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The Kato smoothing effect for Schrödinger

equations with unbounded potentials

in exterior domains

by

Luc ROBBIANO1

Claude ZUILY23

1. Introduction

The Kato
1
2
− smoothing effect for Schrödinger equations has received much attention

during the last years. See Constantin-Saut [C-S], Sjölin [Sj], Vega [V], Yajima [Y] for the

case of the flat Laplacian in Rd. It has been successively extended to variable coefficients

operators by Doi (see [D1], [D2]) and to perturbations of such operators by potentials

growing at most quadratically at infinity (see Doi [D3]). The aim of this paper is to con-

sider exterior boundary value problems for variable coefficients operators with unbounded

potentials. The case of potentials decaying at infinity has been considered by Burq [B1]

using resolvent estimates.

Our main smoothing estimate is proved by contradiction. The idea of proving estimates

by contradiction (with the appropriate technology) goes back to Lebeau [L] and it has

been subsequently used with success by several authors, (see e.g. Burq [B2]).

In this paper, some ideas of Gérard-Leichtnam [G-L], Burq [B3] and Miller [Mi] will be

also used.

Let us briefly outline how this method applies here. Assuming that our estimate is false

gives rise, after renormalization, to a sequence
(
uk

)
which is bounded in L2

loc

(
[0, T ]×Rd

)
.

To a subsequence we associate a microlocal semi-classical defect measure µ in the sense

of Gérard [G]. Then, roughly speaking, there are three main steps in the proof. First

µ does not vanish identically. Moreover µ vanishes somewhere (in the incoming region).

Finally the support of µ is invariant by the generalized bicharacteristic flow (in the sense

of Melrose-Sjöstrand [M-S]). Since one of our assumptions (the non trapping condition)

ensures that the backward generalized flow always meet the incoming region (where µ

vanishes) we obtain a contradiction thus proving the desired estimate.
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2 Univ. Paris-Sud, UMR 8628, Orsay, F-91405 , e-mail : Claude.Zuily@math.u-psud.fr
3 CNRS, Orsay, F-91405
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Let us now describe more precisely the content of each section.

In the next one we describe the assumptions and state the main result of this paper. In

the third section we begin our contradiction argument and we show in the next one how to

obtain a bounded sequence in L2
(
[0, T ], L2

loc(R
d)
)
. Then in the fifth section we introduce

the semi classical defect measure µ and we state without proof the invariance of its support

by the generalized Melrose-Sjöstrand bicharacteristic flow. In the next section we show

that µ does not vanish identically while in section seven we show that µ vanishes in the

incoming region. In the section eight we end the proof of our main result by achieving a

contradiction. Finally in the appendix (section nine) we recall the geometrical framework

we prove the invariance of the support of µ and we end by proving some technical Lemmas

used in the preceeding sections.

Aknowledgments : The authors would like to thank Nicolas Burq for useful discussions

at an early stage of this work.

2. Statement of the result

Let K be a compact obstacle in R
d whose complement Ω is a connected open set with

C∞ boundary ∂Ω.

Let P be a second order differential operator of the form

(2.1) P =
d∑

j,k=1

Dj

(
ajk(x)Dk

)
+ V (x) , Dj =

1

i

∂

∂xj

whose coefficients ajk and V are assumed (for simplicity) to be in C∞(Ω), real valued and

ajk = akj, 1 ≤ j, k ≤ d

We shall set

(2.2) p(x, ξ) =

d∑

j,k=1

ajk(x)ξjξk

and we shall assume that

(2.3) ∃ c > 0 : p(x, ξ) ≥ c |ξ|2 , for x in Ω and ξ in Rd.

To express the remaining assumptions on the coefficients we introduce the metric

(2.4) g =
dx2

〈 x 〉2
+

dξ2

〈 ξ 〉2

where 〈 · 〉 =
(
1+|·|2

)1/2
and we shall denote by SΩ(M, g) the Hörmander’s class of symbols

if M is a weight. Then a ∈ SΩ(M, g) iff a ∈ C∞
(
Ω × Rd

)
and for all α, β in Nd one can

find Cα,β > 0 such that

∣∣Dβ
xD

α
ξ a(x, ξ)

∣∣ ≤ CαβM(x, ξ) 〈x 〉−|β| 〈 ξ 〉−|α|
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for all x in Ω and ξ in R
d.

Next we assume

(2.5)





(i) ajk ∈ SΩ(1, g), ∇xa
jk(x) = o

( 1

|x|
)
, |x| → +∞, 1 ≤ j, k ≤ d.

(ii) V ∈ SΩ

(
〈x 〉2 , g

)
, V ≥ −C0 for some positive constant C0.

Under the assumptions (2.3), (2.5) the operator P is essentially self adjoint on
{
u ∈

C∞
0 (Ω) : u|∂Ω = 0

}
. We shall denote by PD (D means Dirichlet) its self adjoint extension.

Let us describe now our geometrical assumptions. We shall assume

(2.6)

{
the generalized bicharacteristic flow (in the sense of

Melrose-Sjöstrand) is not backward trapped.

This assumption needs some explanations. Let M = Ω × Rt. Let us set T ∗
b M = T ∗M \

{0} ∪ T ∗∂M \ {0}. We have a natural restriction map π : T ∗R
d+1

|M
\ {0} → T ∗

b M which

is the identity on T ∗
R

d+1
|M \ {0}.

Let Σ =
{
(x, t, ξ, τ) ∈ T ∗Rd+1 \{0} : x ∈ Ω, t ∈

[
0, T

]
, τ+p(x, ξ) = 0

}
and Σb = π(Σ).

For a ∈ Σb the generalized bicharacteristic Γ(t, a) lives in Σb (see section 9.1 for details).

Then (2.6) means the following.

For any a in Σb there exists s0 such that for all s ≤ s0 we have Γ(s, a) ⊂ T ∗M \{0}, then

Γ(s, a) =
(
x(s), t, ξ(s), τ

)
where

(
x(s), ξ(s)

)
is the usual flow of p and lim

s→−∞
|x(s)| = +∞.

We shall need another assumption on the flow whose precise meaning will be given in

the appendix, section 9.1, Definition 9.3.

(2.7)

{
The bicharacteristics have no contact

of infinite order with the boundary ∂Ω

Now we set

(2.8) ΛD =
((

1 + C0

)
Id + PD

)1/2

which is well defined by the functionnal calculus of self adjoint positive operators.

We shall consider the problem

(2.9)





i
∂u

∂t
+ PDu = 0,

u|t=0 = u0,

u|∂Ω×Rt
= 0,

where u0 ∈ L2(Ω).

Then we can state our main result.
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Theorem 2.1. Let T > 0, χ ∈ C∞
0 (Ω), s ∈

[
− 1, 1

]
. Let P be defined by (2.1) satisfy-

ing the assumptions (2.3), (2.5), (2.6) and (2.7). Then one can find a positive constant

C(T, χ, s) = C such that

(2.10)

∫ T

0

∥∥∥χΛ
s+

1
2

D u(t)
∥∥∥

2

L2(Ω)
dt ≤ C ‖Λs

Du0‖2
L2(Ω)

for all u0 in C∞
0 (Ω), where u denotes the solution of (2.9).

Here are some remarks

Remarks 2.2.

(i)Theorem 2.1 can be extended to operators of the form

P =

d∑

j,k=1

(Dj − bj(x))a
jk(x) (Dk − bk(x)) + V (x)

where bj ∈ SΩ

(
〈x 〉 , g

)
.

(ii)In the case Ω = Rd the above result has been proved by Doi [D3].

(iii)Without lack of generality one may assume s = 0 in the theorem.

Moreover working with ũ(t) = e−i(1+C0)tu(t) one may assume V ≥ 1 in (2.5) (ii) and

ΛD = P
1/2
D which we will assume in that follows.

3. The contradiction argument

Our goal is to begin the proof by contradiction of Theorem 2.1. We shall first consider

a version of the estimate which is localized in frequency.

Let T > 0 and I =
]
0, T

[
. Let θ ∈ C∞

0 (R) be such that supp θ ⊂
{
t :

1
2
≤ |t| ≤ 2

}
.

Theorem 3.1. Let χ0 ∈ C∞
0

(
Rd
)

be fixed. There exists C > 0, h0 > 0 such that for all h

in
]
0, h0

[
we have

(3.1)

∫ T

0

∥∥∥χ0θ
(
h2PD

)
P

1/4
D u(t)

∥∥∥
2

L2(Ω)
≤ C ‖u0‖2

L2(Ω)

for all u0 ∈ L2(Ω).

Here θ
(
h2PD

)
is defined by the functionnal calculus of selfadjoint operators.

Recall that K is our compact obstacle. We take R0 ≥ 1 so large that

(3.2) K ⊂
{
x ∈ R

n : |x| < R0

}
.
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Let R1 > R0 be such that suppχ0 ⊂
{
x ∈ R

d : |x| < R1

}
. Let χ1 ∈ C∞

0

(
R

d
)

be such

that 0 ≤ χ1 ≤ 1 and

(3.3)

{
χ1(x) = 1 if |x| ≤ R1 + 2

suppχ1 ⊂
{
x : |x| ≤ R1 + 3

}
.

Then χ0χ1 = χ0. Moreover let us set

(3.4) θ1(t) = t
1
4 θ(t), θ2(t) = t

−
1
4 θ(t).

It is easy to see that (3.1) will be implied by the following estimate.

(3.5)





∃C > 0, ∃h0 > 0 : ∀h ∈
]
0, h0

[
, ∀u0 ∈ C∞

0 (Ω),
∫ T

0

∥∥∥χ1h
−

1
2 θ1
(
h2PD

)
u(t)

∥∥∥
2

L2(Ω)
dt ≤ C ‖u0‖2

L2 .

We shall prove (3.5) by contradiction. Assuming it is false, taking h0 =
1
k

, C = k, k ∈ N∗,

we deduce sequences
(
hk

)
→ 0, u0

k ∈ C∞
0 (Ω), such that

∫ T

0

∥∥∥χ1h
−

1
2

k θ1
(
h2

kPD

)
uk(t)

∥∥∥
2

L2(Ω)
dt > k

∥∥u0
k

∥∥2

L2 .

It follows that the left hand side does not vanish. Therefore if we set

(3.6)





α2
k =

∫ T

0

∥∥∥χh
−

1
2

k θ1
(
h2

kPD

)
uk(t)

∥∥∥
2

L2(Ω)
dt > 0,

ũ 0
k =

1

αk
u0

k, ũk =
1

αk
uk,

wk = h
−

1
2

k θ1
(
h2

kPD

)
ũk,

we see that

(3.7)





(i)

∫ T

0

‖χ1wk(t)‖2
L2(Ω) dt = 1,

(ii)
∥∥ũ 0

k

∥∥
L2(Ω)

<
1

k
·

4. The sequence
(
wk

)
is bounded in L2

(
R, L2

loc(R
d)
)

We shall prove in this section the following result.
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Proposition 4.1. For any χ ∈ C∞
0

(
R

d
)

one can find a positive constant C such that

(4.1)

∫ T

0

‖χwk(t)‖2
L2(Ω) dt ≤ C

for all k ≥ 1.

Proof

We begin by extending to the whole Rd the operator P given in (2.1).

Let χ2 ∈ C∞
0

(
Rd
)

be such that 0 ≤ χ2 ≤ 1 and

(4.2) χ2(x) = 1 if |x| ≤ R0, χ2(x) = 0 if |x| ≥ R0 + 1.

Then we set for x ∈ Rd,

(4.3) P̃ =
d∑

j,k=1

Dj

(
χ2δjkDk

)
+

d∑

j,k=1

Dj

((
1 − χ2

)
ajk(x)Dk

)
+ χ2 +

(
1 − χ2

)
V

where δjk denotes the Kronecker symbol.

The principal symbol of P̃ is

(4.4)





p̃(x, ξ) =

d∑

j,k=1

ãjk(x)ξjξk

ãjk(x) = χ2(x)δjk +
(
1 − χ2(x)

)
ajk(x)

According to conditions (2.2), (2.5), (2.6) we have the following,

(4.5)





(i) P̃ = P if |x| ≥ R0 + 1,

(ii) p̃(x, ξ) ≥ c̃ |ξ|2 , x ∈ R
d, ξ ∈ R

d, c̃ > 0,

(iii) ãjk ∈ SRd(1, g) = S(1, g),∇xã
jk(x) = o

(
|x|−1 )

, |x| → +∞,

(iv) Ṽ = χ2 +
(
1 − χ2

)
V ∈ S

(
〈x 〉2 , g

)
and Ṽ ≥ 1,

(v) The flow of p̃ in non trapping.

Let χ3 ∈ C∞
0

(
Rd
)

be such that 0 ≤ χ3 ≤ 1 and with R1 defined in (3.3),

(4.6) χ3(x) = 1 if |x| ≤ R1 + 1, χ3(x) = 0 if |x| ≥ R1 + 2.

Then, according to (3.3), we have for α 6= 0,

(4.7) supp ∂αχ3 ⊂
{
x : R1 + 1 ≤ |x| ≤ R1 + 2

}
⊂
{
x : χ1(x) = 1

}
.

6



Moreover since R1 > R0 (see (3.2)) we have

(4.8) supp
(
1 − χ3

)
⊂
{
x : |x| > R0 + 1

}
.

It follows from (4.5) (i) that

(4.9) P = P̃ on supp
(
1 − χ3

)
.

Now with wk defined in (3.6) we set,

(4.10) Uk =
(
1 − χ3

)
wk.

Then we have

(4.11)





(
Dt − P̃

)
Uk = Gk

Gk =
[
P̃ , χ3

]
wk

Uk(0) =
(
1 − χ3

)
h
−

1
2

k θ1
(
h2

kPD

)
ũ0

k.

According to conditions (ii) to (v) in (4.5) we may apply Theorem 2.8 in [D3] with s = −1
2
.

It follows that for any χ ∈ C∞
0

(
R

d
)

and any ν > 0 we have,

(4.12)

∫ T

0

‖χUk(t)‖2
L2 dt ≤ Cν

(∥∥∥E
−

1
2

Uk(0)
∥∥∥

2

L2
+

∫ T

0

∥∥∥ 〈 x 〉
1+ν
2 E−1Gk(t)

∥∥∥
2

L2
dt
)

where Es is the pseudo-differential operator with symbol es(x, ξ) =
(
1 + p̃(x, ξ) + |x|2

)s/2

which belongs to S
((

|ξ| + 〈x 〉
)s
, g
)
.

To handle the first term in the right hand side of (4.12) we shall need the following

Lemma.

Lemme 4.2. Let Q = P

1
2

D

(
1−χ3

)
A−1 where A−1 ∈ OpS

((
|ξ| + 〈x 〉

)−1
, g
)
. Then Q is

bounded from L2
(
Rd
)

to L2(Ω).

Proof

Let V(Ω) =
{
u ∈ H1

0 (Ω) : V
1
2 u ∈ L2(Ω)

}
endowed with the norm ‖ u ‖2

V(Ω) = ‖ u ‖2
H1 +

‖V
1
2u ‖2

L2 . It is well known that V(Ω) is the domain of P

1
2

D and that ‖ u ‖V(Ω) is equivalent

to ‖P
1
2

Du ‖L2(Ω). Moreover since |V |
1
2 ≤ C 〈x 〉 we have,

∥∥(1 − χ3

)
f
∥∥
V(Ω)

≤ C
(
‖ f ‖H1(Rd) + ‖〈x 〉 f‖L2(Rd)

)

7



whenever the right hand side is finite.

It follows that we can write

‖Qu ‖L2(Ω) ≤ C1

∥∥(1 − χ3

)
A−1u

∥∥
V(Ω)

≤ C2

(
‖A−1u‖H1(Rd) + ‖〈x 〉A−1u‖L2(Rd)

)

≤ C3‖ u ‖L2(Rd)

Now let us set ① =
∥∥∥E

−
1
2

Uk(0)
∥∥∥

2

L2(Rd)
. According to (4.11) we have,

① ≤ C
∥∥∥E

−
1
2

(
1 − χ3

)
h
−

1
2

k θ1
(
h2

kPD

)
ũ0

k

∥∥∥
2

L2
= C

∥∥∥E
−

1
2

(
1 − χ3

)
P

1
4

D θ
(
h2

kPD

)
ũ 0

k

∥∥∥
2

L2

Introducing S = E
−

1
2

(
1 − χ3

)
P

1
4

D we can write

① ≤ C
(
Sθ
(
h2

kPD

)
ũ 0

k, Sθ
(
h2

kPD

)
ũ 0

k

)
=
(
θ
(
h2

kPD

)
S∗Sθ

(
h2

kPD

)
ũ0

k, ũ
0
k

)

① ≤ C
∥∥θ
(
h2

kPD

)
S∗Sθ

(
h2

kPD

)
ũ0

k

∥∥
L2

∥∥ũ 0
k

∥∥
L2

Now

S∗S = P
−

1
4

D P

1
2

D

(
1 − χ3

)
A−1

(
1 − χ3

)
P

1
4

D = P
−

1
4

D Q
(
1 − χ3

)
P

1
4

D

where Q has been defined in Lemme 4.2 and A−1 = E∗

−
1
2

E
−

1
2

.

Using (3.4) we obtain

① ≤ C
∥∥∥h

1
2
k θ2

(
h2

kPD

)
Qh

−
1
2

k

(
1 − χ3

)
θ1
(
h2

kPD

)
ũ0

k

∥∥∥
L2
‖ ũ 0

k ‖L2

Since the operators θj

(
h2

kPD

)
, j = 1, 2, are uniformly bounded in L2(Ω), using Lemma 4.2

and (3.7) we obtain

(4.13)
∥∥∥E

−
1
2

Uk(0)
∥∥∥

2

L2(Rd)
≤ C‖ ũ 0

k ‖2
L2(Ω) ≤ C

with a uniforn constant C > 0.

We claim now that we have (see (4.11)), uniformly in k ≥ 1,

(4.14)

∫ T

0

∥∥∥ 〈x 〉
1+ν
2 E−1Gk(t)

∥∥∥
2

L2(Rd)
dt = O(1).

By (4.7) we can write Gk =
[
P̃ , χ3

]
χ1wk. Moreover the symbolic calculus shows that the

symbol of
[
P̃ , χ3

]
belongs to S

(
〈 ξ 〉2

〈x 〉 〈 ξ 〉 , g
)

.
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It follows that the symbol of 〈 x 〉
1+ν
2 E−1

[
P̃ , χ3

]
belongs to S(M, g) where

M(x, ξ) =
〈 x 〉

1+ν
2

〈 x 〉 + 〈 ξ 〉 ·
〈 ξ 〉2

〈x 〉 〈 ξ 〉 ≤ C.

This operator is therefore L2 bounded, so using (3.7) we obtain

∫ T

0

∥∥∥ 〈x 〉
1+ν
2 E−1Gk(t)

∥∥∥
2

L2(Rd)
dt ≤ C′

∫ T

0

‖χ1wk(t)‖2
L2(Ω) dt ≤ C′

which proves (4.14).

Using (4.10), (4.12), (4.13) and (4.14) we conclude that

(4.15)

∫ T

0

∥∥χ
(
1 − χ3

)
wk(t)

∥∥2

L2(Ω)
dt = O(1).

Since by (3.7) we have

∫ T

0

‖χ1wk(t)‖2
L2(Ω) dt = 1 and since by (3.3) and (4.6) we have

χ1 +
(
1 − χ3

)
≥ 1 we obtain (4.1). The proof of Proposition 4.1 is complete.

5. The measure µ and its properties

We shall set

(5.1)

{
wk(t) = 1IΩwk(t),

Wk = 1I[0,T ]wk.

It follows from Proposition 4.1 that the sequence
(
Wk

)
is bounded in L2

(
Rt, L

2
loc

(
Rd
))

.

Now to a symbol a = a(x, t, ξ, τ) ∈ C∞
0

(
T ∗Rd+1

)
we associate the semi-classical pseudo-

differential operator (pdo) by the formula

(5.2)

Op(a)
(
x, t, hDx, h

2Dt

)
v(x, t) =

(2πh)−(d+1)

∫∫
e
i

(
x−y

h
ξ+

t−s

h2
τ

)
ϕ(y)a(x, t, ξ, τ)v(y, s)dydsdξdτ

where ϕ ∈ C∞
0

(
Rd
)

is equal to one on a neighborhood of the x-projection of the support

of a.

We note that by the symbolic calculus the operator Op(a) is, modulo operators bounded

in L2 by O
(
h∞
)
, independant of the function ϕ. The following result is classical and

introduces the notion of semi-classical defect measure.
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Proposition 5.1. There exists a subsequence
(
Wσ(k)

)
and a Radon measure µ on T ∗

R
d+1

such that for every a ∈ C∞
0

(
T ∗Rd+1

)
one has

lim
k→+∞

(
Op(a)

(
x, t, hσ(k)Dx, h

2
σ(k)Dt

)
Wσ(k),Wσ(k)

)
L2(Rd+1)

= 〈µ, a 〉 .

Here are the two main properties of the measure µ which will be used later on.

Theorem 5.2. The support of µ is contained in the set

Σ =
{
(x, t, ξ, τ) ∈ T ∗

R
d+1 \ {0} : x ∈ Ω, t ∈

[
0, T

]
and τ + p(x, ξ) = 0

}
.

Proof

See section 9.2 in the appendix.

To state the propagation result let us recall some notations. Let M = Ω × Rt. We set

T ∗
b M = T ∗M \ {0} ∪ T ∗∂M \ {0}.

We have a natural application of restriction

π : T ∗
R

d+1

|M
\ {0} → T ∗

b M

which is the identity on T ∗R
d+1
|M \ {0} (see section 9.1 for details).

With Σ defined in Theorem 5.2 we set Σb = π(Σ). The measure µ has its support in

Σ ⊂ T ∗R
d−1

|M
\ {0} while for ζ ∈ Σb the generalized bicharacteristic Γ(t, ζ) lives in Σb.

Then we can state an important result of this paper.

Theorem 5.3. Let ζ ∈ Σb and s1, s2 ∈ R. Then we have

π−1
(
Γ(s1, ζ)

)
∩ suppµ = ∅ ⇐⇒ π−1

(
Γ(s2, ζ)

)
∩ suppµ = ∅

For the proof, see the appendix, section 9.2.

6. The measure µ does not vanish identically

The purpose of this section is to prove the following results.

Let A ≥ 1, R ≥ 1, ψA ∈ C∞
0 (R), ΦR ∈ C∞

0 (R) be such that 0 ≤ ψA,ΦR ≤ 1 and

(6.1) ψA(τ) = 1 if |τ | ≤ A, ΦR(t) = 1 if |t| ≤ R.

Proposition 6.1. There exist positive constants A0, R0, k0 such that

(6.2)

∫

R

∥∥ψA

(
h2

kDt

)
ΦR

(
h2

k∆
)
1I[0,T ]χ1wk(t)

∥∥2

L2(Rd)
dt ≥ 1

2
,
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when A ≥ A0, R ≥ R0, k ≥ k0. Here χ1, wk have been defined in (3.3), (5.1) and ∆ is the

usual Laplacien.

Corollary 6.2. The measure µ defined in Proposition 5.1 does not vanish identically.

Proof

Let χ̃1 ∈ C∞
0

(
Rd
)

be such that χ̃1 = 1 on suppχ1. Let ϕ = ϕ(t) ∈ C∞
0 (R) and

a(x, t, ξ, τ) = ϕ(t)χ1(x)ψ
2
A(τ)Φ2

R

(
|ξ|2

)
χ1. It follows from (6.2) that

(
a
(
x, t, hDx, h

2Dt

)
χ̃11I[0,T ]wk(t), 1I[0,T ]wk

)
L2(Rd+1)

≥ 1

3
.

Since the left hand side with the subsequence σ(k) tends to 〈µ, a 〉 when k → +∞ the

Corollary follows.

Proof of Proposition 6.1

We shall need the following Lemma.

Lemma 6.3. Let θ ∈ C∞
0 (R), χ ∈ C∞

0

(
Rd
)
. Then there exists C > 0 such that

(i)
∥∥[θ
(
h2PD

)
, χ
]
u
∥∥2

L2(Ω)
≤ C‖hu ‖2

L2(Ω),

(ii)
∥∥∂jθ

(
h2PD

)
u
∥∥2

L2(Ω)
≤ C

∥∥h−1u
∥∥

L2(Ω)
,

(iii)
∥∥∂j

[
θ
(
h2PD

)
, χ
]
u
∥∥

L2(Ω)
≤ C‖ u ‖L2(Ω),

for all j = 1, · · · , d, h > 0 and u ∈ L2(Ω).

Proof

See the Appendix, section 9.3.

Let us set

(6.3)





I =
(
Id − ψA

(
h2Dt

))
1I[0,T ]χ1wk

ψ̃(τ) =
1 − ψ(τ)

τ
.

Then ψ̃ ∈ L∞(R) and
∣∣∣ψ̃(τ)

∣∣∣ ≤ 1
A

for all τ ∈ R.

Now we can write I = ψ̃
(
h2

kDt

)
h2

kDt

(
1I[0,T ]χ1wk

)
. Using (3.6) and the fact that

Dtũk = PDũk we deduce that

(6.4)





I = ① + ②

① =
1

i
ψ̃
(
h2

kDt

)
χ1h

2
k

(
wk(0)δt=0 − wk(T )δt=T

)

② = −ψ̃
(
h2

kDt

)
1I[0,T ]χ1h

2
kPDh

−
1
2

k θ1
(
h2

kPD

)
ũk.

11



Estimate of ①

If a ∈ R, we have ψ̃
(
h2

kDt

)
δt=a = F

(
ψ̃
(
h2

kτ
)
e−iaτ

)
, so by Parseval formula we have

∥∥∥ψ̃
(
h2

kDt

)
δt=a

∥∥∥
2

L2(R)
= cn

∫ ∣∣∣ψ̃
(
h2

kτ
)∣∣∣

2

dτ = cnh
−2
k

∫ |ψA(τ) − 1|2

|τ |2
dτ

It follows from (3.6) that

∫

R

‖ ① ‖2
L2(Ω)dt ≤ C h4

k h
−2
k h−1

k

(
‖ũk(0)‖2

L2 + ‖ũk(T )‖2
L2

)

Applying the energy estimate and (3.7) we obtain

(6.5)

∫

R

‖ ① ‖2
L2dt ≤ C hk

∥∥ũ0
k

∥∥2

L2 = o(1).

Estimate of ②

Let θ̃ ∈ C∞
0 (R) be such that θ̃ = 1 on the support of θ1. Then we can write with

θ̃1(t) = t θ̃(t)

② = −ψ̃
(
h2

kDt

) [
χ1, θ̃1

(
h2

kPD

)]
1I]0,T ]h

−
1
2

k θ1
(
h2

kPD

)
ũk − ψ̃

(
h2

kDt

)
θ̃1
(
h2

kPD

)
1I[0,T ]χ1wk(t)

Using Lemma 6.3 (i) and the fact that,

∥∥∥ψ̃
(
h2

kDt

)∥∥∥
L2(R)→L2(R)

= O
(

1

A

)
,
∥∥∥θ̃1
(
h2

kPD

)∥∥∥
L2(Ω)→L2(Ω)

= O(1)

uniformly in k we obtain,

∫

R

‖ ② ‖2
L2(Ω)dt ≤

C

A

(∫ T

0

∥∥∥h
1
2
k ũk(t)

∥∥∥
2

L2(Ω)
dt+

∫ T

0

‖χ1wk(t)‖2
L2(Ω) dt

)

Using the energy estimate and (3.7) we deduce that

(6.6)

∫

R

‖ ② ‖2
L2(Ω)dt = o(1) + O

(
1

A

)
.

Taking k and A sufficiently large and using (3.7), (6.3), (6.4), (6.5), (6.6) we obtain

(6.7)

∫

R

∥∥ψA

(
h2

kDt

)
1I[0,T ]χ1wk(t)

∥∥2

L2(Ω)
≥ 1

2
.
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Now with ΦR defined in (6.1) we set

(6.8) II = h
−

1
2

k

(
Id − ΦR

(
h2

k∆
))
ψA

(
h2

kDt

)
1I[0,T ]χ1wk(t).

Since supp
(
1 − ΦR(t)

)
⊂
{
t ∈ R : |t| ≥ R

}
we have by Fourier transform

(6.9)
∥∥(Id − ΦR

(
h2∆

))
h−1

k v
∥∥2

L2(Rd)
≤ C

R

d∑

j=1

‖∂jv‖2
L2(Rd) , v ∈ H1

(
R

d
)
.

Now by (3.6) we have h
−

1
2

k wk = h−1
k vk, vk = θ1

(
h2

kPD

)
ũk.

Thus applying (6.9) we obtain

∫

R

‖ II ‖2
L2(Rd)dt ≤

C

R

d∑

j=1

∫

R

∥∥∂jψA

(
h2Dt

)
1I[0,T ]χ1vk

∥∥2

L2(Rd)
.

Since vk ∈ H1
0 (Ω) we have

∂j

(
χ1vk

)
= ∂j

(
1IΩχ1vk

)
= 1IΩ∂j

(
χ1vk

)

It follows that

∫

R

‖ II ‖2
L2(Rd)dt ≤ C

R

d∑

j=1

∫

R

∥∥∂jψA

(
h2

kDt

)
1I[0,T ]χ1vk

∥∥2

L2(Ω)
dt

Let θ̃ ∈ C∞
0 (R) be such that θ̃ = 1 near the support of θ1. Then

(
1 − θ̃(t)

)
θ1(t) = 0. We

first consider

(6.10) ① =

∫

R

∥∥∥∂j θ̃
(
h2

kPD

)
ψA

(
h2

kDt

)
1I[0,T ]χ1vk

∥∥∥
2

L2(Ω)
dt.

Using Lemma 6.3 (ii) we obtain

① ≤ C

∫

R

∥∥ψA

(
h2

kDt

)
h−1

k 1I[0,T ]χ1vk(t)
∥∥2

L2(Ω)
dt ≤ C′

∫ T

0

∥∥∥h
−

1
2

k χ1wk(t)
∥∥∥

2

L2(Ω)
dt

so by (3.6) we obtain

(6.11) ① ≤ C′h−1
k .

It remains to consider

(6.12) ② =

∫

R

∥∥∥∂j

(
Id − θ̃

(
h2

kPD

))
ψA

(
h2

kDt

)
1I[0,T ]χ1vk(t)

∥∥∥
2

L2(Ω)
dt.
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Since vk(t) = θ1
(
h2

kPD

)
ũk and

(
Id − θ̃

(
h2

kPD

))
θ1
(
h2

kPD

)
= 0 we obtain

② ≤
∫

R

∥∥∥∂j

[
θ̃
(
h2

kPD

)
, χ1

]
ψA

(
h2

kDt

)
1I[0,T ]χ̃1vk(t)

∥∥∥
2

L2(Ω)
dt

where χ̃1 ∈ C∞
0

(
Ω
)
, χ̃1 = 1 on suppχ1.

By Lemma 6.3 (iii) we obtain

② ≤ C

∫

R

∥∥ψA

(
h2

kDt

)
1I[0,T ]χ̃1θ1

(
h2

kPD

)
ũk(t)

∥∥2

L2(Ω)
dt.

Since the operator ψA

(
h2

kDt

)
is uniformly L2 bounded we obtain by the energy estimate

② ≤ C′

∫ T

0

‖ũk(t)‖2
L2 dt = O(1).

It follows from (6.10), (6.11), (6.12) that

(6.13)

∫

R

‖II‖2
L2 dt ≤ C

R

(
h−1

k + O(1)
)
.

Using (6.8) we deduce that

(6.14)

∫

R

∥∥(Id − ΦR

(
h2∆

))
ψA

(
h2Dt

)
1I[0,T ]χ1wk(t)

∥∥2

L2(Rd)
dt ≤ C

R

(
1 + O

(
hk

))
.

Taking R sufficiently large and using (6.7) we obtain

∫

R

∥∥ΦR

(
h2∆

)
ψA

(
h2Dt

)
1I[0,T ]χ1wk(t)

∥∥2

L2
dt ≥ 1

3
,

which is (6.2). The proof of Proposition 6.1 is complete.

7. The measure µ vanishes in the incoming set

We pursue here our reasoning by contradiction in proving that the measure µ vanishes

in the incoming set. Let us state the main result of this section.

Let P̃ be the operator defined by (4.3) satisfying the conditions (4.5).

Theorem 7.1. Let m0 =
(
x0, t0, ξ0, τ0

)
∈ T ∗Rd+1 be such ξ0 6= 0, τ0 + p̃

(
x0, ξ0

)
= 0,

|x0| ≥ 3R0,

d∑

j,k=1

ãjk
(
x0

)
x0jξ0k ≤ −3δ |x0| |ξ0| (for some δ > 0 small enough). Then

m0 /∈ suppµ

The rest of this section will be devoted to the proof of this result. Il will be a consequence

of an estimate which will be proved in constructing an appropriate escape function and

will require several Lemmas.

14



Lemma 7.2. Let us set e0(x, ξ) =

d∑

j,k=1

ãjk(x)xj

ξk

〈 ξ 〉 . Then there exist positive constants

R, C0, C1 such that

Hp̃e0(x, ξ) ≥ C0 |ξ| − C1, ∀(x, ξ) ∈ T ∗
R

d, |x| ≥ R

where Hp̃ denotes the Hamiltonian field of P̃ .

Proof

It is an easy computation which uses the conditions (ii) and (iii) in (4.5).

Lemma 7.3. Under condition (v) in (4.5) there exist e ∈ S
(
〈x 〉 , g

)
and positive constants

C, C′, R′ such that

(a) Hp̃e(x, ξ) ≥ C |ξ| − C′, ∀(x, ξ) ∈ T ∗
R

d,

(b) e(x, ξ) = e0(x, ξ) if |x| ≥ R′.

Proof See Doi [D3].

The symbol e is an escape function. However it is not adapted to our situation because

its Poisson bracket with our potentiel Ṽ (see (4.5) (iv)) belongs to S
( 〈 x 〉2

〈 ξ 〉 , g
)

so does

not correspond to an operator bounded in L2 which will be required later on. We shall

describe below a construction by Doi [D3] which will take care of this problem.

Let ψ ∈ C∞(R) be such that 0 ≤ ψ ≤ 1 and

(7.1) ψ(t) = 1 if t ≥ 2ε, suppψ ⊂
[
ε,+∞

[
, ψ′(t) ≥ 0 ∀t ∈ R,

where ε > 0 is a small constant choosen later on.

We set

(7.2)

{
ψ0(t) = 1 − ψ(t) − ψ(−t) = 1 − ψ(|t|)
ψ1(t) = ψ(−t) − ψ(t) = −(sgn t)ψ

(
|t|
)
.

Then ψj ∈ C∞(R), j = 1, 2, and we have

(7.3)

{
ψ′

0(t) = −(sgn t)ψ′
(
|t|
)

ψ′
1(t) = −ψ′

(
|t|
)
.

Let χ ∈ C∞(R) be such that 0 ≤ χ ≤ 1 and

(7.4) χ(t) = 1 if t ≤ ρ

2
, χ(t) = 0 if t ≥ ρ, ρ > 0 small.

With e defined in Lemma 7.3 we set

(7.5) −λ =
( e

〈x 〉ψ0

( e

〈x 〉
)
−
(
M0 − 〈 e 〉−ν

)
ψ1

( e

〈x 〉
))
χ
( 〈x 〉√

p̃(x, ξ)

)

where ν > 0 is an arbitrary small constant and M0 is a sufficiently large constant.
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Lemma 7.4 ( Doi [D3], Lemma 8.3).

(7.6)

(i)λ ∈ S(1, g)

(ii)
[
P̃ ,Opw(λ)

]
− 1

i

(
Hp̃λ

)w ∈ OpwS(1, g)

(iii) There exists M0 > 0 such that for any ν > 0 there exist C > 0, C′ > 0

such that −Hp̃λ(x, ξ) ≥ C 〈 x 〉−1−ν ( |x| + |ξ|
)
− C′, ∀(x, ξ) ∈ T ∗

R
d.

We must now localize this escape function near the incoming set.

We shall need the following Lemma. Let us set

(7.7) a(x, ξ) =

d∑

j,k=1

ãjk(x)xjξk

Let ξ0 6= 0 be defined in Theorem 8.1.

Lemma 7.5. There exists a symbol Φ ∈ S(1, g) such that 0 ≤ Φ ≤ 1 and

(i) supp Φ ⊂
{
(x, ξ) ∈ T ∗

R
d : |x| ≥ 2R0, a(x, ξ) ≤ −δ

2
|x| |ξ| , |ξ| ≥ |ξ0|

4

}
,

(ii)
{
(x, ξ) : |x| ≥ 5

2
R0, a(x, ξ) ≤ −δ |x| |ξ| , |ξ| ≥ |ξ0|

2

}
⊂
{
(x, ξ) : Φ(x, ξ) = 1

}
,

(iii) Φ(x, hξ) = Φ(x, ξ) when |hξ| ≥ |ξ0|
2

and 0 < h ≤ 1,

(iv)Hp̃Φ(x, ξ) ≤ 0 on the support of λ,

(v)λ(x, ξ) ≥ 0 on the support of Φ.

Proof

Let ϕj , j = 1, 2, 3, be such ϕj ∈ C∞(R), 0 ≤ ϕj ≤ 1 and

(7.8)





ϕ1(s) = 0 if s ≤ R0, ϕ1(s) = 1 if s ≥ 5

2
R0, ϕ1 increasing,

ϕ2(s) = 0 if s ≥ −1

2
δ, ϕ2(s) = 1 if s ≤ −δ, ϕ2 decreasing,

ϕ3(s) = 0 if s ≤ 1

4
|ξ0| , ϕ3(s) = 1 if s ≥ 1

2
|ξ0| .

Let us set

(7.9) Φ(x, ξ) = ϕ1

(
|x|
)
ϕ2

(
a(x, ξ)

|x| |ξ|

)
ϕ3

(
|ξ|
)
.
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Then (i) and (ii) follow immediatly. Now if |hξ| ≥ |ξ0|
2

then |ξ| ≥ |ξ0|
2h

≥ |ξ0|
2

so

ϕ3

(
h |ξ|

)
= ϕ3

(
ξ
)

= 1 and (iii) follows.

Let us prove (iv). We have

(7.10)





Hp̃Φ(x, ξ) = ① + ② + ③,

① = ϕ′
1

(
|x|
)
Hp̃ |x|ϕ2

(
a

|x| |ξ|

)
ϕ3

(
|ξ|
)
,

② = ϕ1

(
|x|
)
ϕ′

2

(
a

|x| |ξ|

)
Hp̃

(
a

|x| |ξ|

)
ϕ3

(
|ξ|
)
,

③ = ϕ1

(
|x|
)
ϕ2

(
a

|x| |ξ|

)
ϕ′

3

(
|ξ|
)
Hp̃ |ξ| .

According to (7.4) and (7.5) we have p̃(x, ξ) ≥ 1

ρ2 〈x 〉2 ≥ 1

ρ2 on the support of λ. Therefore

we can choose ρ so small that |ξ| > 1
2
|ξ0| on the support of λ. It follows that ③ = 0

on this set. Now an easy computation shows that Hp̃ |x| =
2a(x, ξ)

|x| when |x| ≥ R0 which

implies that

① = 2ϕ′
1

(
|x|
) a
|x|ϕ2

(
a

|x| |ξ|

)
ϕ3

(
|ξ|
)
.

On the support of ϕ2 we have a ≤ −1
2
δ |x| |ξ|. Since ϕ′

1 ≥ 0, ϕ2 ≥ 0, ϕ3 ≥ 0, we conclude

that

(7.11) ① ≤ 0.

Let us look to ②. First of all we have on the support of Φ

(7.12) Hp̃

(
a

|x| |ξ|

)
=

1

|x| |ξ|Hp̃a+ a Hp̃

(
1

|x| |ξ|

)
.

Since we have (see (4.5))
(
ãjk(x)

)
≥ C Id,

∣∣∇x ã
jk(x)

∣∣ = o
(
|x|−1 )

as |x| → +∞ and

|x| ≥ R0 on the support of Φ, taking R0 large enough we obtain by an easy computation

(7.13) Hp̃a(x, ξ) ≥ C0 |ξ|2 on supp Φ.

We also obtain

(7.14) Hp̃

(
1

|x| |ξ|

)
= −2

a(x, ξ)

|ξ| |x|3
+ o

(
1

|x|2

)
as |x| → +∞.
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It follows from (7.12), (7.13), (7.14) and |a| ≤ C |x| |ξ| that

Hp̃

(
a

|x| |ξ|

)
≥ C0

|ξ|
|x| − 2

a2(x, ξ)

|ξ| |x|3
+ o(1)

|ξ|
|x| .

On the support of ϕ′
2

(
a

|x| |ξ|

)
we have, by (8.8), −δ ≤ a

|x| |ξ| ≤ −1
2
δ. It follows that

|a| ≤ δ |x| |ξ| so

−2
a2

|ξ| |x|3
≥ −δ2 |ξ|

|x| .

Moreover on the support of ϕ1

(
|x|
)

we have |x| ≥ R0. So taking R0 large enough and δ

small, we obtain

Hp̃

(
a

|x| |ξ|

)
≥ C0

2

|ξ|
|x| .

Since, by (7.5), we have ϕ′
2

(
a

|x| |ξ|

)
≤ 0, we conclude that

(7.15) ② ≤ 0.

The claim (iv) in Lemma 7.5 follows then from (7.11), (7.15) and (7.10) since ③ = 0 on

supp λ.

Finally let us look to the claim (v).

On the support of Φ we have |x| ≥ R0, |ξ| ≥
1
4
|ξ0| and a(x, ξ) ≤ −1

2
δ |x| |ξ|. It follows

that 〈 x 〉 ≤
√

2 |x|, 〈 ξ 〉 ≤ C |ξ| and a(x, ξ) ≤ −C′δ 〈x 〉 〈 ξ 〉. Moreover since |x| ≥ R0,

taking R0 large enough, we deduce from Lemma 7.3 that e(x, ξ) = e0(x, ξ) =
a(x, ξ)
〈 ξ 〉 by

(7.7). It follows that
e

〈x 〉 ≤ −C′δ which implies that
|e|
〈x 〉 ≥ C′δ. Using (7.1), (7.2) and

taking ε ≪ δ we see that ψ0

(
e

〈x 〉

)
= 0 and ψ1

(
e

〈x 〉

)
≥ 0. It follows from (7.5) that

−λ = −
(
M0 − 〈 e 〉−ν )

ψ1

(
e

〈x 〉

)
χ ≤ 0.

The proof of Lemma 7.5 is complete.

Corollary 7.6. Let λ1 = Φ2λ where λ has been defined in Lemma 7.4. Then

(7.16)

(i)λ1 ∈ S(1, g),

(ii)
[
P̃ , λw

1

]
− 1

i
Opw

(
Hp̃λ1

)
∈ OpwS(1, g),

(iii) There exist two positive constants C, C′ such that

−Hp̃λ1 ≥ C 〈x 〉−1−ν
Φ2(x, ξ)

(
|x| + |ξ|

)
− C′Φ2(x, ξ).
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Proof

(i), (ii) follow from Lemma 7.4 and the fact that Φ2 ∈ S(1, g). Let us look to (iii). We

have

−Hp̃λ1 =
(
−Hp̃λ

)
Φ2 − 2λΦHp̃Φ.

By Lemma 7.5 we have Hp̃Φ ≤ 0 on supp λ and λ ≥ 0 on supp Φ. It follows that

−2λΦHp̃Φ ≥ 0. Thus (iii) follows from (7.6).

Let now
(
x0 , ξ0

)
be given as in Theorem 7.1. We set

V(x0,ξ0) =
{
(x, ξ) ∈ T ∗

R
d : |x− x0| + |ξ − ξ0| ≤ ε0

}
.

Since |x0| ≥ 3R0, a
(
x0, ξ0

)
≤ −3δ |x0| |ξ0| we can take ε0 so small that we will have

V(x0,ξ0) ⊂
{

(x, ξ) : |x| ≥ 5

2
R0, a(x, ξ) ≤ −δ |x| |ξ| , |ξ| ≥ |ξ0|

2

}
.

It follows from Lemma 7.5 (ii) that

(7.17) V(x0,ξ0) ⊂
{
(x, ξ) ∈ T ∗

R
d : Φ(x, ξ) = 1

}
.

Let b ∈ C∞
0

(
V(x0,ξ0)

)
be such that b

(
x0, ξ0

)
= 1. It follows from (7.17) that one can find

C > 0 such that

(7.18) |b(x, ξ)| ≤ CΦ(x, ξ), ∀(x, ξ) ∈ T ∗
R

d.

Therefore we will have |b(x, hξ)| ≤ CΦ(x, hξ) for all (x, ξ) in T ∗Rd and all h ∈
]
0, 1
]
. Now

on the support of b(x, hξ) we have h |ξ| ≥ |ξ0|
2

so it follows from Lemma 7.5(iii) that

Φ(x, hξ) = Φ(x, ξ). Therefore

(7.19)

{
There exists C > 0 such that

|b(x, hξ)| ≤ CΦ(x, ξ), ∀(x, ξ) ∈ T ∗
R

d, ∀h ∈
]
0, 1
]
.

We deduce from Corollary 7.6 (iii) that

(7.20) −Hp̃λ1 ≥ C 〈x 〉1−ν |b(x, hξ)|2 |ξ| − C′, ∀(x, ξ) ∈ T ∗
R

d, ∀h ∈
]
0, 1
]

Let now m0 =
(
x0, t0, ξ0, τ0

)
be as in Theorem 7.1.

Let ϕ0 ∈ C∞
0 (R), ψ ∈ C∞

0 (R), ϕ1 ∈ C∞
0

(
Rd
)

be such that

(7.21)





ϕ0

(
t0
)
6= 0, ψ

(
τ0
)
6= 0,

ϕ1(x) = 1 if |x| ≤ 4

3
R0, suppϕ1 ⊂

{
x : |x| ≤ 3

2
R0

}
.
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Let

(7.22) b1(x, ξ) = b(x, ξ) |ξ|
1
2 .

Then b1 ∈ C∞
0

(
B
((
x0, ξ0

)
, ε0
))

and b1
(
x0, ξ0

)
6= 0.

Finally let us recall for convenience that in (3.6) and (5.1) we have set

(7.23)





Wk(t) = 1I[0,T ]wk(t), wk(t) = 1IΩwk(t),

wk(t) = h
−

1
2

k vk(t), vk(t) = θ1
(
h2

kPD

)
ũk(t).

Lemma 7.7. We have∫

R

∥∥ϕ0(t)ψ
(
h2

kDt

)
b1
(
x, hkDx

)(
1 − ϕ1(x)

)
Wk(t)

∥∥2

L2

(
Rd

) dt = o(1) as k → +∞

Proof

With λ1 defined in Corollary 7.6 we set

N(t) =
((
M −

(
1 − ϕ1

)
λw

1

(
1 − ϕ1

))
vk(t), vk(t)

)
L2(Ω)

,

where M is a large constant and λw
1 the Weyl quantization of the symbol λ1 ∈ S(1, g).

Then there exists C > 0 such that for k ≥ 1,

(7.24) ‖vk(t)‖2
L2(Ω) ≤ C N(t).

Setting Λ = M −
(
1 − ϕ1

)
λw

1

(
1 − ϕ1

)
and (., .) = (., .)L2(Ω) we can write

d

dt
N(t) =

(
Λ

d

dt
vk(t), vk(t)

)
+

(
Λvk(t),

d

dt
vk(t)

)

Since
dvk

dt
= iPDvk and PD is self adjoint in L2(Ω) we have

d

dt
N(t) = −i

([
PD,Λ

]
vk(t), vk(t)

)

Now on the support of 1 − ϕ1 we have |x| ≥ 4
3
R0. It follows from (4.5)(i) that

[
PD,Λ

]
=

[
P̃ ,Λ

]
. Therefore we have,

(7.25)





d

dt
N(t) = ① + ② + ③ where,

① = −i
([
P̃ , ϕ1

]
λw

1

(
1 − ϕ1

)
vk(t), vk(t)

)
,

② = i
([
P̃ , λw

1

](
1 − ϕ1

)
vk(t),

(
1 − ϕ1

)
vk(t)

)
,

③ = −
((

1 − ϕ1

)
λw

1

[
P̃ , ϕ1

]
vk(t), vk(t)

)
.
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Since λ1 = λΦ2, Lemma 7.5 shows that the support of λ1 is contained in
{
x : |x| ≥ 2R0

}
.

By (7.21) the Poisson bracket
(
p̃, ϕ1

}
has its support in

{
x :

4
3
R0 ≤ |x| ≤ 3

2
R0

}
. It

follows that
{
p̃, ϕ1

}
λ1 ≡ 0 from which we deduce that

[
P̃ , ϕ1

]
λw

1 , is a zeroth order

operator. It follows that

(7.26)
∣∣ ①

∣∣+
∣∣ ③

∣∣ ≤ C ‖vk(t)‖2
L2(Ω) .

Using the sharp Garding inequality, (ii) in Corollary 7.6 and (7.20) we see that

② = −
(
−
(
Hp̃λ1

)w(
1 − ϕ1

)
vk(t),

(
1 − ϕ1

)
vk(t)

)
+ O

(
‖vk(t)‖2

L2(Ω)

)

(7.27) ② ≤ −
∥∥∥ 〈 x 〉−

1+ν
2 b

(
x, hkDx

)
(−∆)

1
4
(
1 − ϕ1

)
vk(t)

∥∥∥
2

L2(Rd)
+ C ‖vk(t)‖2

L2(Ω) .

It follows from (7.24), (7.25), (7.26), (7.27) and (7.22) that

(7.28) N(t)+

∫ t

0

∥∥∥ 〈 x 〉−
1+ν
2 b1

(
x, hkDx

)(
1−ϕ1

)
wk(t)

∥∥∥
2

L2(Rd)
dt ≤ C

∫ t

0

N(s)ds+N(0).

Using the Gronwall inequality we see that N(t) ≤ N(0)eCT .

Now N(0) ≤ C ‖vk(0)‖2
L2(Ω) ≤ C′

∥∥ũ0
k

∥∥2

L2(Ω)
. Thus using again (7.28) we obtain

(7.29)

∫ T

0

∥∥b1
(
x, hkDx

)(
1 − ϕ1

)
wk(t)

∥∥2

L2(Ω)
dt = 0(1)

by (3.7), since 〈x 〉−
1+ν
2 ≈ 1 on the support of b1

(
x, hkDx

)
.

Now since ϕ0(t)ψ
(
h2

kDt

)
is bounded in L2(R) Lemma 7.7 follows from (7.29) and (7.23).

End of the proof of Theorem 7.1

Applying Lemma 7.7 to the subsequence
(
Wσ(k)

)
and using Proposition 5.1 we see that

〈µ, a 〉 = 0 with

a(x, t, ξ, τ) =
[(

1 − ϕ1(x)
)
ϕ0(t)ψ(τ)b1(x, ξ)

]2

Since by (7.21), (7.22) we have a
(
x0, t0, ξ0, τ0

)
6= 0 we conclude that m0 /∈ suppµ.

The proof of Theorem 7.1 is thus complete.

8. End of the proofs of Theorem 3.1 and 2.1

8.1 End of the proof of Theorem 3.1
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According to Corollary 6.2 we will reach to a contradiction if we show that the measure

µ vanishes identically. Recall that

suppµ ⊂ Σ =
{
(x, t, ξ, τ) ∈ T ∗

R
d+1, x ∈ Ω, t ∈

[
0, T

]
, τ + p(x, ξ) = 0

}
.

Let m = (x, t, ξ, τ) ∈ Σ and a = π(m) ∈ Σb. The assumption (2.6) tell us that we can find

s0 ∈ R such that for all s ≤ s0 we have Γ(s, a) ⊂ T ∗M \ {0}, Γ(s, a) =
(
x(s), t, ξ(s), τ

)

where
(
x(s), ξ(s)

)
is the usual flow of p and lim

s→−∞
|x(s)| = +∞.

Then we have the following Lemma.

Lemma 8.1. One can find s1 ≤ s0 such that with the notations of Theorem 7.1

(i)
∣∣x
(
s1
)∣∣ ≥ 3R0,

(ii)
d∑

j,k=1

ãjk
(
x
(
s1
))
xj

(
s1
)
ξk
(
s1
)
≤ −3δ

∣∣x
(
s1
)∣∣ ∣∣ξ

(
s1
)∣∣ .

Let us assume this Lemma for a moment.

Since τ + p̃
(
x
(
s1
)
, ξ
(
s1
))

= τ + p
(
x
(
s1
)
, ξ
(
s1
))

= 0 (because Γ(s, a) ⊂ Σb) we deduce

from Theorem 7.1 that
(
x
(
s1
)
, t, ξ

(
s1
)
, τ
)

= Γ
(
s1, a

)
= π−1

(
Γ
(
s1, a

))
/∈ suppµ (π is the

identity on T ∗R
d+1
M ). By Theorem 5.3 we have π−1

(
Γ(0, a)

)
= π−1(a) ∩ suppµ = ∅.

Since m ∈ π−1(a) it follows that m /∈ suppµ. Therefore suppµ = ∅ which contradicts

Corollary 6.2 and proves Theorem 3.1.

Proof of Lemma 8.1

Since lim
s→−∞

|x(s)| = +∞ we can find s̃0 such that

(8.1) |x(s)| ≥ 3R0 for s ≤ s̃0.

Let us set for s ∈
]
−∞, s̃0

]

(8.2)





F (s) = F1(s) + F2(s),

F1(s) =
d∑

j,k=1

ajk
(
x(s)

)
xj(s)ξk(s),

F2(s) = 3δ |x(s)| |ξ(s)| .

Let us remark that since |x(s)| ≥ 3R0 we have ajk
(
x(s)

)
= ãjk

(
x(s)

)
.

We have

(8.3)





ẋj(s) = 2
d∑

k=1

ajk
(
x(s)

)
ξk(s)

ξ̇j(s) = −
d∑

p,q=1

∂apq

∂xj

(
x(s)

)
ξp(s)ξq(s)
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and by assumption (2.5),
∣∣∇xa

j(x)
∣∣ = o

(
1
|x|

)
as |x| → +∞.

Using (8.1), (8.3), (2.5), the ellipticity condition (2.3) and taking R0 large enough we

find by an easy computation that

(8.4)
d

ds
F1(s) ≥ C |ξ(s)|2 , s ∈

]
−∞, s̃0

]

for some fixed constant C > 0.

Using again (8.3) and the same arguments we see easily that

(8.5)
d

ds
F2(s) ≤ C′δ |ξ(s)|2 .

It follows from (8.4), (8.5) and (8.2), taking δ small enough, that for s ∈
]
− ∞, s̃0

]
we

have

d

ds
F (s) ≥ C0 |ξ(s)|2 ≥ C1p

(
x(s), ξ(s)

)
= C1p

(
x
(
s̃0
)
, ξ
(
s̃0
))

≥ C2

∣∣ξ
(
s̃0
)∣∣2 .

Integrating this inequality between s and s̃0 we obtain

F (s) ≤ F
(
s̃0
)

+ C2

∣∣ξ
(
s̃0
)∣∣2 (s− s̃0

)
.

Since the right hand side tends to −∞ when s goes to −∞ we can find s1 ≤ s̃0 such that

F (s) ≤ 0 when s ≤ s1.

8.2 End of the proof of Theorem 2.1

We shall need the following Lemma.

Lemma 8.2. Let θ ∈ C∞
0 (R), χ0 ∈ C∞

0

(
Ω
)
. There exists C > 0 such that

∥∥∥
[
θ
(
h2PD

)
, χ0P

1
4

D

]
v
∥∥∥

L2(Ω)
≤ C h

1
2 ‖ v ‖L2(Ω)

for every h ∈
]
0, 1
]

and v ∈ L2(Ω).

Proof

See section 9.3

Now it is classical that one can find ψ, θ in C∞
0 (R) such that





suppψ ⊂
{
t : |t| ≤ 1

}
, supp θ ⊂

{
t :

1

2
≤ |t| ≤ 2

}
and

ψ(t) +
+∞∑

p=0

θ
(
2−pt

)
= 1 for all t ∈ R.
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By the functionnel calculus we see easily that

(8.6)





ψ
(
PD

)
+

+∞∑

p=0

θ
(
2−pPD

)
= Id and

‖ v ‖2
L2(Ω) ≤ C

(
∥∥ψ
(
PD

)
v
∥∥2

L2(Ω)
+

+∞∑

p=0

∥∥θ
(
2−pPD

)
v
∥∥2

L2(Ω)

)

Let u(t) = eitPDu0. Using (8.6) we see that

(8.7)





∥∥∥χ0P

1
4

Du(t)
∥∥∥

2

L2(Ω)
≤ C

(
① + ②

)
where

① =
∥∥∥ψ
(
PD

)
χ0P

1
4

Du(t)
∥∥∥

2

L2(Ω)

② =

+∞∑

p=0

∥∥∥θ
(
2−pPD

)
χ0P

1
4

Du(t)
∥∥∥

2

L2(Ω)

We have

① ≤ 2
(∥∥∥
[
ψ
(
PD

)
, χ0P

1
4

D

]
u(t)

∥∥∥
2

L2
+
∥∥∥χ0ψ

(
PD

)
P

1
4

D u(t)
∥∥∥

2

L2

)

Using Lemma 8.2 with h = 1, the fact that the operator ψ
(
PD

)
P

1
4

D is L2(Ω) bounded and

the energy estimate we deduce that

(8.8) ① ≤ C‖ u0 ‖2
L2(Ω).

On the other hand we have

(8.9)





② ≤ C
(

③ + ④
)

③ =
+∞∑

p=0

∥∥∥
[
θ
(
2−pPD

)
, χ0P

1
4

D

]
u(t)

∥∥∥
2

L2(Ω)

④ =

+∞∑

p=0

∥∥∥χ0P

1
4

D θ
(
2−pPD

)
u(t)

∥∥∥
2

L2(Ω)

Using Lemma 8.2 we can write

③ ≤ C

(
+∞∑

p=0

2−p

)
‖ u(t) ‖2

L2(Ω),
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so by the energy estimate

(8.10) ③ ≤ C ‖u0‖2
L2(Ω) .

To handle the term ④ we use the Theorem 3.1. Let θ̃ ∈ C∞
0 (R) be such that

supp θ̃ ⊂
{
t :

1
3
≤ |t| ≤ 3

}
, θ̃(t) = 1 on the support of θ and 0 ≤ θ̃ ≤ 1. Then

θ
(
2−pPD

)
u(t) = θ

(
2−pPD

)
eitPD θ̃

(
2−pPD

)
u0.

It follows from Theorem 3.1 that

∫ T

0

④dt ≤ C

+∞∑

p=0

∥∥∥θ̃
(
2−pPD

)
u0

∥∥∥
2

L2(Ω)

Now we have

+∞∑

p=0

[
θ̃
(
2−pt

)]2
≤
(

+∞∑

p=0

θ̃
(
2−pt

)
)2

≤M0, for all t ∈ R

It follows that the operator
+∞∑

p=0

[
θ̃
(
2−pPD

)]2
is L2(Ω) bounded, therefore

(8.11)

∫ T

0

④ dt ≤ C ‖u0‖2
L2(Ω) .

It follows from (8.7), (8.8), (8.9), (8.10) and (8.11) that

∫ T

0

∥∥∥χ0P

1
4

D eitPDu0

∥∥∥
2

L2(Ω)
dt ≤ C ‖u0‖2

L2(Ω)

which is the claim in Theorem 2.1. The proof is complete.

9. Appendix

9.1 The geometrical framework

We recall here the definition of the generalized bicharacteristic flow in the sense of

Melrose and Sjöstrand. For this purpose we follow Hörmander [Hö].

Let M = Ω × Rt. We set T ∗
b M = T ∗M \ {0} ∪ T ∗∂M \ {0}. We have a natural

restriction mapπ : T ∗R
d+1

|M
→ T ∗

b M (which will be describe more precisely in local

coordinates below) which is the identity on T ∗R
d+1
|M \ {0}.

With p defined in (2.2) we introduce the characteristic set

Σ =
{
(x, t, ξ, τ) ∈ T ∗

R
d+1, x ∈ Ω, t ∈

[
0, T

]
, τ + p(x, ξ) = 0

}
,

and we set Σb = π(Σ).
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Definition 9.1. Let ζ ∈ T ∗∂M \ {0}. We shall say that

(i) ζ is elliptic (or ζ ∈ E) iff ζ /∈ Σb

(ii) ζ is hyperbolic (or ζ ∈ H) iff #
{
π−1(ζ) ∩ Σ

}
= 2

(iii) ζ is glancing (or ζ ∈ G iff #
{
π−1(ζ) ∩ Σ

}
= 1.

Let us describe π and these sets in local coordinates. As we said before, π is the identity

map on T ∗R
d+1
|M \ {0}.

Near any point of ∂M we can use the geodesical coordinates where M is given by
{(
x1, x

′, t
)
∈ R × R

d−1 × R : x1 > 0
}
,

∂M is given by
{(
x1, x

′, t
)

: x1 = 0
}

and τ+p(x, ξ) is transformed to ξ21 +r
(
x1, x

′, ξ′
)
+τ .

In these coordinates if ρ ∈ T ∗R
d+1
|∂M \ {0} then ρ =

(
0, x′, t, ξ1, ξ

′, τ
)

and π(ρ) =(
x′, t, ξ′, τ

)
∈ T ∗∂M \ {0}.

Now let ζ =
(
x′, t, ξ′, τ

)
∈ T ∗∂M \ {0}. Then

(9.1)





ζ ∈ E ⇐⇒ r
(
0, x′, ξ′

)
+ τ > 0,

ζ ∈ H ⇐⇒ r
(
0, x′, ξ′

)
+ τ < 0,

ζ ∈ G ⇐⇒ r
(
0, x′, ξ′

)
+ τ = 0.

When ζ ∈ H then π−1(ζ) ∩ Σ =
{(

0, x′, t, ξ±1 , ξ
′, τ
)}

where

(9.2) ξ±1 = ±
(
−
(
r
(
0, x′, ξ′

)
+ τ
))

1
2
.

When ζ ∈ G then π−1(ζ) ∩ Σ =
{(

0, x′, t, 0, ξ′, τ
)}

.

For the purpose of the proofs it is important to decompose the set G of glancing points

into several subsets. The following definition is given in local coordinates but could be

written in an intrinsic way (see [H]). We shall set

(9.3) r0
(
x′, ξ′

)
= r
(
0, x′, ξ′

)

and Hr0
will denote the Hamilton field of r0 namely Hr0

=
∂r0

∂ξ′
∂

∂x′
− ∂r0

∂x′
∂

∂ξ′
·

Definition 9.2. Let ζ =
(
x′, t, ξ′, τ

)
∈ G. We shall say that

(i) ζ is diffractive (or ζ ∈ Gd) iff
∂r

∂x1

(
0, x′, ξ′

)
< 0,

(ii) ζ is gliding (or ζ ∈ Gg) iff
∂r

∂x1

(
0, x′, ξ′

)
> 0, and we set G2 = Gd ∪ Gg,

(iii) ζ belongs to Gk, k ≥ 3 , iff

Hj
r0

(
∂r

∂x1 |x1=0

)
(ζ) = 0, 0 ≤ j < k − 2, Hk−2

r0

(
∂r

∂x1 |x1=0

)
(ζ) 6= 0.

We can now give the meaning of the assumption made in (2.7).
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Definition 9.3. We shall say that the bicharacteristics have no contact of infinite order

with the boundary if

G =
+∞⋃

k=2

Gk.

We are going now to make a brief description of the generalized bicharacteristic flow

and we refer to [M-S] or [Hö] for more details.

First of all we introduce some notations.

We shall denote by γ(s) =
(
x(s), ξ(s)

)
the usual bicharacteristic of p in T ∗Ω defined by

(
ẋ(s), ξ̇(s)

)
=
(∂p
∂ξ

(
γ(s)

)
,−∂p

∂x

(
γ(s)

))
.

We shall denote by γg(s) =
(
x′g(x), ξ

′
g(s)

)
the gliding ray in T ∗∂Ω defined in the geodesic

coordinates by the equations

(
ẋ ′

g(s), ξ̇
′
g(s)

)
=
(∂r0
∂ξ′
(
γg(s)

)
,−∂r0

∂x′
(
γg(s)

))

where r0 has been introduced in (9.3).

The generalized flow lives in Σb ⊂ T ∗
b M and for a ∈ Σb is denoted by Γ(s, a). Since Σb

is the disjoint union of Σb ∩ T ∗M , Σb ∩H, Σb ∩ Gd, Σb ∩ Gg and Σb ∩
( ⋃

k≥3

Gk

)
we shall

consider separatly the case where a belongs to each set. Moreover each description of

Γ(s, a) holds for small |s|.

Case 1 : a ∈ Σb ∩ T ∗M

Here a = (x, t, ξ, τ) where x ∈ Ω, t ∈
[
0, T

]
, τ + p(x, ξ) = 0. Then for small |s| we have

Γ(s, a) =
(
x(s), t, ξ(s), τ

)
⊂ T ∗M

where
(
x(s), ξ(s)

)
is the bicharacteristic of p starting from the point (x, ξ).

Case 2 : a ∈ Σb ∩H

In the geodesic coordinates we have a =
(
x′, t, ξ′, τ

)
and the equation ξ21+r

(
0, x′, ξ′

)
+τ = 0

has two distinct roots ξ+1 , ξ−1 described in (9.2). For s > 0 (resp. s < 0) let γ+(s) =(
x+(s), ξ+(s)

)
(resp. γ−(s) =

(
x−(s), ξ−(s)

)
be the bicharacteristic of p starting for s = 0

at the point
(
0, x′, ξ+1 , ξ

′
)

(resp.
(
0, x′, ξ−1 , ξ

′
)
). They are contained in T ∗Ω for small

|s| 6= 0. Then Γ(0, a) = a and

Γ(s, a) =

{(
x+(s), t, ξ+(s), τ

)
, 0 < s < ε,

(
x−(s), t, ξ−(s), τ

)
, −ε < s < 0.
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Here Γ(s, a) ⊂ T ∗M for s 6= 0.

Case 3 : a ∈ Σb ∩ Gd

Here a =
(
x′, t, ξ′, τ

)
and the equation ξ21 + r

(
0, x′, ξ′

)
+ τ = 0 has a double root ξ1 = 0.

Let γ(s) =
(
x(s), ξ(s)

)
be the flow of p starting when s = 0 at the point

(
0, x′, ξ1 = 0, ξ′

)
.

Then we have

Γ(s, a) =
(
x(s), t, ξ(s), τ

)
⊂ T ∗M, 0 < |s| < ε.

Case 4 : a ∈ Σb ∩ Gg

As above a =
(
x′, t, ξ′, τ

)
and ξ1 = 0 is a double root. Let γg(s) =

(
x′g(s), ξ

′
g(s)

)
be the

gliding ray starting when s = 0 at the point
(
x′, ξ′

)
. Then we have

Γ(s, a) =
(
x′g(s), t, ξ

′
g(s), τ

)
⊂ T ∗∂M, |s| < ε.

Case 5 : a ∈ Σb ∩
(

+∞⋃

k=3

Gk

)

Let a =
(
x′, t, ξ′, τ

)
. Let γg(s) =

(
x′g(s), ξ

′
g(s)

)
be the gliding ray starting when s = 0

at the point
(
x′, ξ′

)
. Then (see Theorem 24.3.9 in [Hö]) one can find ε > 0 such that with

I =
]
0, ε
[

we have either γg(s) ∈ Gg, ∀s ∈ I and then Γ(s, a) =
(
x′g(s), t, ξ

′
g(s), τ

)
⊂ T ∗∂M ,

∀s ∈ I, or γg(s) ∈ Gd, ∀s ∈ I and then Γ(s, a) =
(
x(s), t, ξ(s), τ

)
⊂ T ∗M , ∀s ∈ I, where(

x(s), ξ(s)
)

is the bicharacteristic of p starting when s = 0 at the point
(
0, x′, ξ1 = 0, ξ′

)
.

The same discussion is independently valid for −ε < s < 0.

Remark 9.4. Let a ∈ Σb and Γ(t, a) be the generalized bicharacteristing starting for t = 0

at the point a. Then the above discussion shows that one can find ε > 0 such that for

0 < |t| ≤ ε we have Γ(t, a) ⊂ T ∗M ∪Gg. Let us note (see [M-S]) that the maps s 7→ Γ(s, a)

and a 7→ Γ(s, a) are continuous, the later when T ∗
b M is endowed with the topologie induced

by the projection π. Moreover we have the usual relation Γ(t+ s, a) = Γ
(
t,Γ(s, a)

)
for s, t

in R.

9.2 Proofs of Theorem 5.2 and Theorem 5.3

a) Proof of Theorem 5.2

According to (5.1), (5.2) it is obvious that

suppµ ⊂
{
(x, t, ξ, τ) ∈ T ∗

R
d+1 : x ∈ Ω and t ∈

[
0, T

]}

Therefore it remains to show that if m0 =
(
x0, t0, ξ0, τ0

)
with x0 ∈ Ω, t0 ∈

[
0, T

]
, but

τ0 + p
(
x0, ξ0

)
6= 0 then m0 /∈ suppµ.
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Case 1 : assume x0 ∈ Ω

Let ε > 0 be such that B
(
x0, ε

)
⊂ Ω. Let ϕ ∈ C∞

0

(
B
(
x0, ε

))
, ϕ = 1 on B

(
x0,

ε
2

)
and

ϕ̃ ∈ C∞
0 (Ω), ϕ̃ = 1 on suppϕ. Let a ∈ C∞

0

(
Rd

x × Rd
ξ

)
such that πx supp a ⊂ B

(
x0,

ε
2

)
and

χ ∈ C∞
0 (Rt × Rτ ). Recall that we have set Wk = 1I[0,T ]1IΩwk with wk = h

−
1
2

k θ
(
h2

kPD

)
ũk

and that
(
wk

)
is a bounded sequence in L2

([
0, τ
]
, L2

loc

(
Rd
))

(see Proposition 4.1). Now

we set

(9.4) Ik =
(
a
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕh2

k

(
Dt + P

(
x,Dx

))
Wk, ϕ̃Wk

)
L2(Rd+1)

We have h2
k

(
Dt + P

(
x,Dx

))
= h2

kDt + P2

(
x, hkDx

)
+ hkP1

(
x, hkDx

)
+ h2

kP0(X) where

Pj(x, ξ) are homogeneous in ξ of order j.

Using the semi classical symbolic calculus and the fact that
(
ϕ̃Wk

)
is bounded in

L2
(
Rd+1

)
we see easily that the terms in Ik corresponding to hkP1

(
x, hkDx

)
and h2

kP0(x)

tend to zero when k → +∞. It remains to consider the term P2

(
x, hkDx

)
. But by the

semi classical calculus

a
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕ
(
h2

kDt + P2

(
x, hkDx

))
= Op

(
aχ(τ + p)

)
+ hkRk

where Rk is a uniformly bounded semi classical pseudo-differential operator in L2
(
Rd+1

)
.

Therefore the term in Ik corresponding to hkRk tends to zero.

It follows from Proposition 5.1 that

(9.5) lim
k→+∞

Iσ(k) = 〈µ, (τ + p)aχ 〉

On the other hand we have since
[
Dt + P

(
x,Dx

)]
ũk = 0 in Ω × Rt and ϕ ∈ C∞

0 (Ω),

(9.6) ϕ
(
Dt + P

(
x,Dx

))
Wk = ϕ

(
wk(0)δt=0 − wk(T )δt=T

)

Lemma 9.5. Let 1 ≤ p ≤ +∞, χ ∈ C∞
0 (R × R) and ℓ ≥ 1. Then there exists C > 0 such

that
∥∥χ
(
t, hℓDt

)
δt=a

∥∥
Lp(R)

≤ C h
ℓ
p
−ℓ

for every 0 < h ≤ 1.

Proof

Let ψ ∈ C∞
0 (R), ψ(t) = 1 on a neighborhood of πt suppχ. Then ψχ = χ. Now

① = χ
(
t, hℓDt

)
δt=a =

1

2π

∫
ei(t−a)τχ

(
t, h2τ

)
dτ
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On the other hand χ(t, τ) = ψ(t)χ(a, τ) + ψ(t)(t− a)χ̃(t, τ, a) where χ̃ ∈ C∞ has compact

support in τ . It follows that

(9.7)





① = ψ(t)h−ℓ
(
Fxχ

)
(
a,
t− a

hℓ

)
+ ② with

② =
1

2π
ψ(t)

∫
(t− a)ei(t−a)τ χ̃

(
t, hℓτ, a

)
dτ

Noting that (t−a)ei(t−a)τ =
1
i
∂
∂τ

ei(t−a)τ and making an integration by part, we see easily

that

(9.8)
∣∣ ②

∣∣ ≤ C |ψ(t)|hℓ

∫ ∣∣∣∣∣
∂χ̃

∂τ

(
t, hℓτ, a

)
∣∣∣∣∣ dτ = C |ψ(t)|

∫ ∣∣∣∣∣
∂χ̃

∂τ
(t, τ, a)

∣∣∣∣∣dτ

Then the Lemma follows easily from (9.7) and (9.8).

Now we see from (9.6) that Ik is a sum of two terms of the form

Jk =
(
a
(
x, hkDx

)
ϕwk(a)h2

kχ
(
t, h2

kDt

)
δt=a, ϕ̃Wk

)
, a = 0 or T

Since
(
ϕ̃Wk

)
is bounded in L2

(
Rd+1

)
we see that

|Jk|2 ≤ C
∥∥a
(
x, hkDx

)
ϕwk(a)

∥∥2

L2(Rd)

∥∥h2
kχ
(
t, h2

kDC

)
δt=a

∥∥2

L2(R)

so using Lemma 9.5 with p = 2 and ℓ = 2 we deduce that

|Jk|2 ≤ C h−1
k ‖ũk(a)‖2

L2(Ω) h
2
k ≤ C hk

∥∥ũ0
k

∥∥2

L2(Ω)

by the energy estimate. It follows from (3.7) that

(9.9) lim
k→+∞

Ik = 0

Using (9.5) and (9.9) we see that 〈µ, (τ + p)aχ 〉 = 0. Since τ0 + p
(
x0, ξ0

)
6= 0 and

C∞
0

(
R

d
x × R

d
ξ

)
⊗ C∞

0

(
Rt × Rτ

)

is dense in C∞
0

(
R

d+1 × R
d+1
)

we deduce that m0 =
(
x0, t0, ξ0, τ0

)
/∈ suppµ.

Case 2 : assume x0 ∈ ∂Ω

We would like to show that one can find a neighborhood Ux0
of x0 in Rd such that for any

a ∈ C∞
0

(
Ux0

× Rt × Rd
ξ × Rτ

)
we have

(9.10) 〈µ, (τ + p)a 〉 = 0
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Indeed this will imply that the point m0 =
(
x0, t0, ξ0, τ0

)
(with τ0 +

(
x0, ξ0

)
6= 0) does not

belong to the support of µ as claimed.

Now (9.10) will be implied, according to Proposition 5.1 and (4.1) by

(9.11)





lim
k→+∞

Iσ(k) = 0 where

Ik =
(
a
(
x, t, hkDx, h

2
kDt

)
ϕh2

k

(
Dt + P

)
Wk,Wk

)
L2(Rd+1)

where ϕ ∈ C∞
0

(
Vx0

)
, ϕ = 1 on πx supp a.

Now we may choose Ux0
so small that one can find a C∞ diffeomorphism F from Ux0

to a neighborhood U0 of the origin in Rd such that

(9.12)





F
(
Ux0

∩ Ω
)

=
{
y ∈ U0 : y1 > 0

}

F
(
Ux0

∩ ∂Ω
)

=
{
y ∈ U0 : y1 = 0

}
(
P (x,D)Wk

)
◦ F−1 =

(
D2

1 +R
(
y,D′

)) (
Wk ◦ F−1

)

where R is a second order differential operator and D′ =
(
D2, · · · , Dd

)
.

Let us set

(9.13) vk = wk ◦ F−1, Vk = 1I[0,T ]1Iy1>0vk

then we will have

(9.14)

{ (
Dt +D2

1 +R
(
y,D′

))
vk = 0 in U0 × Rt, y1 > 0,

vk|y1=0 = 0

Making the change of variable x = F−1(y) in the right hand side of the second line of

(9.11) we see that

Ik =
(
b
(
y, t, htDy, h

2
kDt

)
ψh2

k

(
Dt +D2

1 +R
(
y,D′

))
Vk, Vk

)
L2(Rd+1)

where b ∈ C∞
0

(
U0 × Rt × Rη × Rτ

)
and ψ ∈ C∞

0

(
U0

)
, ψ = 1 near πy supp b.

To prove (9.11) it is sufficient to prove that

(9.15) limJk = lim
(
Tψ0

(
y1
)
ψ1

(
y′
)
h2

k

(
Dt +D2

1 +R
(
y,D′

))
Vk, Vk

)
L2(Rd+1)

= 0

where T = θ
(
y1, hkD1

)
Φ
(
y′, hkD

′
)
χ
(
t, h2

kDt

)
, θΦχ ∈ C∞

0

(
U0 × Rt × Rd

y × Rτ

)
, ψ0ψ1 ∈

C∞
0

(
U0

)
and ψ0ψ1 = 1 on πy supp θΦξ.

Now according to (9.14) we have

(9.16)

(
Dt+D

2
1 +R

(
y,D′

))
Vk

= −i1Ix1>0vk(0, ·)δt=0 + i1IX1>0vk(T, ·)δt=T − i1I[0,T ]

(
D1vk|x1=0

)
⊗ δx1=0
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Therefore (9.11) will be proved in we can prove that

(9.17)





lim
k→+∞

Aj
k = 0, j = 1, 2, where

A1
k =

(
θ
(
y, hkD1

)
Φ
(
y′, hkD

′
)
χ
(
t, h2

kDt

)
ψ0ψ1h

2
k1Iy1>0vk(a, ·)δt=a, Vk

)
, a = 0, T

A2
k =

(
θ
(
y1, hkD1

)
Φ
(
y′, hkD

′
)
χ
(
t, h2

kDt

)
ψ0ψ1h

2
k1I[0,T ]

(
D1vk|y1=0

)
⊗ δy1=0, Vk

)

Since the operator θ
(
y1, hkD1

)
Φ
(
y′, hkD

′
)

is uniformly bounded in L2
(
R

d
)

we can write

with ψ2 ∈ C∞
0

(
U0

)
, ψ2 = 1 near πy supp θΦ

∣∣A1
k

∣∣2 ≤ C
∥∥h2

kχ
(
t, h2

kDt

)
δt=a

∥∥2

L2(R)
‖ψ0ψ11Iy1>0vk(a, ·)‖2

L2(Rd) ‖ψ2Vk‖2
L2(Rd+1)

By (9.13), the energy estimate and Proposition 4.1 we have





‖ψ0ψ11Iy1>0vk(a, ·)‖2
L2 ≤ C ‖wk(a)‖2

L2(Ω) ≤ C h−1
k ‖ũk(a)‖2

L2 ≤ C h−1
k

∥∥ũ 0
k

∥∥2

L2

‖ψ2Vk‖2
L2 ≤ C

∫ T

0

∥∥(ψ2 ◦ F
)
wk(t, ·)

∥∥2
L2(Ω)

dt = O(1)

Using Lemma 9.5 with ℓ = 2, p = 2, we obtain

(9.18)
∣∣A1

k

∣∣2 ≤ C hk

∥∥ũ0
k

∥∥2

L2(Ω)

To estimate the term A2
k we need a Lemma.

With U0 introduced in (9.12) we set U+
0 =

{
y ∈ U0 : y1 > 0

}
. We shall consider

smooth solution of the problem

(9.19)

{ (
Dt +D2

1 +R(y,D′
))
u = 0 in U+

0 × Rt

u|y1=0 = 0

Lemma 9.6. Let χ ∈ C∞
0

(
U0

)
and χ1 ∈ C∞

0

(
U0

)
on suppχ. There exists C > 0 such that

for any solution u of (9.19) and all h in
]
0, 1
]

we have

∫ T

0

∥∥∥
(
χh∂1u

)
|y1=0

(t)
∥∥∥

2

L2
dt ≤ C

(∫ T

0

∑

|α|≤1

‖χ1(hD)αu(t)‖2
L2(U+

0
) +

∥∥∥∥∥h
1
2χu(0)

∥∥∥∥∥
L2(U+

0
)∥∥∥∥∥h

1
2
(
h∂1u

)
(0)

∥∥∥∥∥
L2(U+

0
)

+

∥∥∥∥∥h
1
2u(T )

∥∥∥∥∥
L2(U+

0
)

∥∥∥∥∥h
1
2
(
h∂1u

)
(T )

∥∥∥∥∥
L2(U0

0
)

)

Corollary 9.7. One can find a constant C > 0 such that

∫ T

0

∥∥∥(χhk∂1vk

)
|y1=0

(t)
∥∥∥

2

L2
dt ≤ C

(∫ T

0

‖χ̃wk(t)‖2
L2(Ω) dt+

∥∥ũ0
k

∥∥2

L2(Ω)

)
= O(1)

32



where vk has been defined in (9.13) and χ̃ ∈ C∞
0

(
R

d
)
.

Proof of the Corollary

We use Lemma 9.6, (9.13), (9.14) the fact that wk = h
−

1
2

k θ
(
h2

kPD

)
ũk Lemma 6.3(ii)

and the energy estimate for ũk.

Proof of Lemma 9.6

Let us set with L2 = L2
(
R+

y1
× R

d−1
y′

)

(9.20)





I =
∑

|α|≤1

‖χ1(hD)αu(t)‖2
L2

II =
1∑

j=0

∥∥∥∥∥h
1
2χu

(
aj

)
∥∥∥∥∥

L2

·
∥∥∥∥∥h

1
2χ
(
h∂1u

)(
aj

)
∥∥∥∥∥

L2

, a0 = 0, a1 = T

By (9.19) we have

(9.21)

2 Re

∫ T

0

(
χh
(
D2

1u(t) +R
(
y,D′

)
u(t)

)
, χh∂1u(t)

)
L2dt

= −2 Im

∫ T

0

(
χh∂tu(t), χh∂1u(t)

)
L2dt

By integration by part we have
∫ T

0

(
χh∂tu(t), χh∂1u(t)

)
L2dt−

∫ T

0

(
χh∂1u(t), χh∂tu(t)

)
L2

=

∫ T

0

((
∂1χ

2
)
hu(t), h∂tu(t)

)
dt+ O(II)

Since h∂tu(t) = −ihD2
1u(t) − ihR

(
y,D′

)
u(t) integrating by part and using the fact that

u|y1=0 = 0 we find that

∫ T

0

((
∂1χ

2
)
hu(t), h∂tu(t)

)
L2 dt = O(I)

It follows that

(9.22) Im

∫ T

0

(
χh∂tu(t), χh∂1u(t)

)
L2dt = O(I + II)

Now

−
∫ T

0

(
χh∂2

1u(t), χh∂1u(t)
)
dt

=

∫ T

0

∥∥∥
(
χh∂1u(t)

)
|y1=0

∥∥∥
2

L2(Rd−1)
+ O(I) −

∫ T

0

(
χh∂1u(t), χh∂

2
1u(t)

)
L2 dt
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from which we deduce that

(9.23) −2 Re

∫ T

0

(
χh∂2

1u(t), χh∂1u(t)
)
L2 dt =

∫ T

0

∥∥∥
(
χh∂1u(t)

)
|y1=0

∥∥∥
2

L2(Rd−1)
dt+ O(I)

Finally using again integration by parts, the fact that R is symmetric and D′u|y1=0 = 0

we find that

(9.24) 2 Re

∫ T

0

(
χhR

(
y,D′

)
u(t), χh∂1u(t)

)
L2 dt = O(I)

Then the Lemma follows from (9.20) to (9.24).

Let us go back to the estimate of A2
k defined in (9.17). We have

∣∣A2
k

∣∣2 ≤ C h2
k

∥∥θ
(
y1, hxD1

)
δy1=0

∥∥2

L2(R)

∫ T

0

∥∥∥ψ1

(
hD1vk(t)

)
|y1=0

∥∥∥
2

L2(Rd−1)
‖ψ2Vk‖L2(Rd+1)

Applying Lemma 9.5 with p = 2, ℓ = 1, Corollary 9.7 and Proposition 4.1 we obtain

(9.25)
∣∣A2

k

∣∣ ≤ C hk

Using (9.18) and (9.25) we deduce (9.17) which implies (9.11) thus (9.10). The proof of

Theorem 5.2 is complete.

The measure on the boundary

Let us denote by
∂
∂n

the normal derivative at the boundary ∂Ω. By Corollary 9.6 we see

that the sequence

(
1I[0,T ]hk

(∂wk

∂n

)
|∂Ω

)
is bounded in L2

(
Rt × L2(∂Ω)

)
. Therefore with

the notations in (5.1) and Proposition 5.1 we have the following Lemma.

Lemma 9.8. There exist a subsequence
(
Wσ1(k)

)
of
(
Wσ(k)

)
and a measure ν on T ∗

(
∂Ω×

Rt

)
such that for every a ∈ C∞

0

(
T ∗
(
∂Ω × Rt

))
we have with

Jk =

(
a
(
x, t, hkDx, h

2
kDt

)
hk

1

i

∂Wk

∂n
, hk

1

i

∂Wt

∂n

)

L2(∂Ω×Rt)

(9.26) lim
k→+∞

Jσ1(k) = 〈 ν, a 〉

Proof of Theorem 5.3

We begin this proof by considering the case of points inside T ∗M .
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Proposition 9.9. Let m0 =
(
x0, ξ0, t0, τ0

)
∈ T ∗M and Um0

a neighborhood of this point

in T ∗M . Then for every a ∈ C∞
0

(
Um0

)
we have

(9.27) 〈µ,Hpa 〉 = 0

Proof

It is enough to prove (9.27) when a(x, t, ξ, τ) = Φ(x, ξ)χ(t, τ) with πx supp Φ ⊂ Vx0
⊂ Ω.

Let ϕ ∈ C∞
0 (Ω) be such that ϕ = 1 on Vx0

. We introduce

(9.28)
Ak =

i

hk

[ (
Φ
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕh2

k

(
Dt + PD

)
1I[0,T ]wk, 1I[0,T ]wk

)
L2(Ω×R)

−
(
Φ
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕ1I[0,T ]wk, h

2
k

(
Dt + PD

)
1I[0,T ]wk

)
L2(Ω×R)

]
.

We claim that we have

(9.29). lim
k→+∞

Ak = 0

The two terms in Ak are of the same type and will tend both to zero. Moreover since

πx supp Φ and ϕ have compact supports contained inside Ω we have in the scalar product
(
Dt +PD

)
wk =

(
Dt +PD

)
wk = 0. Since Dt

(
1I[0,T ]wk

)
=

1
i
wk(0)⊗ δt=0 −

1
i
wk(T )⊗ δt=T ,

(9.29) will be proved if we show that

(9.30)

{
limBk = 0 where

Bk =
(
χ
(
t, h2

kDt

)
δt=ahkΦ

(
x, hkDx

)
ϕ(x)wk(a), 1I[0,T ]wk

)
L2(Ω×R)

, a = 0, T

Now we have

|Bk| ≤
∫ T

0

∣∣χ
(
t, h2

kDt

)
δt=a

∣∣
(∫

hk

∣∣Φ
(
x, hkDx

)
ϕ(x)wk(a)

∣∣ |wk(t)|dx
)

dt

Using the Cauchy-Schwarz inequality in the second integral and the fact that wk(t) =

h
−

1
2

k θ
(
h2

kPD

)
ũk(t) we obtain

|Bk| ≤ C

∫ T

0

∣∣χ
(
t, h2

kDt

)
δt=a

∣∣ ‖ũk(a)‖L2(Ω) ‖ũk(t)‖L2(Ω) dt

It follows then from the energy estimate on
[
0, T

]
and Lemma 9.4 with ℓ = 2, p = 1 that

|Bk| ≤ C
∥∥ũ0

k

∥∥2

L2(Ω)
≤ C′

k
by (3.7)
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Thus (9.29) is proved.

Let us now compute Ak in another manner. We write

(9.31)





Ak = A1
k +A2

k

Aj
k =

i

hk

[(
Φ
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕh2

kQj1I[0,T ]wk, 1I[0,T ]wk

)
L2(Ω×R)

−
(
Φ
(
x, hkDx

)
χ
(
t, h2

kDt

)
ϕ1I[0,T ]wk, h

2
kQk1I[0,T ]wk

)
L2(Ω×R)

]

with Q1 = Dt, Q2 = PD

(
x,Dx

)

We claim that we have

(9.32) lim
k→+∞

A1
k = 0

Indeed we have

A1
k = −hk

(
Φ
(
x, hkDx

)∂χ
∂t

(
t, h2

kDt

)
ϕ1I[0,T ]wk, 1I[0,T ]wk

)

L2(Ω×R)

Therefore we have
∣∣A1

k

∣∣ ≤ C hk

∫ T

0

∥∥∥ϕ̃wk(t)
∥∥∥

2

L2(Ω)
dt

where ϕ̃ ∈ C∞
0 (Ω), ϕ̃ = 1 on suppϕ and (9.32) follows from (4.1).

Now since PD is self adjoint on L2(Ω) we can write

(9.33) A2
k =

i

hk

([
Φχϕ, h2

kPD

]
ϕ̃1I[0,T ]wk, ϕ̃1I[0,T ]wk

)
L2(Ω×R)

It is easy to see that h2
kPD =

2∑

j=0

h2−j
k Pj

(
x, hkDx

)
where Pj(x, ξ) is homogeneous in ξ

of order j. Moreover in the semi classical pseudo-differential calculus we have
[
P,Q

]
=

hk

i
Op
(
{p, q}

)
+h2

kR where R is L2 bounded. Using the fact that the sequence
(
ϕ̃1I[0,T ]wk

)

is uniformly bounded in L2
(
R, L2

(
Rd
))

we see easily that the terms in A2
k corresponding

to j = 0, 1 tend to zero when k → +∞. It follows that

A2
k =

(
Op
(
{Φχ, p}

)
ϕ̃1I[0,T ]wk, 1I[0,T ]wk

)
+ o(1)

Using (5.1) and Proposition 5.1 we deduce that

(9.34) lim
k→+∞

A2
σ(k) = −

〈
µ , Hp

(
Φχ
) 〉
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It follows from (9.29), (9.31), (9.32) and (9.34) that 〈µ , Hpa 〉 = 0 if a = Φχ which implies

our Proposition.

We consider now the case of points m0 =
(
x0, t0, ξ0, τ0

)
with x0 ∈ ∂Ω.

We take a neighborhood Ux0
so small that we can perform the diffeomorphism F de-

scribed in (9.12). Let µ and ν the measures on T ∗Rd+1 and T ∗
(
∂Ω × Rt

)
defined in

Proposition 5.1 and Lemma 9.7. We shall denote by µ̃ and ν̃ the measures on T ∗
(
U0 ×Rt

)

and T ∗
(
U0 ∩

{
y1 = 0

}
×Rt

)
which are the pull back of µ and ν by the diffeomorphism F̃ :

(x, t) 7→
(
F (x), t

)
.

We first start a Lemma.

Lemma 9.10. Let a ∈ C∞
0

(
T ∗
(
U0 × Rt

))
. We can find aj ∈ C∞

0

(
U0 × Rt × R

d−1
η′ × Rτ

)
,

j = 0, 1 and a2 ∈ C∞
(
T ∗
(
U0 × Rt

))
with compact support in

(
y, t, η′, τ

)
such that with

the notations of (9.12)

a
(
y, t, η, τ

)
= a0

(
y, t, η′, τ

)
+ a1

(
y, t, η′, τ

)
η1 + a2(y, t, η, τ)

(
τ + η2

1 + r
(
y, η′

))

where r is the principal symbol of R
(
y,D′

)
.

Proof

We apply a version of the Malgrange preparation theorem given by Theorem 7.5.4 in

Hörmander [Hö]. With the notations there, for fixed m′ =
(
y, t, η′, τ

)
we shall take t = η1,

gm′

(
η1
)

= a(y, t, η, τ), k = 2, b1 = 0, b0 = τ + r
(
y, η′

)
. According to this theorem we can

write

a(y, t, η, τ) = q
(
η1, b0, 0, gm′

) (
η2
1 + r

(
y, η′

)
+ τ
)

+ ã0

(
b0, 0, gm′

)
+ η1ã1

(
b0, 0, gm′

)

If we multiply both sides by a function ϕ = ϕ
(
y, t, η′, τ

)
∈ C∞

0 which is equal to one on

the support in
(
y, t, η′, τ

)
of a we obtain the claim of the Lemma.

In the following Remark we note that we can extend µ̃ to symbols which are not with

compact support in η1.

Remark 9.11. Let q(y, t, η, τ) =
N∑

j=0

qj
(
y, t, η′, τ

)
ηj
1 where qj ∈ C∞

0

(
R2d+1

)
. Let φ ∈

C∞
0 (R), φ

(
η1
)

= 1 if |η1| ≤ 1. Then

〈
µ̃ , qφ

(
η1
R

)〉
does not depend on R for large

R. Indeed let R2 > R1 ≫ 1. Then the symbol q

(
φ

(
η1
R1

)
− φ

(
η1
R2

))
has a support

contained in the set
{
|τ | + |η′| ≤ C, |η1| ≥ R1

}
. Therefore

supp µ̃ ∩ supp

(
q

(
φ

(
η1

R1

)
− φ

(
η1

R2

)))

⊂
{
τ + η2

1 + r
(
y, η′

)
= 0, |τ | + |η′| ≤ C, |η1| ≥ R

}
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and the set in the right hand side is empty if R1 is large enough.

We shall set 〈 µ̃ , q 〉 = lim
R→+∞

〈
µ̃ , qφ

(
η1

R

)〉
.

We can now state the analogue of Proposition 9.9 in the case of boundary points.

Proposition 9.12. With the notations of Lemma 9.10 for any a ∈ C∞
0

(
T ∗
(
U0 × Rt

))
we

have

〈 µ̃ , Hpa 〉 = −
〈
ν̃ , a1|y1=0

〉

Proof

Let us recall that vk has been defined in (9.13) which satisfies
(
Dt + PD

)
vk =0 in U+

0 =
{
y ∈ U0 : y1 > 0

}

vk |y1=0 =0

vk =h
−

1
2

k

(
θ
(
h2

kPD

)
wk

)
◦ F−1

For sake of shortness whe shall set

(9.35) Λk =
(
y, t, hkDy , h

2
kDt

)
, L2

+ = L2
(
U+

0 × Rt

)

The Proposition will be a consequence of the following Lemmas.

Lemma 9.13. Let for j = 0, 1, aj = aj

(
y, t, η′, τ

)
∈ C∞

0

(
U0 × Rd+1

)
and ϕ ∈ C∞

0

(
U0

)
,

ϕ = 1 on πy supp aj. Then

(9.36)
i

hk

[((
a0

(
Λk

)
+ a1

(
Λk

)
hkD1

)
ϕh2

k

(
Dt + PD

)
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

−
∫

U+

0

〈 (
a0

(
Λk

)
+ a1

(
Λk

)
hkD1

)
ϕ1I[0,T ]vk , h

2
k

(
Dt + PD

)
1I[0,T ]vk

〉
dy

]

= − i

hk

([
h2

k

(
Dt + PD

)
,
(
a0

(
Λk

)
+ a1

(
Λk

)
hkD1

)
ϕ
]
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

−
(
a1

(
0, y′, t, hkDy′ , h2

kDt

)
ϕ|y1=01I[0,T ]

(
hkD1vk|y1=0

)
, 1I[0,T ]

(
hkD1vk|y1=0

))
L2(Rd−1×R)

Here 〈 , 〉 denotes the bracket in D′
(
Rt

)
.

Lemma 9.14. Let b = b
(
y, t, η′, τ

)
∈ C∞

0

(
U0×Rd+1

)
and ϕ ∈ C∞

0

(
U0

)
, ϕ = 1 on πy supp b

For j = 0, 1 we set, with the same notations as in Lemma 9.13

Ij
k =

(
h−1

k b
(
Λk

)
ϕ
(
hkD1

)j
h2

k

(
Dt + PD

)
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

Jj
k =

∫

U+

0

〈
h−1

k b
(
Λk

)
ϕ
(
hkD1

)j
1I[0,T ]vk , h

2
k

(
Dt + PD

)
1I[0,T ]vk

〉
dy
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Then lim
k→+∞

Ij
k = lim

k→+∞
Jj

k = 0

Lemma 9.15. Let for j = 0, 1, 2, bj = bj
(
y, t, η′, τ

)
∈ C∞

0

(
U0 × Rd

)
and ϕ ∈ C∞

0

(
U0

)
,

ϕ = 1 on πy supp bj. Let us set

Lj
k =

(
bj
(
Λk

)
ϕ
(
hkD1

)j
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

Then with σ(k) defined in Proposition 5.1 we have for j = 0, 1, 2

lim
k→+∞

Lj
σ(k) =

〈
µ̃ , bjη

j
1

〉

Proof of Proposition 9.12

Let φ be as in Remark 9.11. If R is large enough we have Hpa = Hpaφ

(
η1
R

)
so by

Lemma 9.10

〈 µ̃ , Hpa 〉 =

〈
µ̃ , Hp

(
a0 + a1η1

)
φ

(
η1

R

)〉
+

〈
µ̃ , (τ + p)Hpa2φ

(
η1

R

)〉

Since Theorem 5.2 implies that

〈
µ̃ , (τ + p)Hpa2φ

(
η1
R

)〉
= 0 we deduce from Remark

9.11 that

〈 µ̃ , Hpa 〉 =
〈
µ̃ , Hp

(
a0 + a1η1

) 〉

Then Proposition 9.12 will be proved if we can show that

(9.37)
〈
µ̃ , Hp

(
a0 + a1η1

) 〉
= −

〈
ν̃ , a1|y1

= 0
〉

By Lemma 9.14 the left hand side of (9.36) tends to zero when k → +∞.

Now by the semi classical symbolic calculus we can write

i

hk

[
h2

k

(
Dt + PD

) (
a0

(
Λk

)
+ a1

(
Λk

)
hkD1

)
ϕ
]

=

2∑

j=0

bj
(
Λk

)
ϕ1

(
hkD1

)j

where bj ∈ C∞
0

(
U0 × Rd+1

)
, ϕ1 = 1 on suppϕ and

{
p, a0 + a1η1

}
=

2∑

j=0

bjη
j
1. So using

(9.36), Lemma 9.15 and Lemma 9.8 we obtain 0 = −
〈
µ̃ , Hp

(
a0 + a1η1

) 〉
−
〈
ν̃ , a1|y1=0

〉

which proves (9.37) and Proposition 9.12.

Proof of Lemma 9.13
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To prove (9.36) we use integration by parts in D1, Dy′ and distribution derivative in

Dt. Only the terms containing D1 give a boundary contribution. We treat them as follows

for j = 0, 1.
(
aj

(
Λk

)
ϕ
(
hkD1

)j
1I[0,T ]vk, h

2
kD

2
11I[0,T ]vk

)
L2

+

=
(
h2

kD
2
1aj

(
Λk

)
ϕ
(
hkD1

)j
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

+
hk

i

(
aj

(
0, y′, t, hkDy′ , h2

kDt

)
ϕ|y1=01I[0,T ]

(
hkD1

)j
vk|y1=0,1I[0,T ]

(
hkD1

)j
vk |y1=0

)
L2(Rd−1

y′ ×Rt)

Here we have used the boundary condition vk|y1=0.

Proof of Lemma 9.14

It is enough to consider symbols b of the form b = c
(
y, η′

)
χ(t, τ).

We have h2
k

(
Dt + PD

)
1I[0,T ]vk =

h2
k

i

[
vk(0, ·)δt=0 − vk(T, ·)δt=T

]
. It follows that Ij

k is a

sum of two terms of the form

Ĩ j
k =

(
χ
(
t, h2

kDt

)
δt=ah

1
2
k c
(
y, hkDy′

)
ϕ
(
hkD1

)j
vk(a, ·), 1I[0,T ]vk

)

L2
+

We have with a = 0 or T

∣∣∣Ĩ j
k

∣∣∣ ≤ C

∫

Rt

∣∣χ
(
t, h2

kDt

)
δt=a

∣∣
∥∥∥∥∥h

1
2
k

(
hkD1

)j
vk(a, ·)

∥∥∥∥∥
L2(U+

0
)

∥∥∥∥∥h
1
2
k 1I[0,T ]vk(t, ·)

∥∥∥∥∥
L2(U+

0
)

dt

Since for t ∈
[
0, T

]
,

∥∥∥∥∥h
1
2
k

(
hkD1

)j
vk(t, ·)

∥∥∥∥∥
L2(U+

0
)

≤ C
∥∥ũ 0

k

∥∥
L2(Ω)

, j = 0, 1, we deduce from

Lemma 9.5 with ℓ = 2, p = 1 that lim
k→+∞

Ĩ j
k = lim

k→+∞
Ij
k = 0.

Let us consider the term Jj
k . It is sufficient to consider symbols b of the form

b = ψ(t)c
(
y, hkDy′

)
χ
(
h2

kDσ

)

As before we have
(
Dt + PD

)
1I[0,T ]vk =

1
i

(vk(0, ·)δt=0 − vk(T, ·)δt=T ) so Jj
u will be a sum

of two terms of the form

J̃j
k =

∫

U+

0

〈
h−1

k ψc(· · ·)χ(· · ·)ϕ
(
hkD1

)j
1I[0,T ]vk ,

h2
k

i
vk

(
a, ·
)
δt=a

〉
dy

Writing

J̃ j
k =

∫

U+

0

〈
c
(
y, hkDy′

)
ϕ
(
hkD1

)j
1I[0,T ]vk ,

h2

i
ψ(a)vk(a, ·)χ

(
h2

kDt

)
δt=a

〉
dy
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we see that J̃ j
k can be estimated exactly by the same method as the term Ĩ j

k above.

Proof of Lemma 9.15

The proof will be different for each j. We shall consider the case j = 0 then j = 2 and

finally j = 1.

Case j = 0 : we shall need the following Lemma.

Lemma 9.16. Let Φ ∈ C∞
0 (R), φ

(
η1
)

= 1 if |η1| ≤ 1.

Let b = b
(
y, t, η′, τ

)
∈ C∞

0

(
U0 × R

d+1
)

and ϕ ∈ C∞
0

(
U0

)
, ϕ = 1 near πy supp b. Then

lim
R→+∞

lim
k→+∞

∥∥∥∥∥

(
I − Φ

(
hkD1

R

))
b
(
Λk

)
ϕ1I[0,T ]1Iy1>0vk

∥∥∥∥∥
L2(Rd+1)

= 0

Let us assume this Lemma for a moment and show how it implies the case j = 0.

We remark first that b0
(
Λk

)
1I[0,T ]1Iy1>0vk = 1Iy1>0b0

(
Λk

)
1I[0,T ]vk which allows us to write

Vk = 1I[0,T ]1Iy1>0vk

L0
k =

(
b0
(
Λk

)
ϕVk, ϕ1Vk

)
L2

+

=

((
I − Φ

(
hkD1

R

))
b0
(
Λk

)
ϕVk, ϕ1Vk

)

L2
+

+

(
Φ

(
hkD1

R

)
b0
(
Λk

)
ϕVk, ϕ1Vk

)

L2
+

= Ak +Bk

where ϕ1 ∈ C∞
0

(
U0

)
, ϕ1 = 1 on suppϕ. We have

|Ak| ≤
∥∥∥∥∥

(
I − Φ

(
hkD1

R

))
b0
(
Λk

)
Vk

∥∥∥∥∥
L2(R2d+2)

∥∥ϕ11I[0,T ]1Iy1>0vk

∥∥
L2(R2d+2)

Since by (4.1)
∥∥ϕ11I[0,T ]1Iy1>0vk

∥∥
L2

≤ C uniformly in k, Lemma 9.16 shows that

lim
R→+∞

lim
k→+∞

Ak = 0. Now by Proposition 5.1 we have lim
k→+∞

Bσ(k) =

〈
µ̃ , Φ

(
η1

R

)
b0

〉

so lim
R→+∞

lim
k→+∞

Bσ(k) = 〈 µ̃ , b0 〉.

Proof of Lemma 9.16

If v ∈ H1
(
Rd+1

)
we can write

∫ ∥∥∥∥∥

(
I − Φ

(
hkD1

R

))
v

∥∥∥∥∥

2

L2(Rd)

dt =

∫



∫ ∣∣∣∣∣

1 − Φ

(
hkη1

R

)

hkη1

∣∣∣∣∣

2 ∣∣∣hkD̂1v(η, t)
∣∣∣
2

dη




dt

≤ c

r2
‖hkD1v‖2

L2(Rd+1)
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Now

hkD1b
(
Λk

)
ϕ1I[0,T ]1Iy1>0vk

=
hk

i

(
∂b

∂y1

(
Λk

)
ϕ+ b

∂ϕ

∂y1

)
1I[0,T ]1Iy1>0vk + b

(
Λk

)
1I[0,T ]1Iy1>0

(
hkD1vk

)

= Ak +Bk

Here we have used D1

(
1Iy1>0vk

)
= 1Iy1>0D1vk since vk|y1=0 = 0.

We have

‖Ak‖L2(Rd+1) ≤ C hk

∫ T

0

‖ϕ1wk(t)‖2
L2(Ω) dt

where ϕ1 ∈ C∞
0

(
Rd
)
. It follows from (4.1) that lim

k→+∞
Ak = 0.

Now since vk = wk ◦ F−1 and wk = h
−

1
2

k θ
(
h2

kPD

)
ũ 0

k it follows from Lemma 6.3 that

‖Bk‖L2(Rd+1) ≤ C

∫ T

0

‖ϕ1wk(t)‖2
L2(Ω) dt ≤ C′ since

∥∥∥∥∥∥

(
I − Φ

(
hkD1

R

)
b
(
Λk

)
ϕ1I[0,T ]1Iy1>0vk

∥∥∥∥∥
L2(Rd+1)


 ≤ C

R2
(‖Ak‖L2 + ‖Bk‖L2)

the Lemma follows.

Case j = 2 (in Lemma 9.15)

Since
(
hkD1

)2
= h2

k

(
Dt + PD

)
− h2

kDt − R2

(
y, hkD

′
)
− hkR1

(
y, hkD

′
)
− h2

kR0(y) we

can write

(9.38)





L2
k = Ak +Bk where

Ak =
(
b2
(
Λk

)
ϕh2

k

(
Dt + PD

)
1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

Bk =
(
c
(
Λk

)
ϕ1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

Ck = hk

(
d
(
hk, y, t, hkDy′ , h2

kDt

)
ϕ1I[0,T ]vk, 1I[0,T ]vk

)
L2

+

and c = −b2(τ + r)

By Lemma 9.14 we have lim
k→+∞

Ak = 0. By Lemma 9.15 for j = 0 (case proved above) we

have lim
k→+∞

Bσ(k) = 〈 µ̃ , −b2(τ + r) 〉 =
〈
µ̃ , b2η

2
1

〉
since

〈
µ̃ , b2

(
τ + η2

1 + r
)
φ

(
η1
R

)〉
= 0

for all R large enough.

Finally |Ck| ≤M hk

∫ T

0

‖wk(t)‖2
L2(Ω) dt ≤ M ′ hk so lim

k→+∞
Ck = 0.

Case j = 1
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We have 1Iy1>0

(
hkD1

)
vk =

(
hkD1

)
1Iy1>0vk because vk |y1=0 = 0. It follows that with

Vk = 1I[0,T ]1Iy1>0vk

L1
k =

(
b1
(
Λk

)
ϕ
(
hkD1

)
Vk, Vk

)
L2(Rd+1)

Let Φ ∈ C∞
0 (R), Φ

(
η1
)

= 1 if |η1| ≤ 1. Then we write with ϕ1 = 1 on suppϕ,

L1
k =

(
Φ

(
hkD1

R

)
b1
(
Λk

)
ϕ
(
hkD1

)
Vk, ϕ1Vk

)

L2(Rd+1)

+

((
I − Φ

(
hkD1

R

))
b1
(
Λk

)
ϕ
(
hkD1

)
Vk, ϕ1Vk

)

L2(Rd+1)

= Ak +Bk

It is easy to see from Proposition 5.1 that

lim
k→+∞

Aσ(k) =

〈
µ̃ , Φ

(
η1

R

)
b1η1

〉

Now

|Bk| ≤ C
∥∥b1
(
Λk

)
ϕ
(
hkD1

)
Vk

∥∥
L2(Rd+1)

∥∥∥∥∥

(
I − Φ

(
hkD1

R

))
ϕ1Vk

∥∥∥∥∥
L2(Rd+1)

As in the proof of Lemma 9.16 we have

∥∥∥∥∥

(
I − Φ

(
hkD1

R

))
ϕ1vk

∥∥∥∥∥
L2(Rd+1)

≤ 1

R

(
C + h

1
2
k

∥∥ũ 0
k

∥∥
L2(Ω)

)

and using the fact that hkD1 commutes with 1Iy1>0 on vk, since vky1=0 = 0 and using

Lemma 6.3(i), (ii) we find easily that
∥∥b1
(
Λk

)
ϕ
(
hkD1

)
Vk

∥∥
L2(Rd+1)

≤M uniformly in k.

Lemma 9.17. With Gd and Gk introduced in Definition 9.2 we have

ν̃

(
Gd ∪

(
+∞⋃

k=3

Gk

))
= 0

Proof

Let us take in Lemma 9.10a(y, t, η, τ) = b
(
y, t, η′, τ

)
η1. Since p = η2

1 + r
(
y, η′

)
we will

have

(9.39)

〈
µ̃ , η1Hpb− b

∂r

∂y1

〉
= −

〈
ν̃ , b|y1=0

〉
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Let us make the change of variables

(9.40) (y, t, η, τ)
Φ7→
(
z = y, s = t, ζ = η, σ = τ + r(y, η)

)

It is easy to see that

(9.41)





Hpb = X
(
b ◦ Φ−1

)
◦ Φ with

X = 2ζ1
∂

∂z1
+ 2ζ1

∂r

∂z1

∂

∂σ
− ∂r

∂z1

∂

∂ζ1
+H ′

r where

H ′
r =

∂r

∂ζ ′
∂

∂z′
− ∂r

∂z′
∂

∂ζ ′

It we denote by µ̃1, ν̃1 the pull back of µ̃ and ν̃ by Φ and b̃ = b ◦ Φ−1, the equality (9.39)

becomes

(9.42)

〈
µ̃1 , ζ1Xb̃− b̃

∂r

∂z1

〉
= −

〈
ν̃1, , b̃

(
0, z′, s, ζ ′, σ

)〉

Let us take b̃ of the following form

b̃
(
z, s, ζ ′, σ

)
= b0

(
z1√
ε
, z′, s, ζ ′,

σ

ε

)
ψ

(
1√
ε

∂r

∂z1

(
z, ζ ′

)
)

where b0 ∈ C∞
0 , b0 ≥ 0, and ψ ∈ C∞(R) such that ψ(t) = 1, t ∈

(
− ∞, 0

]
, ψ(t) = 0 for

t ≥ 1 and ε > 0. According to (9.42) we can write

(9.43)





〈
µ̃1 , ζ1Xb̃− b̃

∂r

∂z1

〉
= ① + ② with

① =

〈
µ̃1 , −

∂r

∂z1
b0ψ

〉

② = 〈 µ̃1 , fε 〉 with

fε = 2
ζ2
1√
ε

∂b0

∂z1
ψ + 2

ζ2
1

ε

∂r

∂z1

∂b0

∂σ
ψ + ζ1H

′
xb0ψ + ζ1b0

1√
ε

(
X
∂r

∂z1

)
ψ′

According to Theorem 5.2 and (9.40) we have supp µ̃1 ⊂
{
z1 ≥ 0 and ζ2

1 + σ = 0
}
.

Therefore on supp µ̃1 ∩ supp b0 we have |ζ1|2 ≤ |σ| ≤ Cε.

This implies that fε ∈ C∞
0 is uniformly bounded in ε ∈

]
0, 1
]
.

Moreover the first and the third term in fε tend to zero uniformly with ε. The second

term can be written on supp µ̃1

−2
σ

ε

∂r

∂z1

(
z, ζ ′

)∂b0
∂σ

(
z1√
ε
, z′, s, ζ ′,

σ

ε

)
ψ(· · ·)
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Since b0 has compact support in σ, for fixed σ 6= 0 this term is indentically zero for ε small

enough and it also vanish when σ = 0.

Finally, since suppψ′ =
[
0, 1
]

and ψ′(0) = 0, ψ′

(
1√
ε

∂r
∂z1

(
z, ζ ′

))
vanishes if ε is small

enough. Therefore we can apply the Lebesgue dominated convergence theorem and con-

clude that

(9.44) lim
ε→0

② = 0

Now let us set A =

{
(z, s, ζ, σ) : z1 = 0, σ = 0,

∂r
∂z1

(
z, ζ ′

)
≤ 0

}
and write

(9.45) ① =

〈
µ̃1 , −

∂r

∂z1
b0ψ1IA

〉
+

〈
µ̃1 , −

∂r

∂z1
b0ψ1IAc

〉

If we are in Ac we have else z1 6= 0 or σ 6= 0 or
∂r
∂z1

(
z, ζ ′

)
> 0. In all these case we have

lim
ε→0

b0

(
z1√
ε
, z′, s, ζ ′,

σ

ε

)
ψ

(
1√
ε

∂r

∂z1

(
z, ζ ′

)
)

= 0

By the dominated convergence theorem the second term in the right hand side of (9.45)

tends to zero. It follows that for ε small enough we have

① =

〈
µ̃1 , −

∂r

∂z1

(
0, z′, ζ ′

)
b0
(
0, z′, s, ζ ′, 0

)
1IA

〉
+ o(1)

Using (9.43), (9.44) we conclude that

(9.46) lim
ε→0

〈
µ̃1 , ζ1Xb̃− b̃

∂r

∂z1

〉
≥ 0

On the other hand we have

〈
ν̃1 , b̃

(
0, z′, s, ζ ′, σ

)〉
=

〈
ν̃1 , b0

(
0, z′, s, ζ ′,

σ

ε

)
ψ

(
1√
ε

∂r

∂z1

(
0, z′, ζ ′

)
)〉

We introduce B =
{(
z′, s, ζ ′, σ

)}
: σ = 0,

∂r
∂z1

(
0, z′, ζ ′

)
≤ 0

}
and write as before

1 = 1IB + 1IBc . The term corresponding to 1IBc tends to zero. It follows that

〈
ν̃1 , b̃|z1=0

〉
=
〈
ν̃1 , b0

(
0, z′, s, ζ ′, 0

)
1IB
〉

+ o(1)
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Therefore we have

(9.47) lim
ε→0

〈
ν̃1 , b̃|z1=0

〉
=

〈
ν̃1 , b0

(
0, z′, s, ζ ′, 0

)
1I{

σ = 0,
∂r
∂z1

(0,z′,ζ′)≤0

}
〉

≥ 0

Using (9.42), (9.46) and (9.47) we conclude that both sides of (9.42) vanish. Coming back

to the coordinates (y, t, η, τ) by (9.40) we conclude that

〈
ν̃ , b0

(
0, y′, t, η′, 0

)
1I{

τ+r(0,y′,η′)=0,
∂r
∂y1

(0,y′,η′)≤0

}
〉

= 0

for every b0 ∈ C∞
0 , b0 ≥ 0.

Since Gd ∪
(

+∞⋃

k=3

Gk

)
=

{(
y′, t, η′, τ

)
: τ + r

(
0, y′, η′

)
= 0,

∂r
∂y1

(
0, y′, η′

)
≤ 0

}
, Lemma

9.17 follows.

Proof of the propagation theorem 5.3 (continued)

From now on we follow closely [B], [B-G], [G-L] and we give the details for the conve-

nience of the reader.

Let us set, with the notations of section 9.1

(9.48) G0 = T ∗M, G1 = H

We introduce for k ∈ N the following proposition.

(
Pk

)





Let ζ ∈ Σb. If there exists T > 0 such that for all s ∈
[
0, T

]
we have

Γ(s, ζ) ∈
k⋃

j=0

Gj , then for all s1, s2 in
[
0, T

]
we have

π−1
(
Γ
(
s1, ζ

))
∩ suppµ 6= ∅ ⇐⇒ π−1

(
Γ
(
s2, ζ

))
∩ suppµ 6= ∅

If
(
Pk

)
is true for all k ∈ N then using Remark 9.4 and a compacity argument we will

obtain the conclusion of Theorem 5.3.

Now
(
Pk

)
is of global nature but as usual using a connexity argument we can reduce

the proof by induction to the following result.

Proposition 9.18. Let k ≥ 1. Assume
(
Pk−1

)
is true. Let ζ0 ∈ Gk. If there exists ε > 0

such that π−1
(
Γ
(
− s, ζ0

))
∩ suppµ = ∅ for all s ∈

]
0, ε
]

then there exists δ > 0 such that

π−1
(
Γ
(
s, ζ0

))
∩ suppµ = ∅ for all s ∈

[
0, δ
]
.

Before giving the proof of Proposition 9.18 let us show that

(
P0

)
is true
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Let ζ ∈ Σb and assume Γ(s, ζ) ⊂ G0 = T ∗M for all s ∈
[
0, T

[
. Then

ζ = (x, t, ξ, τ) and Γ(s, ζ) =
(
x(s), t, ξ(s), τ

)

where
(
x(s), ξ(s)

)
= γ

(
s, (x, ξ)

)
is the usual bicharacteristic of p in T ∗M . Since by

Proposition 9.9 we have tHpµ = 0 in D′
(
T ∗M

)
, the result follows.

Proof of Proposition 9.18

Case 1 : k = 1

Let ζ0 = (x′0, t0, ξ
′
0, T0) ∈ G1 = H. Then τ0 + r (0, x′0, ξ

′
0) = −A < 0.

Let us set ξ01 = (− (τ + r (0, x′0, ξ
′
0)))

1
2 . For small δ > 0 we set

V ± =
{
(x′, t, ξ1, ξ

′, τ) : |x′ − x′0| < δ, |t− t0| < δ, |ξ′ − ξ′0| < δ, |τ − τ0| < δ,
∣∣ξ1 ∓ ξ01

∣∣ < δ
}

If δ is small enough and ρ = (x1, x
′, t, ξ1, ξ

′, τ) ∈
[
0, δ
[
×
(
V + ∪ V −

)
, we have τ +

r (x1, x
′, ξ′) ≤ −1

2
A. If p(ρ) = 0 and ρ ∈

]
0, δ
[
× V − then ρ ∈ T ∗M = G0 and

x1(s) = x1 + 2ξ1s + s2g(s) where |g(s)| ≤ C and C depends only on A and p. It fol-

lows that with ε =
1

2C

(
A
2

) 1
2

we have x1(s) > 0 for s ∈
]
− ε, 0

]
. This shows that

Γ(−s, ρ) ∈ T ∗M for s ∈
]
− ε, 0

]
. Now by the assumption in proposition 9.18 and conti-

nuity one can find β ∈
]
0, ε
[

and δ small such that π−1
(
Γ(−β, ρ)

)
∩ suppµ = ∅ for all ρ

in
]
0, δ
[
× V −. It follows then from

(
P0

)
that

(9.49) ρ /∈ suppµ for all ρ in
]
0, δ
[
× V −

Since the hypersurface
{
x1 = 0

}
is non characteristic for the vector field tHp and tHpµ = 0

for x1 > 0 (Proposition 9.9) the measure µ has a trace µ|x1=0 which belongs to D′
(
V + ∪

V −
)
. It follows then that

(9.50) tHpµ = 2ξ1µ|x1=0 ⊗ δx1=0 in D′
(]

− δ, δ
[
×
(
V +UV −

))

Moreover by (9.49) we have

(9.51) µ|x1=0 = 0 in V −

Our aim is to show that

(9.52) µ|x1=0 = 0 in V +

Indeed let us consider j : T ∗
R

d+1 → T ∗
R

d+1, j
(
x, t,

(
ξ1, ξ

′
)
, τ
)

=
(
x, t,

(
− ξ1, ξ

′
)
, τ
)
.

Its follows from Proposition 9.12 that 〈µ , Hp(a ◦ j) 〉 = −〈µ , Hpa 〉. Since j−1 = j and

|detDj| = 1 we have (
tHpµ

)
◦ j = − tHpµ
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Using (9.50) we see that −2ξ1
(
µ|x1=0

)
◦j⊗δx1=0 = −2ξ1µ|x1=0⊗δx1=0 on V +∪V −. Then

(9.52) follows from (9.51). Using (9.50), (9.51) and (9.52) we conclude that tHpµ = 0 on]
− δ, δ

[
×
(
V + ∪ V −

)
.

Let us set

V = {(x′, t, ξ1, ξ′, τ) : |x′ − x′0| < δ1, |t− t0| < δ1, |ξ′ − ξ′0| < δ1, |τ − τ0| < δ1}

where 0 < δ1 ≪ δ. Since by theorem 5.2 we have

suppµ ⊂
{
(x, t, ξ, τ) : x1 ≥ 0 and τ + ξ21 + r

(
x, ξ′

)
= 0
}

and

(]
− δ, δ

[
× V

)
∩
{
x1 ≥ 0, τ + ξ21 + r

(
x, ξ′

)
= 0
}
⊂
[
0, δ
[
×
(
V + ∪ V −

)

if δ1 is small enough we deduce that tHpµ = 0 on
]
− δ, δ

[
× V .

Let now γ+(s) =
(
x+(s), ξ+(s)

)
be the bicharacteristic of p defined for |s| ≤ ε and

starting at the point
(
0, x′0, ξ

′
1, ξ

′
0

)
. Since x+

1 (s) < 0 for s ∈
]
−ε, 0

[
and suppµ ⊂

{
x1 ≥ 0

}

we have
(
x+(s), t0, ξ

+(s), τ0
)
/∈ suppµ for s ∈

]
− ε, 0

[
since tHpµ = 0 on

]
− δ, δ

[
× V one

can find δ0 > 0 such that for s ∈
[
0, δ0

]
,
(
x+(s), t0, ξ

+(s), τ0
)
/∈ suppµ which implies that

π−1
(
Γ
(
s, ζ0

))
∩ suppµ = ∅, s ∈

[
0, δ0

]
, and proves Proposition 9.1 in the case k = 1.

Case 2 : k ≥ 2

We shall need several preliminary results.

Lemma 9.19. Let (0, x′0, t0, 0, ξ
′
0, τ0) ∈ T ∗Rd+1 and δ > 0. We set

V =
{
(x, t, ξ, τ) ∈ T ∗

R
d+1, 0 ≤ x1 < δ, |x′ − x′0| < δ, |t− t0| < δ, |ξ′ − ξ′0| < δ, |τ − τ0| < δ

}

We assume that

(i) suppµ ∩ V ⊂
{
(x, t, ξ, τ) ∈ T ∗

R
d+1 : x1 = ξ1 = 0

}

(ii)
(
0, x′g

(
s, x′, ξ′

)
, t, 0, ξ′g

(
s, x′, ξ′

)
, τ
)
∈ V for all s ∈ I =

]
− s∗, s

∗
[

Then for all s1, s2 ∈ I

(
0, x′g

(
s1, x

′, ξ′
)
, t, 0, ξ′g

(
s1, x

′, ξ′
)
, τ
)
∈ suppµ

⇐⇒
(
0, x′g

(
s2, x

′, ξ′
)
, t, 0, ξ′2

(
s2, x

′, ξ′
)
, τ
)
∈ suppµ

Proof

By assumption (i) there exists a measure µ1 = µ1

(
x′, t, ξ′, τ

)
on T ∗

R
d such that µ =

µ1 ⊗ δx1=0 ⊗ δξ1=0. Moreover we can extend that definition of 〈µ, a 〉 to smooth a =
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a
(
x1, x

′, t, ξ1, ξ
′, τ
)

which have compact support in
(
x1, x

′, t, ξ′, τ
)

contained in V . Indeed if

χ ∈ C∞
0 (R), χ

(
ξ1
)

= 1 for |ξ1| ≤
1
2
, χ
(
ξ1
)

= 0 for |ξ1| ≥ 1 we can set 〈µ, a 〉 =
〈
µ , χ

(
ξ1
)
a
〉

and this definition does not depend on χ. In particular we can take a = a
(
x, t, ξ′, τ

)
. With

the notation of Lemma 9.10, we have a1 = 0 so it follows from Proposition 9.11 that

〈µ , Hpa 〉 = 0. By the above remark we have

0 = 〈µ , Hpa 〉 =
〈
µ1 , Hpa|x1=ξ1=0

〉
=
〈
µ1 , Hr0

a|x1=0

〉
=
〈
µ1 , Hr0

(
a|x1=0

) 〉

Therefore the Lemma follows.

Remark 9.20. (i) Let ρ0 = (0, x′0, t0, 0, ξ
′
0, τ0) ∈ T ∗Rd+1. If ρ0 /∈ suppµ and τ0 +

r (0, x′0, ξ
′
0) = 0 then

(x′0, t0, ξ
′
0, τ0) /∈ supp ν

Indeed one can find δ > 0 such that B
(
ρ0, δ

)
∩ suppµ = ∅.

Let a(x, t, ξ, τ) = b (x′, t, ξ′, τ)χ
(
x1

)
ξ1 with support in

{|x′ − x′0| + |t− t0| + |ξ′ − ξ′0| + |τ − τ0| < δ1, |x1| < δ1}. Since

suppµ ⊂
{
|ξ1|2 =

∣∣τ + r
(
x, ξ′

)∣∣
}

we will have our assumption

suppµ ∩ supp a ⊂ suppµ ∩ supp a ∩
{
|ξ1| ≤ C

√
δ1

}

If δ1 is small enough we will have supp a∩
{
|ξ1| ≤ C

√
δ1
}
⊂ B

(
ρ0, δ

)
so suppµ∩supp a = ∅.

With the notation of Lemma 9.10 we have a1 = χb so, by Proposition 9.12, 0 = 〈µ,Hpa 〉 =

−〈 ν, b 〉. Since b is arbitrary this shows that (x′0, t0, ξ
′
0, τ0) /∈ supp ν.

(ii) Let (x′0, t0, ξ
′
0, τ0) ∈ H and ρ±0 =

(
0, x′0, t0,±ξ01 , ξ′0, τ0

)
where

ξ01 =
(
−
(
τ0 + r

(
0, x′0, ξ

′
0

))) 1
2 . Then if

{
ρ+
0 , ρ

−
0

}
∩ suppµ = ∅ then (x′0, t0, ξ

′
0, τ0) /∈

supp ν. Indeed one can find δ > 0 such that

(
B
(
ρ+
0 , δ

)
∪B

(
ρ−0 , δ

))
∩ suppµ = ∅

If we take a = bχξ1 as in (i) we will have

suppµ ∩ supp a ⊂ suppµ ∩ supp a ∩
{∣∣∣ξ21 −

(
ξ01
)2∣∣∣ ≤ Cδ1

}

Now, if δ1 ≪ δ2,
{∣∣∣ξ21 −

(
ξ01
)2∣∣∣ ≤ Cδ1

}
⊂
{∣∣ξ1 − ξ01

∣∣ < δ
}
∪
{∣∣ξ1 + ξ01

∣∣ < δ
}

so

supp a ∩ suppµ = ∅
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As in (i) we deduce that 0 = 〈µ,Hpa 〉 = −〈 ν, b 〉.

Lemma 9.21. Let k ≥ 2 and ζ0 = (x′0, t0, ξ
′
0, τ0) ∈ Gk be given as in Proposition 9.1. Set

Hk−2
r0

(
∂r
∂x1

)
(0, x′0, ξ

′
0) = A 6= 0 then

(i) one can find δ > 0 such that

∣∣∣∣Hk−2
r0

(
∂r
∂x1

)
(0, x′, ξ′)

∣∣∣∣ ≥
|A|
2

in the set

V1 =
{(
x′, t, ξ′, τ

)
: |x′ − x′0| < δ, |ξ′ − ξ′0| < δ, |t− t0| < δ, |τ − τ0| < δ

}

(ii) one can find δ′ > 0 and β > 0 such that

{
Γ
(
s, Ũ

)
∩ T ∗∂M ⊂ V1 for all s ∈

[
− β, 0

]
,

π−1
(
Γ
(
− β, Ũ

))
∩ suppµ = ∅, where

Ũ =
[ {(

x′, t, ξ′, τ
)
∈ T ∗∂M : |x′ − x′0| < δ′, |t− t0| < δ′, |ξ′ − ξ′0| < δ′, |τ − τ0| < δ′

}

∩
{(
x′, ξ′

)
: τ0 + r

(
0, x′, ξ′

)
≤ 0
} ]

∪
[
{(x, t, ξ, τ) ∈ T ∗M : 0 < x1 < δ′, |x′ − x′0| < δ′, |ξ′ − ξ′0| < δ′, |t− t0| < δ′, |τ − τ0| < δ′}

∩(τ + p)−1(0)
]

Moreover

case ① : k even, A > 0

∀ζ ∈ Gk ∩ V1, Γ(s, ζ) ∈ Gg, ∀s ∈
[
− β, β

]
\ {0}, (∀s ∈

[
− β, β

]
if k = 2).

case ② : k even, A < 0

∀ζ ∈ Gk ∩ V1, Γ(s, ζ) ∈ T ∗M, ∀s ∈
[
− β, β

]
\ {0}, (ζ ∈ Gd if k = 2).

case ③ : k odd, k ≥ 3, A < 0

∀ζ ∈ Gk ∩ V1, Γ(s, ζ) ∈ T ∗M, ∀s ∈
[
− β, 0

[
, Γ(s, ζ) ∈ Gg, ∀s ∈

]
0, β
]
.

case ④ : k odd, k ≥ 3, A > 0

∀ζ ∈ Gk ∩ V1, Γ(s, ζ) ∈ Gg, ∀s ∈
[
− β, 0

[
, Γ(s, ζ) ∈ T ∗M, ∀s ∈

]
0, β
]
.

Proof of Lemma 9.21

(i) Hk−2
r0

(
∂r
∂x1

)(
0, x′, ξ′

)
being continuous, the existence of δ is clear. Moreover it has

the same sign as A. Let us set e(s, ζ) =
∂r
∂x1

(
0, x′g(s, ζ), ξ

′
g(s, ζ)

)
. Then since ζ ∈ Gk ∩ V1

we have for small |s| (see [H], Chap. 24)

e(s, ζ) =
1

(k − 2)!
Hk−2

r0

(
∂r

∂x1

)
(
0, x′, ξ′

)
sk−2 + sk−1g(s)
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where |g(s)| ≤ C, C depending only on p. If ε1 =
|A|
2C

, e(s, ζ) has a constant sign on

each interval
[
− ε1, 0

[
and

]
0, ε1

]
; moreover either Γ(s, ζ) ∈ Gg or Γ(s, ζ) ∈ T ∗M on

each interval which gives the four cases described in the statement of the Lemma, (see [H],

Chap. 24).

(ii) Let us prove that

∃β0, ∃δ′ : ∀β ∈
[
0, β0

[
, ∀x ∈

[
− β, 0

]
,Γ
(
s, Ũ

)
∩ T ∗∂M ⊂ V1

Otherwise one can find sequences βj → 0, δ′j → 0, sj ∈
]
− βj , 0

]
and ξj ∈ Ũ such that

Γ
(
sj , ζj

)
∈ T ∗∂M and Γ

(
sj, ζj

)
/∈ V1. If ζj ∈ T ∗∂M , ζj =

(
x′j , tj , ξ

′
j, τj

)
and if ζj ∈ T ∗M ,

ζj =
(
xj

1, x
′
j, tj , ξ

j
1, ξ

′
j, τj

)
. In both cases

∣∣x′j − x′0
∣∣ < δ′j ,

∣∣ξ′j − ξ′0
∣∣ < δ′j , |tj − t0| < δ′j ,

|τj − τ0| < δ′j and if ζj ∈ T ∗M , 0 < xj
1 < δ′j . It follows that τj + r

(
xj

1, x
′
j, ξ

′
j

)
→

τ0 + r (0, x′0, ξ
′
0) = 0 which implies that ξj

1 → 0 (since ζj ∈ p−1(0) then). Therefore

ζj → ζ0 in T ∗
b M . Moreover since sj → 0 we have Γ

(
sj, ζj

)
→ ζ0 in T ∗

b M so in T ∗∂M since

Γ
(
sj , ζj

)
∈ T ∗∂M . But ζ0 ∈ V1 so Γ

(
sj , ζj

)
∈ V1 for large j and we obtain a contradiction.

Let β = inf

(
β0,

ε1
2

)
and let us set that if δ′ is small enough then π−1

(
Γ
(
− β, Ũ

))
∩

suppµ = ∅. We know that π−1
(
Γ
(
− β, ζ0

))
∩ suppµ = ∅. Let V ⊂ T ∗

R
d+1 be such that

V ∩ suppµ = ∅ and π−1
(
Γ
(
− β, ζ0

))
⊂ V . If

∀δ′ > 0, π−1
(
Γ
(
− β, Ũ

))
∩ suppµ 6= ∅

then there exists δ′j → 0, ζj ∈ Ũ such that ρj ∈ π−1
(
Γ
(
− β, ζj

))
, ρj ∈ suppµ.

We keep the notations in the beginning of (ii). Then xj
1 → 0, x′j → x′0, tj → t0, ξ

′
j → ξ′0,

τj → τ0, so ζj → ζ0 which implies that Γ
(
− β, ζj

)
→ Γ

(
− β, ζ0

)
. Let us set

Γ
(
− β, ζj

)
=





(
X ′

j , Tj,Ξ
′
j ,Λj

)
if Γ
(
− β, ζj

)
∈ T ∗∂M

(
Xj

1 , X
′
j, Tj ,Ξ

j
1,Ξ

′
j ,Λj

)
if Γ(−β, ζj

)
∈ T ∗M

for j = 0 and j ≥ 1.

If Γ(−β, ζj
)
∈ T ∗∂M one can find Ξj

1 such that ρj =
(
0, X ′

j, Tj,Ξ
′
1,Ξ

′
j ,Λj

)
with

(
Ξj

1

)2
+ r

(
0, X ′

j, χ
′
j ,Ξ

′
j

)
+ Λj = 0

since ρj ∈ suppµ ∩ (τ + p)−1(0).

If Γ
(
− β, ζj

)
∈ T ∗M we have the same thing with ρj =

(
Xj

1 , X
′
j, Tj,Ξ

j
1,Ξ

′
j,Λj

)
.

Now in the case where Γ
(
− β, ζ0

)
∈ T ∗M we have Xj

1 → X0
1 > 0, X ′

j → X ′
0, Tj → T0,

Ξj
1 → Ξ0

1, Ξ′
j → Ξ′

0, Λj → Λ0. Then ρj ∈ V if j is large enough which contradicts the fact

that ρj ∈ suppµ and V ∩ suppµ = ∅.
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In the case where Γ
(
− β, ζ0

)
∈ T ∗∂M we have X ′

j → X ′
0, Ξ′

j → Ξ′
0, Tj → T0, Λj → Λ0

and Xj
1 → 0 (for the indices j such that Γ

(
− β, ζj

)
∈ T ∗M).

In the both cases we have
(
Ξj

1

)2 → −r (0, X ′
0,Ξ

′
0) − Λ0 = ξ21 .

Now (0, X ′
0, T0,±ξ1,Ξ′

0, λ0) ∈ π−1
(
Γ
(
− β, ζ0

))
∩ (τ + p)−1(0) ; therefore

(0, X ′
0, T0,±ξ1,Ξ′

0,Λ0) ∈ V so ρj ∈ V for j large enough which is again a contradiction.

The proof of Lemma 9.21 is complete.

Proof of Proposition 9.18

We are going to consider separately the four cases introduced in Lemma 9.21.

Case ① : we have Γ
(
s, ζ0

)
∈ Gg for s ∈

[
− β, β

]
\ {0} Therefore

(9.53) Γ
(
s, ζ0

)
=
(
x′g
(
s, x′0, ξ

′
0

)
, t0, ξ

′
g

(
s, x′0, ξ

′
0

)
, τ0
)
, s ∈

[
− β, β

]

Let U be the following set.

U =
{(
x′, t, ξ′, τ

)
∈ T ∗∂M, |x′ − x′0| < δ′, |t− t0| < δ, |ξ′ − ξ′0| < δ′, |τ − τ0| < δ′

}

∪{(x, t, ξ, τ) ∈ T ∗M, 0 < x1 < δ′, |x′ − x′0| < δ′, |t− t0| < δ′, |ξ′ − ξ′0| < δ′, |τ − τ0| < δ′}

Then Ũ = U ∩Σb is the set introduced in Lemma 9.21. Moreover U being an open subset

of T ∗
b M , π−1(U) is open in T ∗Rd+1.

By continuity one can find ε0 > 0 such that Γ
(
s, ζ0

)
∈ U for s in

[
− ε0, ε0

]
. Then one

can find δ > 0 such that if we set

V =
{
(x, t, ξ, τ) ∈ T ∗

R
d+1, 0 ≤ x1 < δ, |x′ − x′0| < δ, |t− t0| < δ, |ξ′ − ξ′0| < δ, |τ − τ0| < δ

}

then for s ∈
[
− ε0, ε0

]
we have

π−1
(
Γ
(
s, ζ0

))
=
(
0, x′g

(
s, x′0, ξ

′
0

)
, t0, 0, ξ

′
g

(
s, x′0, ξ

′
0

)
, τ0
)
⊂ V ⊂ π−1(U)

Assume that we can prove

(9.54) suppµ ∩ V ⊂
{
(x, t, ξ, τ) ∈ T ∗

R
d+1 : x1 = ξ1 = 0

}

then Proposition 9.18 follows immediately from Lemma 9.19.

Let ρ = (x, t, ξ, τ) ∈ suppµ ∩ π−1(U). By Theorem 5.2 we have τ + p(x, ξ) = 0 i.e.

ρ ∈ Σ.

Let ζ = π(ρ) ∈ U ∩ Σb = Ũ .

If
{
Γ(−s, ζ) : s ∈

[
0, β
]}

∩ T ∗∂M ⊂
k−1⋃

j=0

Gj then since by Lemma 9.4(ii) we have

π−1
(
Γ(−β, ζ)

)
∩ suppµ = ∅
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the hypothesis
(
Pk−1

)
implies that π−1(ζ)∩ suppµ = ∅ which contradicts our assumption

ρ ∈ suppµ.

Therefore one can find s1 ∈
[
0, β
]

such that ζ1 = Γ
(
− s1, ζ

)
∈ T ∗∂M but ζ1 /∈

k−1⋃

j=0

Gj .

Since

ζ1 ∈ Γ
(
− s1, Ũ

)
∩ T ∗∂M ⊂ V1

by Lemma 9.21(ii) we have ζ1 ∈ Gk. Then Γ
(
s, ζ1

)
∈ Gg if s ∈

[
− β + s1, 0

[
∪
]
0, s1

]
.

If s1 6= 0 we have Γ
(
s1, ζ

)
= Γ

(
s1,Γ

(
− s1, ζ

))
= ζ ∈ Gg and if s1 = 0 we have

ζ = ζ1 ∈ Gk. In both cases we have ζ =
(
x′, t, ξ′, τ

)
and ρ =

(
0, x′, t, 0, ξ′, τ

)
because

τ + r
(
0, x′, ξ′

)
= 0. It follows that

suppµ ∩ π−1(U) ⊂
{
(x, t, ξ, τ) : x1 = ξ1 = 0

}

as claimed in (9.54).

Case ② : here for ζ ∈ Gk ∩ V1 we have Γ(s, ζ) ⊂ T ∗M when s ∈
[
− β, β

]
\ {0}

We shall show that

(9.55) ν = 0 on Ũ ∩ T ∗∂M

Since by Lemma 9.17 we have ν

(
Gd ∪

(
+∞⋃

k=3

Gk

))
= 0 it is enough to prove that

supp ν ∩ Ũ ∩
(
H ∪ Gg

)
= ∅

Let ζ ∈ Ũ ∩
(
H ∪ Gg

)
∩ supp ν.

{
Γ(−s, ζ) : s ∈

[
0, β
]}

∩ T ∗∂M ⊂
k−1⋃

j=1

Gj

since by Lemma 9.21(ii) we have π−1
(
Γ(−β, ζ)

)
∩ suppµ = ∅, by

(
Pk−1

)
we have

π−1(ζ) ∩ suppµ = ∅ so, by Remark 9.20, we have ζ /∈ supp ν which is a contradiction. It

follows that we can find s1 ∈
[
0, β
]

such that ζ1 = Γ
(
− s1, ζ

)
∈ Gk (Gd if k = 2) (since

Γ(−s, ζ) ∈ V1 by Lemma 9.21). Moreover by Lemma 9.21, case ②, we have Γ
(
s, ζ1

)
∈ T ∗M

if s ∈
[
− β + s1, 0

[
∪
]
0, s1

]
. If s1 6= 0 then ζ = Γ

(
s1, ξ1

)
∈ T ∗M which contradicts our

assumption. If s1 = 0 we have ζ1 = ζ ∈ Gk (Gd if k = 2) which again is impossible. It

follows that Ũ ∩ supp ν ∩
(
H ∪ Gg

)
= ∅ which proves (9.55).

It follows from Proposition 9.12 that tHpµ = 0 on π−1
(
Ũ
)
. This implies that the support

of µ propagates along the bicharacteristics of p (with (t, τ) =constant). Now by assump-

tion π−1
(
Γ
(
− s, ζ0

))
∩ suppµ = ∅ and π−1

(
Γ
(
s, ζ0

))
∩ (τ + p)−1(0) =

(
x(s), t0, ξ(s), τ0

)
.
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It follows that for small s > 0 we have π−1
(
Γ
(
s, ζ0

))
∩ suppµ = ∅ which proves Proposi-

tion 9.18.

Case ③ : here k is odd, k ≥ 3

We claim that

(9.56) suppµ ∩ π−1(U) ⊂
{
(x, t, ξ, τ) ∈ T ∗

R
d+1 : x1 = ξ1 = 0

}

where U is been defined in case ①.

Let ρ = (x, t, ξ, τ) ∈ π−1(U)∩suppµ. Then τ +p(x, ξ) = 0. Let ζ = π(ρ) ∈ U ∩Σb = Ũ .

If
{
Γ(s, ζ) : s ∈

[
0, β
]}

⊂
k−1⋃

j=1

Gj

then
(
Pk−1

)
and the fact that π−1

(
Γ(−β, ζ)

)
∩suppµ = ∅ imply that π−1(ζ)∩suppµ = ∅

which is in contradiction with ρ ∈ suppµ.

Therefore one can find s1 ∈
[
0, β
]

such that ζ1 = Γ
(
− s1, ζ

)
∈ Gk (since ζ1 ∈ V1). Since

we are in case ③ we have

Γ
(
s, ζ1

)
=

{(
x′g(s), t, ξ

′
g(s), τ

)
s ∈

]
0, s1

]
(
x(s), t, ξ(s), τ

)
s ∈

[
− β + s1, 0

[

If s1 6= 0, ζ = Γ
(
s1,Γ

(
− s1, ζ

))
= Γ

(
s1, ζ1

)
∈ Gg so ρ =

(
0, x′, t, 0, ξ′, τ

)
.

If s1 = 0 then ζ = ζ1 ∈ Gk and ρ =
(
0, x′, 0, ξ′, τ

)
.

This proves (9.56). Therefore we can use Lemma 9.19 and its conclusion with V such

that π−1
(
Γ
(
s, ζ0

))
⊂ V ⊂ π−1(U) for s ∈

[
− β, β

]
.

Now ζ̃0 =
(
x′g (−s, x′0, ξ′0) , t0, ξ′g (−s, x′0, ξ′0)

)
∈ Gd, when s ∈

]
0, β
]

and ζ̃0 → ζ0 if s→ 0

so ζ̃0 ∈ Ũ if s is small enough, it follows from Lemma 9.21(ii) that π−1
(
Γ
(
− β, ζ̃0

))
∩

suppµ = ∅ since
{
Γ
(
s, ζ̃0

)
: x ∈

[
− β, 0

]}
⊂ Gd ∪ T ∗M , it follows from

(
P2

)
, π−1

(
ζ̃0
)
∩

suppµ = ∅. By Lemma 9.21 we deduce that
(
0, x′g (s, x′0, ξ

′
0) , t0, 0, ξ

′
g (s, x′0, ξ

′
0) , τ0

)
/∈

suppµ for small s, which proves Proposition 9.18 in this case.

Case ④

We claim in this case that

(9.57) supp ν ∩ Ũ = ∅

As in case ② it is enough to prove that supp ν ∩ Ũ ∩
(
H∪ Gg

)
= ∅. Let ζ ∈ supp ν ∩ Ũ ∩(

H ∪ Gg

)
. If

{
Γ(−s, ζ) : s ∈

[
0, β
]}

∩ T ∗∂M ⊂
k−1⋃

j=1

Gj
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then
(
Pk−1

)
and the fact that π−1

(
Γ(−β, ζ)

)
∩ suppµ = ∅ (Lemma 9.21(ii)) imply that

π−1(ζ) ∩ suppµ = ∅. Then by Remark 9.20 we have ζ /∈ supp ν which is a contradiction.

Therefore one can find s1 ∈
[
0, β
]

such that ζ1 = Γ
(
− s1, ζ

)
∈ Gk (since ζ1 ∈ V1) and

Γ
(
s, ζ1

)
=

{ (
x(s), t, ξ(s), τ

)
⊂ T ∗M, s ∈

]
0, s1

]
,

(
x′g(s), t, ξ

′
g(s), τ

)
⊂ T ∗M, s ∈

[
− β + s1, 0

[
.

If s1 6= 0 then ζ = Γ
(
s1, ζ1

)
∈ T ∗M which contradicts our assumption. If s1 = 0 then

ζ = ζ1 ∈ Gk which again contradicts the fact that ζ ∈ H ∪ Gg since k is odd, k ≥ 3, in

this case. Thus (9.57) is proved. It follows then, from Proposition 9.12, that tHpµ = 0

on π−1
(
Ũ
)

therefore on a complete neighborhood of π−1
(
ζ0
)

in T ∗Rd+1 since µ ≡ 0 in

x1 < 0. Now
(
x
(
s, x0, ξ0

)
, t0, ξ

(
s, x0, ξ0

)
, τ0
)

is contained in
{
(x, t, ξ, τ) : x1 < 0

}
when

β + s < 0. By propagation along the bicharacteristics of p (since tHpµ = 0) we deduce

that Γ
(
s, ζ0

)
=
(
x
(
s, x0, ξ0

)
, t0, ξ

(
s, x0, ξ0

)
, τ0
)

does not intersect suppµ when s > 0 is

small enough. The proof of Theorem 5.2 is complete.

9.3 Proofs of the technical Lemmas

We shall need the following elementary result.

Lemma 9.22. Let P =

d∑

j,k=1

Dja
jk(x)Dk + V where P satisfies conditions (2.3), (2.5)

and V ≥ 1. Then there exists C ≥ 0 such that for any z ∈ C such that Im z 6= 0, any h in]
0, 1
]

and any solution u ∈ H1
0 (Ω) of the problem h2Pu− zu = f with f ∈ L2(Ω) we have

∥∥h2Pu
∥∥2

+

n∑

j=1

‖hDju ‖2 +
∥∥∥hV

1
2 u
∥∥∥

2

+ ‖ u ‖2 ≤ C
〈 |z| 〉2

|Im z|2
‖ f ‖2

where ‖ · ‖ is the norm in L2(Ω).

Proof

Taking the scalar product in L2(Ω) of the equation with u we obtain

(9.58)
(
h2Pu, u

)
− Re z‖ u ‖2 − i Im z‖ u ‖2 = (f, u)

Since
(
h2Pu, u

)
is real, taking the imaginary part of (9.58), we obtain

(9.59) ‖ u ‖ ≤ ‖ f ‖
|Im z|
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Now we have
(
h2Pu, u

)
≥ C




d∑

j=1

‖hDju‖2
+
∥∥∥hV

1
2 u
∥∥∥

2


 so taking the real part in (9.58)

and using (9.59) we obtain

(9.60)
d∑

j=1

‖hDju‖2
+
∥∥∥hV

1
2 u
∥∥∥

2

≤ C |z|
|Im z|2

‖ f ‖2

Finally we have
∥∥h2Pu

∥∥2 ≤ 2
(
‖ z ‖2‖ u ‖2 + ‖ f ‖2

)
so using (9.59) and (9.60) we obtain

the claim in the Lemma.

In that follows, we shall make a great use of the so called Helffer-Sjöstrand formula (see

[Da]) which will recall now.

Let θ ∈ C∞
0 (R). We defined an 〈〈almost analytic extension 〉〉 of θ as follows. Let ϕ ∈

C∞
0 (R) be such that ϕ(t) = 1 if |t| ≤ 1, ϕ(t) = 0 if |t| ≥ 2.

We set

(9.61) θ̃(x, y) =
2∑

ℓ=1

θ(ℓ)(x)

ℓ!
(iy)ℓϕ

(
y

〈x 〉

)

Then θ̃ is a C∞ function on R × R and satisfies

(9.62)





∣∣∣∂ θ̃(x, y)
∣∣∣ ≤ CN |y|2 as |y| → 0, where

∂ θ̃(x, y) =
1

2

(
∂θ̃

∂x
+ i

∂θ̃

∂y

)
(x, y)

Let PD be our self adjoint operator defined in (2.1). Then the Helffer-Sjöstrand formula

asserts that

(9.63) θ
(
h2PD

)
= − 1

π

∫

R2

∂ θ̃(x, y)
(
z − h2PD

)−1
dxdy

where z = x+ iy.

Proof of Lemma 6.3

(i) According to (9.63) we have (writing P instead PD)

(9.64)
[
θ
(
h2P

)
, χ
]

= − 1

π

∫

R2

∂ θ̃(x, y)
[(
z − h2P

)−1
, χ
]
dxdy

Now
(
z − h2P

) [(
z − h2P

)−1
, χ
]
f = χf + h2

[
P, χ

](
z − h2P

)−1
f − χf . Thus

[(
z − h2P

)−1
, χ
]

=
(
z − h2P

)−1
h2
[
P, χ

](
z − h2P

)−1
f

56



Let us set ① =
∥∥∥
[(
z − h2P

)−1
, χ
]
f
∥∥∥

L2
. By (9.59) we have

① ≤ 1

|Im z|
∥∥∥h2
[
P, χ

](
z − h2P

)−1
f
∥∥∥

L2

Now
[
P, χ

]
=

d∑

j=1

bjDj + b0 where bj ∈ C∞
0

(
Ω
)
, j = 0, · · · , d. It follows that

① ≤ Ch

|Im z|




d∑

j=1

∥∥∥hDj

(
z − h2P

)−1
f
∥∥∥

L2
+ h

∥∥∥
(
z − h2P

)−1
f
∥∥∥

L2




Using Lemma 9.22 we deduce that

① ≤ C′h 〈 |z| 〉
|Im z|2

‖ f ‖L2

It follows from (9.54) that, with z = x+ iy, we have

∥∥[θ
(
h2P

)
, χ
]
f
∥∥

L2 ≤ Ch

∫

R2

〈 |z| 〉
|Im z|2

∣∣∣∂ θ̃(x, y)
∣∣∣dxdy

Using formula (9.62) and the fact that θ̃ has compact support in x and y we obtain (i).

(ii) Again the formula (9.63) we have

∥∥hDjθ
(
h2P

)
f
∥∥

L2 ≤ 1

π

∫ ∣∣∣∂ θ̃(x, y)
∣∣∣
∥∥∥h∂j

(
z − h2P

)−1
f
∥∥∥

L2
dxdy

so using Lemma 9.22 we obtain

∥∥hDjθ
(
h2P

)
f
∥∥

L2 ≤ C

∫ ∣∣∣∂ θ̃(x, y)
∣∣∣
〈 |z| 〉
|Im z|dxdy‖ f ‖L2 ≤ C′‖ f ‖L2

(iii) We have as above

hDj

[
θ
(
h2P

)
, χ
]

= − 1

π

∫

R2

∂ θ̃(x, y)hDj

[(
z − h2P

)−1
, χ
]
dxdy

and

hDj

[(
z − h2P

)−1
, χ
]

= hDj

(
z − h2P

)−1
h2
[
P, χ

](
z − h2P

)−1
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Using again Lemma 9.22 we obtain

∥∥∥∥∥hDj

[(
z − h2P

)−1
, χ
]
f

∥∥∥∥∥
L2

≤ C
〈 |z| 〉
|Im z|

∥∥∥h2
[
P, χ

](
z − h2P

)−1
f
∥∥∥

L2

≤ Ch 〈 |z| 〉
|Im z|




d∑

j=1

∥∥∥hDj

(
z − h2P

)−1
f
∥∥∥

L2
+ h

∥∥∥
(
z − h2P

)−1
f
∥∥∥

L2


 ≤ C′h

〈 |z| 〉2
|Im z| ‖ f ‖L2

and we conclude as before.

Proof of Lemma 8.2

We proceed as above. We have using (9.63) and Lemma 9.22

∥∥∥∥∥

[
θ
(
h2P

)
, χ0P

1
4

]
v

∥∥∥∥∥
L2

≤ 1

π

∫

R2

∣∣∣∂ θ̃(x, y)
∣∣∣
∥∥∥∥∥
(
z − h2P

)−1
h2
[
P, χ0

]
P

1
4
(
z − h2P

)−1
v

∥∥∥∥∥
L2

dxdy

≤C
∫

R2

∣∣∣∂ θ̃(x, y)
∣∣∣

h

|Im z|




n∑

j=1

∥∥∥∥∥hDjP
1
4
(
z − h2P

)−1
v

∥∥∥∥∥
L2

+

∥∥∥∥∥hP
1
4
(
z − h2P

)−1
v

∥∥∥∥∥
L2


 dxdy

Now we have with u =
(
z − h2P

)−1
v ∈ D(P )

∥∥∥∥∥hDjP
1
4 u

∥∥∥∥∥
L2

= h
−

1
2

∥∥∥∥∥hDj

(
h2P

) 1
4u

∥∥∥∥∥
L2

≤ Ch
−

1
2

∥∥∥∥∥
(
h2P

) 1
2
(
h2P

)1
4 u

∥∥∥∥∥
L2

≤ Ch
−

1
2
〈 |z| 〉
|Im z| ‖ v ‖L2

by interpolation using Lemma 9.22. It follows that

∥∥∥∥∥

[
θ
(
h2P

)
, χ0P

1
4

]
v

∥∥∥∥∥
L2

≤ C

∫

R2

∣∣∣∂ θ̃(x, y)
∣∣∣h

1
2

〈 |z| 〉
|Im z|2

dxdy ‖ v ‖L2 ≤ Ch
1
2 ‖ v ‖L2
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[Hö] L. Hörmander, The analysis of Linear Partial Differential Operators I, III, Springer

Verlag, Berlin, Heidelberg, New-York (1985).

[K] T. Kato, On the Cauchy problem for the (generalized) KdV equation, Stud. Appl.

Math. Adv. Math. Suppl. Stud. 18 (1983), 93-128.
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