢ and {p, ap + Cl1771} = ijn{. So using
j=0
(9.36), Lemma 9.15 and Lemma 9.8 we obtain 0 = — <Zl, H, (ao + CL1771) > - <§, a1|y1:0>

which proves (9.37) and Proposition 9.12. -

Proof of Lemma 9.13

39



To prove (9.36) we use integration by parts in Dq, D, and distribution derivative in
Dy;. Only the terms containing D, give a boundary contribution. We treat them as follows
for 7 =0,1.

(aj (Ag) so(th1)j Lo, vk, hiD%]I[O,T]Uk) = (hiD%aj (Ag) so(th1)j Lo, vk, ]I[O,T]Uk> L
¥

+

h , :
+7k (a5 (0,9, t, i Dy, hi D) 1y, = Ljo 71 (hie D1) 0kpy, =0, To ) (A D1) Wy, =0) 2 -1 ey

Here we have used the boundary condition vg|,, —g.
(I

Proof of Lemma 9.14

It is enough to consider symbols b of the form b = c(y, n')x(t, T).
hi
1

We have h? (Dt + PD)][[O,T]Uk =

sum of two terms of the form

[Uk(O, )6t=0 — v (T, -)5t:T}. It follows that I,Z is a

1
f?c = <X(t, hiDt)dt:ahlzc(y, thy/)cp(thl)]vk(a, )y ][[O,T]Uk>
L2

We have witha =0 or T

1 1
‘[i‘ < C/ X (t, h3D¢)de—a| || (e D1) v (a, ) hi Tgo 7yox(t, ) dt
o L2(Uf) L2(Uf)
1 .
Since for t € [O,T}, h,? (thl)]vk(t, ) <C Ha%Hm(Q)’ j =0,1, we deduce from
cop
Lemma 9.5 with £ =2, p=1that lim I = lim I} =0.
k—+o0 k—+o0

Let us consider the term J,‘Z;. It is sufficient to consider symbols b of the form

b= (t)c(y, b Dy ) x (hi. Dy )

1 .
As before we have (Dt + PD)]I[OyT]vk == (v (0, )0t=0 — vk (T, -)dt=7) so JJ will be a sum

of two terms of the form
~ . hi
Ji = /U+ <h;§1¢0(' )X( ) (heDr) T 1o — Uk (a,)dt=a > dy
0
Writing

. h2
J% = /+ <C(y, hi Dy ) (hyD1) Lo vy 71/1(@)%(&, )X (h2Dt)6t=a > dy
UO

40



we see that J i can be estimated exactly by the same method as the term I fﬁ above.

Proof of Lemma 9.15

The proof will be different for each 5. We shall consider the case j = 0 then 5 = 2 and
finally j = 1.

Case j = 0 : we shall need the following Lemma.

Lemma 9.16. Let ® € C3°(R), ¢(m1) = 1 if | < 1.
Let b= b(y,t, n, 7') e Cg° (UO X Rd+1) and ¢ € C§° (Uo), ¢ =1 near m,suppb. Then

im  Tm ||[7—o (P b(A1) T 11y, 500 —0
R—+o00 k—+o0 R k)P [0,7] Ly1>0Yk -
L2(Rd+1)
Let us assume this Lemma for a moment and show how it implies the case j = 0.

We remark first that by (Ak)l[[o,T] T, >ovr = Ly, ~0bo (Ak)I[[O,T]vk which allows us to write

Vi = Tjo, 1)Ly, > 00k

LY = (bo(Ak) Vi, ‘Ple)Li

hi D hi D
= ((I— o ( kR 1)) bO(Ak)chk,Lka) + <(I> ( kR 1) bo(Ak)SOVk7<P1Vk>
L2 L3

+
= Ay + By

where p; € Cg° (Uo), w1 = 1 on supp ¢. We have

of )

Since by (4.1) Hsﬁl]I[O,T]]Iy1>0UkHL2 < C uniformly in k, Lemma 9.16 shows that

. T oy . ~ m
1 im A, = 0. Now by P tion 5.1 we have lim B, = { 7, ® [ 2 | b
R—l>r—|r—loo k—1>I—|I—100 k OW DYy EFroposition we nave kigloo (k) <[L (R) 0 >

|Ak| < H‘Pll[[O,T]][y1>0UkHLz(R2d+2)

L2(R2d+2)

li li B ={(n .
© gl 2 Bow = U Bo)
Proof of Lemma 9.16

Ifve H! (R‘“’l) we can write

fle-C)) 4

L2(R4)

h
1—(1)( k771> )
R

dt
him

— 2
‘thlv(n,t)‘ dn | at

I/

c 2
< 2 17k D1 0|72 a1y
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Now
hiD1b(Ag) oo 1 ][y1 >0Vk

ob dyp
= — ( (Ak)(p + b—) ][[O,T] ][y1>OUk + b(Ak) ][[O,T] ][y1>0 (thlvk)

i\ Oy oy
= Ay + By
Here we have used D, (][y1>ka) = I, >0 D1 vy since vk, —g = 0.

We have -
A ooy < Ol [ lprun 0]y

where ¢ € C5°(R?). It follows from (4.1) that hIJIrl A =0.
1

Now since v = wy o F~1 and wy, = h;QQ(hiPD)ﬂg it follows from Lemma 6.3 that

T
1Bl sy <€ [ pnun 0y dt < C since

hr Dy C
I-9 ( 7 ) b(Ax) T, 711y, >o0uk R_ (1Al > + [ Bkl £2)

L2(Rd+1)
the Lemma follows.

Case j = 2 (in Lemma 9.15)
Since (h,.ch)2 = hZ(Dy + Pp) — hiDy — Ra(y, hieD') — hi Ry (y, hi D) — hi Ro(y) we

can write
(L} = A+ By where

A = (b2(Ay)ohi (D + Pp) Ljo, 1y, ][[O’T]”’“)Li

(9.38) By = (c(Ax) T, 1108 To,rjon) 1

Cy = hi (d (hi, y, t, b Dy, hiDy) @ ryvg, 11[0,T]U;C)L2+

| and ¢ = —ba(7 + 1)

By Lemma 9.14 we have lim Aj = 0. By Lemma 9.15 for j = 0 (case proved above) we

k——+oc0

have lim B,y = (ﬁ,—bg(T+r)):<ﬁ,bzn%>since<ﬁ,b2(7+77%+7“)¢ <%)>=0

k—+o00

for all R large enough.
T
Finally |C| < th/ ||wk(t)||iz(Q) dt < M'hgso lim Cj =0.
0

k— 400

Case j =1
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We have 1,0 (thl)vk = (thl)]Iy1>0vk because Vk|y,=0 = 0. It follows that with

Vie = Tjo,r Ly, >0v%
Lllg = (bl (Ak)@(thl)Vka Vk)Lz(Rd+1)

Let ® € C5°(R), ®(m1) = 1if || < 1. Then we write with ¢1 =1 on supp ¢,

hi D
L/}C = (@ < kR 1) by (Ak)ﬁ,ﬁ(hk:Dl)Vka(Ple>
Lz(RdJrl)

hiD
+ ((I— P ( kR 1)) b1 (Ak)w(thl)Vk,¢1Vk>
L2(Rd+1)

It is easy to see from Proposition 5.1 that

. ~ m
1 A = O —=1|0b
k—1>I—|I—loo o(k) < M ( R) 1m >
hi D1
11— Vi
As in the proof of Lemma 9.16 we have

heD 1 5
[ ) P e A L
L2(Rd+1)

and using the fact that hyD; commutes with 1, o on vy, since vg,,—o = 0 and using
Lemma 6.3(%), (#4) we find easily that H61 (Ak)cp(thl)Vk

= Ay + By

Now

Bl < C b (Ao (h D) Vi g

L2 (Rd«l»l)

HLQ(RdH) < M uniformly in k.

Lemma 9.17. With G4 and G* introduced in Definition 9.2 we have

a(gdu (ng» =0

Proof
Let us take in Lemma 9.10a(y,t,n,7) = b(y, t,n, 7)771. Since p = n? + r(y, 17’) we will
have
- or -
(9.39) <M7 anpb—ba— > = _<1/, b|y1:0>
Y1
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Let us make the change of variables

®
(9.40) (.t 7= (z=y,s=t,C=n0=7+r(y,n))
It is easy to see that

(H,b = X(boq)_l) o® with

_o¢ 0 + 2 or 0 or 0 L H wh
(9.41) T T M9 80 Bz o TR
or 6 or 0

/

[ T ad e 92 ol

It we denote by i1, v; the pull back of 1 and v by ® and b=bo ®~1 the equality (9.39)
becomes

_ .9 _
(942) </71 ) Cle— ba—r> = - <Dl7 ) b(o7 ZI7S7CI7O-)>

z1

Let us take b of the following form

7 / 21 ;9 1 or /
b(z,s,g,a) = by <$,Z,S,C,g>¢ (ﬁﬁ—zl(z’g)>

where by € C5°, by > 0, and ¢ € C*(R) such that ¢(t) = 1, t € ( — 00,0], ¥(t) = 0 for
t > 1 and € > 0. According to (9.42) we can write

’
or
<ﬁ1,§1Xb b—>: O+ O with
621

- or

D:</j1,f€> with

_2512 dbg C1 or 0 ' 1 X or\
fe= %8—21 + ;Gj—lﬂ C1 0¥ + Cibo % 92 (0
>

\

According to Theorem 5.2 and (9.40) we have supp i C {Z1 Oand (2 + 0 = 0}.
Therefore on supp iy N supp by we have (1] < |o| < Ce.

This implies that f. € C§° is uniformly bounded in ¢ € }O, 1}.

Moreover the first and the third term in f. tend to zero uniformly with €. The second

term can be written on supp ji;

o or abo <21

/ / ;g
_QEQ—Q(Z’C)% %72787€7g>¢("'>
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Since by has compact support in o, for fixed o # 0 this term is indentically zero for ¢ small

enough and it also vanish when o = 0.

1
Finally, since supp¢’ = [0,1] and ¢'(0) = 0, ¢’ <$§7T(z, C')) vanishes if ¢ is small
1

enough. Therefore we can apply the Lebesgue dominated convergence theorem and con-
clude that

(9.44) lim [J=0

e—0

Now let us set A = {(Z,S,C,U) D21 = 0,020,%(2,§’) < O} and write
1

9.45 O={z et IR
(9.45) = Ml,—a—zlol/)A + Mu-a—zlol/JAc

If we are in A° we have else z; # 0 or o # 0 or STT (Z, C’) > (0. In all these case we have
1

lim b Z—lzlsC’g 1) Lﬁ(Z V=0
E_)()O \/57 39 78 \/5(921 )

By the dominated convergence theorem the second term in the right hand side of (9.45)
tends to zero. It follows that for € small enough we have

0
0= <ﬁ1 ) _a—;((]?Z/?C/)bO(O?Z/?S?C/7O)]IA > + O<1)

Using (9.43), (9.44) we conclude that

_ ~ ~O0r
(9.46) lim < s GXD b > >0

On the other hand we have

~ 0
<51 ) b(O,z',s,Q',a) > = <§1, bo (0, NG g) (0 <%8—;(0’2/7€/)> >

We introduce B = {(2’,3,(',0)} o =0, 68—;(0, Z’,C') < 0} and write as before

1 =1pg + Igc. The term corresponding to Ig. tends to zero. It follows that
<’ﬁl ) ’5|21:O > - <Dl ) b0(07 2/7 S, €/7 0)][3 > + O(1>
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Therefore we have

9.47 I <~,EZ_>: 71, 00(0,2 s, ¢, 0)T >0
( ) lim { v, b2y =0 <l/1 o( 2,5, C ){020753_;(072/’C/)§0} >

Using (9.42), (9.46) and (9.47) we conclude that both sides of (9.42) vanish. Coming back
to the coordinates (y,t,n,7) by (9.40) we conclude that

< D? bo (07 y/7 t, 77/, O) ]I{

T+r(0,y’,n’)=0,g—;(O,y’,n’)SO} >
for every by € C3°, by > 0.

+0o0
; or
suco 0 (U = {07 + 10 =0 050.7) 0}, L
9.17 follows.

Proof of the propagation theorem 5.3 (continued)

From now on we follow closely [B], [B-G], [G-L] and we give the details for the conve-
nience of the reader.
Let us set, with the notations of section 9.1

(9.48) GO=T*M, G'=H
We introduce for k£ € N the following proposition.

Let ¢ € Xp. If there exists T" > 0 such that for all s € [O,T} we have

k
(Pk) I'(s,() € U G, then for all s1, s9 in [O,T] we have
§=0

7 (C(s1,¢)) Nsuppp # O < 7 (T(s2,¢)) Nsuppp # 0

If (Pk) is true for all £ € N then using Remark 9.4 and a compacity argument we will
obtain the conclusion of Theorem 5.3.

Now (Pk) is of global nature but as usual using a connexity argument we can reduce
the proof by induction to the following result.

Proposition 9.18. Let k > 1. Assume (Pk_l) is true. Let (o € G*. If there exists € > 0
such that 71 (F( -8, Co)) Nsuppp = O for all s € }0, 5] then there exists § > 0 such that
71T (s, o)) Nsupp pu = O for all s € [0,4].

Before giving the proof of Proposition 9.18 let us show that
(PO) is true
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Let ¢ € &) and assume I'(s,() C G° = T*M for all s € [0,T[. Then

(= (2,t,§,7) and T'(s,¢) = (z(s),,&(s), 7)
where (z(s),&(s)) = v(s, (z,£)) is the usual bicharacteristic of p in T*M. Since by
Proposition 9.9 we have ‘H,u =0 in D’ (T*M), the result follows.

Proof of Proposition 9.18

Casel: k=1

Let Co = (zh,to, &, To) € G = H. Then 19 + 7 (0,25, &) = —A < 0.

Let us set &Y = (= (7 +7r (O,mg,f(’))))%. For small § > 0 we set
VE = {2, 4,6,8,7) ¢ Ja' —ap| <6 [t —to] < 8,16 = &| <, |T =70l < 6,6 FE| <}
If ¢ is small enough and p = (z1,2',t,&,&,7) € [0,5[ X (V+ U V_), we have 7 +
r(zy, 2, &) < —%A. If p(p) = 0 and p € ]0,6] x V™~ then p € T*M = G° and
r1(8) = x1 + 2&15 + s%g(s) where |g(s)] < C and C depends only on A and p. It fol-
1 (4):
2C \ 2
[(—s,p) € T*M for s € ] — &, O]. Now by the assumption in proposition 9.18 and conti-

nuity one can find 8 € ]0,e[ and ¢ small such that 7= (T'(—8, p)) Nsupp p = 0 for all p
in }0, (5[ x V. It follows then from (PO) that

lows that with ¢ = we have z1(s) > 0 for s € | —¢,0]. This shows that

(9.49) p & supp p for all p in 0,6[ x V

Since the hypersurface {CL’l = 0} is non characteristic for the vector field *H, and *H,u =0
for z; > 0 (Proposition 9.9) the measure y has a trace ji|,,—o which belongs to D'(V+ U
V‘). It follows then that

(9.50) "Hyp = 281 1y3,20 ® 0g,—0 in D' (] = 6,6 x (VIUV ™))
Moreover by (9.49) we have

(9.51) Pzy=0 = 0 in V'™

Our aim is to show that

(9.52) Pzy—0 =01in VT

Indeed let us comsider j : T*RU — T*RU j(x,t, (&4,¢),7) = (z,t, (- &,¢),7).

Its follows from Proposition 9.12 that (pu, Hy(aoj)) = — (u, Hya). Since j~! = j and

|detDj| = 1 we have
("Hpp) 0 j = —"Hpp
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Using (9.50) we see that —2&; (14z,=0) ©J ® 0zy =0 = —2&1 44 —0 @ 0z, —0 on VUV ~. Then
(9.52) follows from (9.51). Using (9.50), (9.51) and (9.52) we conclude that *H,u = 0 on
| =0,6[x (VTuVv™).

Let us set

V= {(x/,t,fl,f/ﬂ') : |£L’/ —CL’6| < 51, |t —t0| < (51, |€/ —§6| < (51, |7' —’7'0| < (51}
where 0 < §; < 6. Since by theorem 5.2 we have
supp pp C {(2,t,&,7) + x1 > 0and 7+ & +r(z,¢) =0} and

(J=66[xV)n{z1 > 0,7+ & +r(z,&) =0} C[0,6[x (VTUV™)

if 67 is small enough we deduce that *H,u = 0 on ] — 0, (5[ x V.

Let now v*(s) = (27 (s),£7(s)) be the bicharacteristic of p defined for |s| < e and
starting at the point (0, 2, £1,&)). Since xi(s) < 0forse | —¢,0[ and supp u C {21 > 0}
we have (27 (s),t0,£1(s),70) & supp p for s € | —,0[ since "Hyp=0o0n | —48,6[ x V one
can find dp > 0 such that for s € [0,8], (27 (s),t0, €7 (s),70) ¢ supp u which implies that
7T_1(F (s, (0)) Nsupppu = 0, s € [O, (50], and proves Proposition 9.1 in the case k = 1.

Case 2: k>2
We shall need several preliminary results.

Lemma 9.19. Let (0,x),t0,0,&),70) € T*RT and § > 0. We set
V= {(.’B,t,f,T) S T*Rd+170 <x < 57 |.’Bl - .736‘ < 57 ‘t - tO‘ < 57 |§/ - é(l)| < 57 ‘T - 7_0| < 5}

We assume that

(i) suppunV c {(z,t,¢71) e T*RI 2 =& =0}
(14) (O,x;(s,x',fl),t,O,f;(s,x',S'),T) eViforallsel=]—s,,s"[

Then for all sy, s € 1

(07 .CC; (817 .’13/, 5/)7t7 07 é; (51756/7 5/)77—) S supp
<~

(0,27 (s2,2",€"),t,0,&(s2,2',€),7) € supp

Proof

By assumption (i) there exists a measure puy = py (x’,t,f',T) on T*R? such that p =
1 @ Ogy=0 ® d¢;=0. Moreover we can extend that definition of (u,a) to smooth a =
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a(z1,2',t,&, €, 7) which have compact support in (21, 2’,¢,&’, 7) contained in V. Indeed if

Y € C(R), x(€1) = Lfor [&1] < 5. x(61) = 0for |&1] > 1 we canset (1,0} = (1, x(€1)a)
and this definition does not depend on x. In particular we can take a = a(x, t, &, 7'). With
the notation of Lemma 9.10, we have a; = 0 so it follows from Proposition 9.11 that
(p, Hpa) = 0. By the above remark we have

0= </1’7 Hpa> = <,u1 ) Hpa|m1:£1:O> = <,u1 ) Hr0a|x1:()> = <,u1 ) Hro (a|m1:O) >

Therefore the Lemma follows.
]

Remark 9.20. (i) Let po = (0,2),1t0,0,&),70) € T*RITL. If po ¢ suppu and 79 +
(0, z(, &) = 0 then
(.Té),to,fé,To) ¢ Supp v

Indeed one can find 6 > 0 such that B(po, 5) Nsupp p = 0.
Let a(x,t,§,7)=b(2',t,&, 1) X(x1)£1 with support in
{la" —xo| + |t —to| + 1§ — & + |7 — 70| < 1, |21| < 61} Since
supp p C {\51\2 = \T+r(x,£’)\}

we will have our assumption

supp p M supp a C supp p M suppan {I&I < C\/él}

If 6, is small enough we will have supp aﬂ{|§1| < C\/a} C B(po, 5) so supp pNsuppa = .
With the notation of Lemma 9.10 we have aq = xb so, by Proposition 9.12,0 = (u, Hya ) =
—(wv,b). Since b is arbitrary this shows that (z{,to, &}, 70) ¢ supp v.

(13) Let (z(,to, &), 70) € H and p(jf = (O,xg,to, j:g?,f(’),m) where
1
& = (= (ro+r(0,2(,&)))%. Then if {pf,py } Nsupppu = O then (z{,to,&),70) ¢
supp v. Indeed one can find § > 0 such that

(B(pg,8) UB(py,6)) Nsuppp = 0

If we take a = bx&; as in (i) we will have
supp ¢ Nsupp a C supp p Nsuppa N {’{f — (5?)2’ < 051}
Now, if oy < 8%, {|e2 = (€0)*| < con}  {le1 - €8] < o} U {Jea + €8] < 8} 50

suppa N supp 4 = 0
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As in (i) we deduce that 0 = (u, Hpa) = — (v, b).

Lemma 9.21. Let k > 2 and {y = (x}, t0, &), T0) € G* be given as in Proposition 9.1. Set
_ or

17 () 0. 85) = 4 #0 then

17 (o) 0.27.8)

Vi={(2,t,&,7) |2’ —xh] < 6,16 — &) < 8|t —to] <8, |7 — 7| <6}

A
> u in the set

(7) one can find § > 0 such that 5

(#3) one can find &' > 0 and (8 > 0 such that

T(s,U)NT*OM C V; for all s € [~ 3,0],
7 Y T(—B,U)) Nsupppu = 0, where

0= [{(@,t,€,7) € T"OM : |o! 2| <&, |t —to] < &, J¢' = €] < &', |7 — o] < )
N{(@€) + mo+r(0,2,¢) <0}]

U[{(x,t,ﬁ,r)eT*M:O<x1 < | —ah| < &€ —€b) < 8t —to] < 0, T — 1| < 8}

A(r+p)7(0)]

Moreover

case [: keven, A>0

VCeghnVi, T(s,()€Gg, Vse[-0,8\{0}, (Vse[-8,8]ifk=2).
case [1: keven, 4A<0

VCeghnVi, T(s,)eT*M, Vse[—p3,8] \{0}, (C€Gqifk=2).
case : kodd, k>3, A4<0

VCeghnVy, T(s,)eT*M, Vse[-p3,0[, T(s, ()€, Vse]l0,p].
case [1: kodd, k>3, A4A>0

VCeghnVi, T(s,()€G,, Vse[—p,0[, I(s,()eT*M, Vse]l0,p].

Proof of Lemma 9.21

0
(7) Hffo_Q (6—;1> (O, x, f’) being continuous, the existence of § is clear. Moreover it has
or

the same sign as A. Let us set e(s, () = R (0,27 (s,¢),&,(s,¢)). Then since ¢ € GFNV;

we have for small |s| (see [H], Chap. 24)

1 0
e(s, () = = 2)!Hf0_2 <8—aj1> (0, m’,f')sk_Q + sk 1g(s)
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Al

where |g(s)| < C, C depending only on p. If ¢; = OTok e(s, () has a constant sign on
each interval [— 51,0[ and ]0,51] ; moreover either I'(s,() € G, or I'(s,{) € T*M on

each interval which gives the four cases described in the statement of the Lemma, (see [H],

Chap. 24).
(7i) Let us prove that
380,36 = VB € [0,B[,Vx € [~ 5,0],T(s,U) NT*OM C W

Otherwise one can find sequences 3; — 0, (53 — 0, s; € } — ﬁj,0:| and §; € U such that
[(sj,¢;) € T*OM and T'(s5, ;) ¢ V1. If ¢ € T*OM, ¢; = (2, t5,&),7;) and if ; € T*M,
& —&| < & |t —to| < 9,

¢ = (x{,x;-,tj, {, ;,Tj). In both cases ’x; —:E()’ < (5}-,
7 — 70| < & and if {; € T*M, 0 < le < 0%, It follows that 7; +r<x{,x},£}) —
70 + 7 (0,2),£,) = 0 which implies that & — 0 (since ¢; € p~'(0) then). Therefore
¢j — Go in Ty’ M. Moreover since s; — 0 we have F(sj, CJ) — (o in T M so in T*OM since
F(sj, Cj) e T*OM. But {y € V1 so F(sj, Cj) € V; for large j and we obtain a contradiction.

Let 8 = inf (ﬂo, %) and let us set that if 4’ is small enough then 7! (I‘( — 0, ﬁ)) N

supp pt = 0. We know that 7= (T'( — 3,¢o)) Nsuppu = 0. Let V C T*R*** be such that
VNsuppp = 0 and 71 (C(=B,¢)) C V. If

v’ >0, 7 (T(—B,0)) Nsuppu# 0

then there exists (5} — 0, ¢ € U such that pj € 7T_1(F( - 0, Cj)), pj € supp f.
We keep the notations in the beginning of (ii). Then x{ — 0, 2, — 2, t; — to, {§ — &,
Tj — To, SO (j — (o which implies that I‘( - B, QJ) — F( - B, QO). Let us set

(= , (i) = . 1
(—6,¢) <X{7XJ/.,TJ-,E{,E;-,AJ'> if 0(=8,¢) € T"M

for j=0and 5 > 1.
If I'(—p, Cj) € T*OM one can find =] such that p; = (O,X},Tj,E’l,Eg,Aj) with

—j\2 —
(&) 7 (0.X)0 ) 4, =0
since p; € supp 1 N (7 4 p)~*(0).
If F( — 0, Cj) € T*M we have the same thing with p; = (Xf,X;,Tj, E{, E;,Aj).
Now in the case where F( - ﬂ,CO) € T*M we have X{ — X >0, XJ’- — X, T; — To,

=7 — =9, Z; — =, Aj — Ag. Then p; € V' if j is large enough which contradicts the fact

that p; € supp p and V Nsupp p = 0.
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In the case where I'( — 3, (o) € T*OM we have X — Xg, B — =0, Tj — To, Aj — Ao
and X{ — 0 (for the indices j such that I'( — 3,¢;) € T*M).

In the both cases we have (E{)Q — —r (0, X{,=2p) — Ao = &3

Now (0, X{), To, +&1, 2, Ao) € 7 (I (= B,¢0)) N (7 +p)~1(0) ; therefore
(0, X{, To, ££1, 25, Ao) € V so p; € V for j large enough which is again a contradiction.

The proof of Lemma 9.21 is complete. -

Proof of Proposition 9.18
We are going to consider separately the four cases introduced in Lemma 9.21.

Case [ : we have I'(s, (o) € G, for s € [ — 3,] \ {0} Therefore

(953) F(S7CO) = (.’13; (8,336,56),t0,§;(8,336,§6),T0), RS [_ 575]

Let U be the following set.

U={(t,¢,7) e T*OM, |2/ —z(| <&, |t —to]| <6,|¢ —&| <&, |r—70| <}
U{(z,t,&,7) €T*M, 0 <z <&, |a" —xp| <&, |t —to] <&, |€ =& <, |7 —710| <&}

Then U = U NY,, is the set introduced in Lemma 9.21. Moreover U being an open subset
of Ty M, #=1(U) is open in T*R4*+1,

By continuity one can find g9 > 0 such that F(s, CO) e U for s in[ — 50,50]. Then one
can find § > 0 such that if we set

V={(z,t,&,7) e T*R™,0 <1 <6, |2/ — (| <6, [t —to| <6, |¢ —&| <6, |7 — 70| <3}
then for s € [— €0, 60} we have
7 (T (s,¢0)) = (0,2 (s, 20, &), to, 0, €, (s, 20, £0), 7o) €V C 7 H(U)
Assume that we can prove
(9.54) supppu NV C {(z,t,&,7) € TR gy =€ = 0}

then Proposition 9.18 follows immediately from Lemma 9.19.
Let p = (x,t,&,7) € supppu N7 1(U). By Theorem 5.2 we have 7 + p(z,£) = 0 i.e.
pE .

Let (=m(p) e UNEy=U.
k—1

If {T'(-s,¢) : s€[0,8]}NT*0M C U G’ then since by Lemma 9.4(ii) we have
§=0

7 (T(=5,¢)) Nsupp = 0
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the hypothesis (Pk;—1) implies that 771(¢) Nsupp 1 = O which contradicts our assumption

p € Supp p.
k—1

Therefore one can find sy € [O,ﬁ] such that {; = I‘( — 81, C) € T*OM but (; ¢ U Gi.
j=0
Since

(1 EF(—Sl,ij)ﬂT*aMCVl

by Lemma 9.21(ii) we have ¢; € G*. Then F(s,{l) €g,ifse [— 0+ sl,O[U ]0,81}.

If s1 # 0 we have F(sl,C) = F(sl,F( — sl,C)) = (¢ € G, and if s; = 0 we have
¢ = ¢ € GF. In both cases we have ( = (x’,t,ﬁ’,T) and p = (0,$/,t,0,f/,7) because
T+ 1r(0,27,¢) = 0. It follows that

supppu N7 ' (U) C {(z,t,&,7) + 1 =& =0}

as claimed in (9.54).

Case [l : here for ¢ € G"¥NV; we have I'(s,{) C T*M when s € [ — 3, 3] \ {0}
We shall show that

(9.55) v=0onUNTOM

+oo
Since by Lemma 9.17 we have v (Qd U <U g’“)) = 0 it is enough to prove that
k=3

Suppyﬂfjﬂ(Hugg) =10

Let ¢ € Un (HUQQ) N supp v.

k-1
{T(=s,¢) : s€[0,8]}NT*OM C U G’

J=1

since by Lemma 9.21(i7) we have ﬁ_l(F(—ﬁ, C)) Nsuppp = 0, by (Pk_l) we have
77 1(¢) Nsupp u = 0 so, by Remark 9.20, we have ¢ ¢ supp v which is a contradiction. It
follows that we can find s; € [O,ﬁ} such that {; = F( — sl,C) € GF (Gq if k = 2) (since
['(—s,() € Vi by Lemma 9.21). Moreover by Lemma 9.21, case [1, we have I‘(s, Cl) eT*M
if s € [— 6+ 81,0[U }0,81]. If s1 # 0 then ¢ = F(sl,fl) € T* M which contradicts our
assumption. If s; = 0 we have (; = ( € G* (G, if k = 2) which again is impossible. It
follows that U N supp v N (HUGy) = 0 which proves (9.55).

It follows from Proposition 9.12 that ' Hyu = 0 on 7! ((7) This implies that the support
of u propagates along the bicharacteristics of p (with (¢,7) =constant). Now by assump-

tion 77 H(I'( = s,¢o)) Nsuppp = @ and 7= 1(T'(s,¢o)) N (7 +p)7H(0) = (x(s), to, &(s), T0)-
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It follows that for small s > 0 we have 71 (F (s, (0)) N supp p = () which proves Proposi-
tion 9.18.

Case [ : therekisodd, k>3

We claim that
(9.56) suppp N7 (U) C {(w,t,E,T) e TR © 4y =6 = O}

where U is been defined in case [l.
Let p = (x,t,&,7) € 7Y (U)Nsupp . Then 7+p(x,£) =0. Let ( = m(p) e UNEy = U.
If

k—1
{T(s,¢) : s€[0,8]} C Ugﬂ'

then (Py—1) and the fact that 7= (T'(=£,¢)) Nsupp p = @ imply that 7= (¢) Nsupp p = @
which is in contradiction with p € supp p.

Therefore one can find s; € [O, ﬁ} such that (; = I‘( — 81, C) € G* (since ¢; € V7). Since
we are in case [l we have

rec) -

(qu(s),t,fg(s)m) s €10, s1]
(m(s),t,§(s),7) s € [— [3—1—51,0[

51 #0, ¢ =T(51,0( = 51,¢)) = T(51,G1) € Gy 50 p = (0,2',1,0,€,7).
If sy =0then ( =¢ €G* and p= (O,x',O,f',T).

This proves (9.56). Therefore we can use Lemma 9.19 and its conclusion with V' such
that W‘l(F(s,(o)) cVcatU)forse [— 5,5].

NOW Zg: (qu (=s,20,80) o, & (—s,20,&))) € Ga, when s € ]0, 3] and Co — Co iff — 0
so (p € U if s is small enough, it follows from Lemma 9.21(ii) that W_l(F( — 0, QO)) N
supp 4 = () since {F(S,Eo) 1 x € [— ﬂ,()}} C GgUT*M, it follows from (PQ), w—l(fo) N
suppp = (. By Lemma 9.21 we deduce that (O,x; (5, 70,£0) » 0,0, &, (s, 70, &p) ,7'0) ¢
supp p for small s, which proves Proposition 9.18 in this case.

Case []

We claim in this case that
(9.57) suppr N U = 0

As in case [ it is enough to prove that suppr N Un (H U gg) = (). Let ¢ € suppv N Un

(HUG,). If
k—1

{T(=s,¢) : s€[0,8]}NT*OM C U G’

J=1

54



then (Py_1) and the fact that 7= (I'(=3,¢)) Nsuppp = @ (Lemma 9.21(i)) imply that
77 1(¢) Nsupp . = 0. Then by Remark 9.20 we have ¢ ¢ supp v which is a contradiction.
Therefore one can find s; € [O,ﬁ] such that (1 = F( — 81, Q) € G* (since ¢; € V1) and

(z(s),t,&(s),7) CT*M, s€]0,s1],
(m;(s),t,ﬁé(s)m) CT*M, se|[—p+s,0[

F(s, (1) = {
If 57 # 0 then ¢ = F(sl,Cl) € T*M which contradicts our assumption. If s; = 0 then
¢ = (1 € G* which again contradicts the fact that ( € H UG, since k is odd, k > 3, in
this case. Thus (9.57) is proved. It follows then, from Proposition 9.12, that ‘H,u = 0
on W_l(ﬁ) therefore on a complete neighborhood of 77 ({p) in T*R%! since p = 0 in
r1 < 0. Now (x(s,xo,fo),to,f(s,xo,fo),m) is contained in {(w,t,ﬁ,r) rxy < O} when
B+ s < 0. By propagation along the bicharacteristics of p (since ‘H,u = 0) we deduce
that F(S,CO) = (x(s,mo,fo),to,f(s,xo,fo),m) does not intersect supp 4 when s > 0 is
small enough. The proof of Theorem 5.2 is complete.

(I
9.3 Proofs of the technical Lemmas
We shall need the following elementary result.
d
Lemma 9.22. Let P = Z D;ja?*(x)Dy + V' where P satisfies conditions (2.3), (2.5)

jok=1
and V > 1. Then there exists C' > 0 such that for any z € C such that Im z # 0, any h in

10,1] and any solution u € Hg () of the problem h*Pu — zu = f with f € L*(Q) we have

(I=1)”

|Imz\2

Fah

n 1 2
[n2Pul® + S IIADsu | + [V 2u] "+ u)? < €
=1

1=

where || - || is the norm in L?(2).

Proof

Taking the scalar product in L?(Q) of the equation with u we obtain
(9.58) (R*Pu,u) —Rez||u|]® —ilmz| u|®* = (f,u)
Since (hQPu, u) is real, taking the imaginary part of (9.58), we obtain

£

|Im z|

(9.59) [ul <
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d 102
Now we have (h?Pu,u) > C Z HhDjuH2 + HhVQUH so taking the real part in (9.58)
j=1
and using (9.59) we obtain

Clz|
|Im z|

d 12
(9.60) S InDull® + |[pv2ul < =51 £
j=1

Finally we have thF’uH2 <2zl + 1 f]I*) so using (9.59) and (9.60) we obtain

the claim in the Lemma. -

In that follows, we shall make a great use of the so called Helffer-Sjostrand formula (see
[Da]) which will recall now.

Let 0 € C§°(R). We defined an «almost analytic extension» of 6 as follows. Let ¢ €
C5° (R) be such that p(t) = 1if [t| <1, p(t) =0 if |t| > 2.

We set

~ 2 90y
(9.61) ) =32 T i)' (%)
=1 '

Then 6 is a C®° function on R x R and satisfies

98(z,y)| < C Iyl as [yl — 0, where

(9.62) s i} i}
90(r.y) = <% +a g—j) (@,1)

Let Pp be our self adjoint operator defined in (2.1). Then the Helffer-Sjostrand formula
asserts that

IR .
(9.63) 6(h*Pp) = —= [ B6(x,y) (= — h*Pp) " dady

T JR2
where z = x + 1y.
Proof of Lemma 6.3

(i) According to (9.63) we have (writing P instead Pp)

(9.64) [Q(hQP), X} = —l 55(:5, Y) [(z — hQP)_l, X] dady

™ JR2
Now (2= h2P) (= = h*P) ™, x| f = x/ + W2 [P.x] (== h*P) ™' f = xJ. Thus
[(z — hQP)_l, X] = (z — hQP)_th [P, X} (z — hQP)_lf
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Let us set [ = H[ (z — n*P }f” y (9.59) we have

—1

12 [Px] (= n2P) s

~ |Im z| L2
d
Now [P, x] =) b;D; + by where b; € Cg°(Q), j =0,---,d. It follows that

J=1
L2)

0 < Ch

~ |[Im z|

(Slmte—irr sl enfe—rn s

Using Lemma 9.22 we deduce that

_ Rz
e 1S Iz

It follows from (9.54) that, with z = x + iy, we have

[(602P)x] 1,0 = O [ o2 800y

Using formula (9.62) and the fact that 0 has compact support in x and y we obtain (7).

(74) Again the formula (9.63) we have

|hD;6(h2P)f]|,. < %/léé(x,y)) Hhaj (2 — th)_lfHLz dady

so using Lemma 9.22 we obtain

)
Ty dedul flles < € 7 e

103602 P) 1|2 < © [ [300.0

(7i7) We have as above
hD; [0(h*P).x] = == | 90, y)hD; (== h*P) " x| dady
R2

and

AD; [ (== 1*P) ™" x| = hD; (2 = W2P) 'R [PA] (= - n2P)
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Using again Lemma 9.22 we obtain

e ey,

|Imz|

hD; [(z — hQP)_l,X]fH < C’
12

_ ondlal) 1 1 p Az |>
nD;(z=n2P) g+ n(z—n2) |
and we conclude as before.
Proof of Lemma 8.2
We proceed as above. We have using (9.63) and Lemma 9.22
1
0(h*P), xoP*
L2
1 —~ 2 —1,9 1 2 -1
< — Gﬁ(m,y)’ (z—h*P) "h*[P,xo]P* (2 — h*P) "v| dzdy
T JR2
L2
o~ h - 1 -1 : -1
<c| |96(,y) SO BD;PT(z = n2P) o|| 4+ [APT(z = 12P) M| | dady
R2 |Im z| | “
Jj=1 L2 L2
Now we have with u = (z — hQP)_lv € D(P)
1 _1 1 1 1 1
hD;Piu|l =h 2|hD;(h*P)%u|| <Ch 2||(R*P)2(h*P)%u
L2 L2 L2
1
< on-b Al

|Imz\ ” v HL2

by interpolation using Lemma 9.22. It follows that

1

0(h*P), xoP* <C

(%

RQ

oL () !
90(x,y)| n TP edy 10lze < OB v s

L2
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