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Abstract— Evolutionary Robotics provide efficient tools and  we describe an approach based on training an anticipation
approach to address automatic design of controllers for aut-  mechanisms in order to modelize the simulated environment
mous mobile robots. However, the computational cost of the 514 iy a |ater step, to approximate the error of this modtH wi
optimization process makes it difficult to evolve controlles dt bot's behavior in th | id. Thi hani
directly into the real world. This paper addresses the key regar _0 ro 0_ S behavior .m € real world. This mechanism
problem of tranferring into the real world a robotic control ler ~ Makes it possible to adaptively correct motor outputs smas t
that has been evolved in a robotic simulator. The approach comply with the robot physical dynamics in the real world.
presented here relies on the definition of an anticipation+eabled In section 1V, our approach is experimentaly validated for
control architecture. The anticipation module is able to buld a an evolved wall-avoidance behavior and several experisnent

partial model of the simulated environment and, once in the eal h th bust t ds diff t kind of | fi
world, performs an error estimation of this model. This error show the robustness towards different kind or locomotion

can be reused so as to perform in-situ on-line adaptation ofabot ~ Perturbations.
control. Experiments in simulation and real-world showed hat
an evolved robot is able to perform on-line recovery from sesral [I. PROBLEM SETTING AND RELATED WORKS

kind of locomotion perturbations. The Evolutionary Robotics [1] approach addresses the

|. INTRODUCTION problem qf automatic _design_of robotic c_ontrollers by ra_g/i
on evolutionary algorithms, i.e. population-based ststibha
Evolutionary Robotics provide an approach towards build-gptimization algorithms. Such algorithms are particylavell
ing efficient controllers for autonomous (mobile) robots in fitted when the objective function (i.e. the task) is diffictal
the context of sparse, noisy and delayed rewards[1]. This igescribe. These stochastic optimization algorithms perfo
possible thanks to extensive use of evolutionary algorjitam 5 g generational basis (i.e. optimization at stegepends
stochastic population-based optimization process[3priter g, stepi — 1) and rely on the exploration of the space of
to optimize, for example, artificial neural networks basedpossible solutions through a population of candidate smist
control architecture. However, such optimization aldunis by combining selection operators (most fitted candidates ar
require high computational resources. As a consequenciely to survive from one generation to another) and ideall
optimization is usually performed in a simulated enviromme \ye||-suited variation operators (candidates may be recom-
and often end up with behaviors that cannot be implementegined and/or altered to diffuse supposedly good charatiesi
into an autonomous robot in the real world. as well as to efficiently explore the search space). These
In this paper, we address the key problem of behaviog|gorithms have been shown to be very efficient and to
transfer from simulation to the real world in the context of a 5chjeve human-competitive results on numerous problems
task-optimized mobile autonomous robot, sometimes rdfereyyhere standard learning algorithm are difficult to apply
to as thereality gad8]. More precisely, we are concerned which is a key advantage in robotics.
with adaptive on-line calibration process wrt. locomotion However, controller optimization has long been rightfully
perturbations : calibration issues, partial hardware @nd/ criticized because of a poor modelization of the robot ptsisi
software failure, medium and long lasting changes in th&ehavior in the real world. Short and long-term perturbasio
environment, etc. are either ignored or loosely modelized within the simulato
Our approach relies on the use of an anticipation mechpecause of the task extreme difficulty[6], [8]. Hence, eedlv
anism that makes it possible to capture specificities of theontrollers are very difficult to implement in a real world
simulated world where optimization took place. The an8eip ropbot and experiments are usually limited to simulated -envi
tion mechanism is then able to quantize the actual locomotiorgnments.
error in the real world with regards to intended motor ousput | the scope of this paper, we are concerned with loco-
from the controller. It is then possible to use this erromsiy  motion perturbations in the real world. In this context, it
in order to perform on-line adaptation to recover from saler s possible to identify several kind of perturbations, most
kind of motor calibration error and/or medium- and long- of them (except no.2) resulting in a stable or changing

lasting motor noise. directional bias during locomotion:
In the following section, we present the problem setting and

review the litterature for possible candidate solutiongxty Isee [11] for examples



1) calibration perturbation depending on wheels or mo- In this case, the anticipatory network predicted sensoutsp
tor characteristics at initialization (diameter, power, att + 1.
etc.); While the cited works where concerned with adaptation
2) punctual perturbation that occurs more or less fre- towards long-lasting sensor perturbations, the antioigat
quently, but are always very limited in time (e.g. mechanism provide an efficient way to take into considenatio
slip/sliding, collision, etc.); environmental perturbations. Indeed, the main point othsuc
3) long-lasting changedue to a partial motor failure (e.9g. a mechanism is to provide an error rate of the awaited
minor hardware failure, lasting energy supply problem,consequence of an action on the environment. In the next
external perturbation, change in the wheel texture, etc.)section, we show how to exploit this error signal to address
4) intensity-changing perturbation (e.g. ongoing loss of the problem of motor perturbations.
energy for one motor, agravating motor problem, etc.).
Among these possible perturbations, it should be noted I1l. APPROACH
that the second one is usually easy to handle by controllers
thanks to immediate recovery and does not need adaptatio‘g1
(i.e. a single motor command towards the other direction may,
compensate sliding). However, all other perturbationshoén
be adressed in such a way since non-adaptive controlle

In the scope of evolving a controller within a simulated

vironment, we propose to build a partial model of this
ry simulated environment. The goal of such a model is
to be able to provide a basis for detecting anomalies (i.e.
: ) rr?’erturbations) once the robot is immersed in the real world.
would oscillate between goal-oriented control and erranco That is, we intend to build an error detector rather than an

pegizt'ggtr(:ﬁ]e;:c“%gx ifsrt(?r:a\/eg(l\egncn;ﬁtnrf}:e"rlssdtirraetlc(zln onexact model of the world. Biologists have long been aware
PP Y Ot the role of anticipation in animals and the ability of

real robots. While th|_s _makes It pos§|ble to com_pletely avoi such a module to perform agent and/or world behavior error
the problem at hand, it is extremely time consuming both from

. . . s detection. Formally, the anticipation functiof(,+;cipation
the robot viewpoint (for obvious reason, evolution in thalre is defined as: y P luticipation)
world is much slower than in a simulated environment) and '

; : ) ; Vt € T, Funticipation (w(state,)) — O(statei+1)
from the human supervisor viewpoint (who has to deal with With state. defining all possible information that charac-
everything from minor annoyances, major software/harewar . thsearoegot s gnvirgnment (e.0. sensory iNputtpae
failures and coffee breaks). For example, the experimen 9. y INputso

described in [7] took more than 27 hours to perform a singIeOUtPUtS’ proprioceptive information, memory, etc.) andhwi

evolution - note that a similar evolution could be performedw a”d‘? as fu.nct|ons .that. perform a selection on a gubpart of
in less than twenty minutes on today Personal Computers, all gvallable information in a givestate .of the robot in the

In a slightly different setup, some works have adressed thgnvwotnmtent (e.g. only IR sensors as inputs and only motor
problem of adaptiveness to lasting changes in the scope &t outpu S).

evolutionary robotics. The work presented in [4] addreskes 'F‘ _the_ next two sub-secthns, we sha!l defme_: (l) the
problem of evolving an autonomous mobile robot controller@nticipation module that predicts the awaited variation be

for exploring a simple arena. During evolution, environtan tween actual and_future s_tate and (2) the correcFion mod_ule

variation is modified inbetween each generation ("nightian that corrects desired actions so as to cope with possible

"day” alternate) and leads to a change in the IR proximityperturbat'ons'

sensors behavior. The controller is a neural network with L

four inputs (IR sensors) and four outputs (two motor outpusz" The Anticipation Module

and two "models”). In fact, this network is divided in two  In a previous section, we showed previous work that relied

parts: (1) the control network produces the motor outputon sensory information anticipation[5]. However, locomaot

and (2) the model network (an oracle) produces dissired is mostly independent of the sensors (as far as no obstacle

motor outputs. All weights are evolved, but during evalomfi comes into contact). The question is: how to measure per-

control network weights are adjusted (with standard backturbation during locomotion? A relevant approach is to rely

propagation) using the model network output as a reinforceen the variation (or difference) between the awaited conse-

ment signal. The authors shows that such a network makeguences of an action and the actual observed consequences.

it possible to quickly adapt to the previously mentionnedThe next question is to identify the relevant sensors from

perturbations. which to measure such a variation. For example, a proximity
However, recent works in [5] show that this approach isinfra-red sensor belt is hardly fitted to do this (perceptual

not robust as soon as the robot is runned longer than thaliasing, very noisy - it is mostly targeted at low-level

time used for evaluation during evolution (i.e. controlwetk  object avoidance). However, many sensors provide evaluati

converge towards model network). The authors propose a neaf relative movement in the environment: compass, optical

architecture, based on a neural network controller thateztab flow, inertial gyro, external-source odometer (e.g. LEDRD

a control network (as previously) and an anticipatory nekwo circuit), etc. For all these sensors, the anticipation nedk

In this case, they show that robustness in the long term ifocused on predicting variations between actual and future

possible for the same "night” and "day” experimental seftin sensor values (e.g. compass variation in radians).



actuators,

Where vs is the variation on the sensorsg is the an-

comectedActions, ticipated variation ont the sensors.is the corrective value
Correction and adaptiveSpeeds is the speed at whiclax should be
| Module adjusted whenever a prediction error océuldoreover,as is
? FEY " opatocvariaton, multiplied by the normalised and bounded variationAmpuléu

stop 1. | step o1 v (thanks to functiorr - maximum threshold is set to avoid

desiredActions,

i correction oscillations). All values are defined betweem@ a
Control Anticipation| | 1
Module Module |- The above algorithm means that the Correction Module
i ‘ performs on-line adaptation based on the difference betwee
pre——rp— e predicted motor consequences and actual observed motor

consequences on the position of the robot in the real world.
Long-term adaptation is performed by gradually modifying
Fig. 1. Overview of the control architecture thea term. This term is used to adjust motor calibration and is
constantly converging toward the (possibly changing tgrou
time) optimal valué.

Figure 1 shows our architecture. The anticipation behavior AS a& short discussion, two important considerations should
predicts the variation in orientation from desired motot-ou be noted. Firstly, sensors considered here for measuring
puts. At the next step, this variation is then confrontechwit Variation can be any sufficiently low biased sensor meagurin
the actual observed variation in orientation so as to evalaa the consequences of an agent’s action. In the following we
prediction error, which is finally used to correct and comver US€ & compass sensor and a visual landmark to compute the

desiredoutputs intoeffectiveoutputs. This architecture shows Variation - while not proprioceptive, these sensors areugho
two very interesting properties: to give information on the actual consequences of motor

1) the anticipation module is completely independent fromcontrol. Of course, an accelerometer or any proprioceptive

other modules and may be trained separately (e usinge 20" could also be used - making it possible to apply
) Y ) P Y (€.9. guch online adaptation to other kind of robots (e.g. walking
a simple wander behavior) or in parrallel with another

learning task (e.g. behavior optimizatién) robots, where adaptation is performed on servo-motor obntr

using angular position). Secondly, the correction functi®

2) _trammg can be ea_S|Iy performed as a superws«_ed Iea”ﬁmited here to a linear function, but other functions cobkd
ing task (regression) where each step provides the

) considered.
source data from leaming stepand the oracle out- In the next section, we show several experiments in simu-
put for learning stept — 1 (Vt), that is :Vt € T, ' P

. ! lation and real world that illustrate our approach.
find Fanticipation defined aSFanticipation (mOtOTt) - PP

variationSensor,  sensor,

variations, 1. In section IV, we will show that this IV. EXPERIMENTS
training can be easily and quickly achieved using a veryA. Implementation Issues
simple neural network predicting compass variation. The following experiments were performed with thevs
] BAD robotic simulator developped in our lab and a Khepera
B. The Correction Module mobile robot with color camera.

According to figure 1, the anticipation signal is used SIMBAD is an open source Java 3d robot simulator for
as a source to correct the desired motor commands, i.&cientific and educational purposes[9it provides a simple
efficient commands in a simulated environment. Of coursebasis for studying Situated Artificial Intelligence, Maghi
this module is added to the architecture after evolutiom, i. Learning, and more generally Al algorithms, in the conteixt o
only when the robot is immersed in the real world. In the Autonomous Robotics and Autonomous Agents. Moreover, it
following, we are concerned with a two-wheels robot but itembeds REONODE, a Neural Network library (feed-forward
should be noted that extension towards diverse hardware AN, recurrent NN, etc.) and can be easily used in conjunc-
rather straight-forward. The following algorithm des@ibthe  tion with any Evolutionary Algorithm librar§. We rely on
correction module : Sean Luke’s ECJ[10], a powerful Evolutionary Computation

. . library in Java, for the evolutionary part.
g 22 _ Z?;gﬁg;;ﬁ?l’lvizal)l))) The robot used is an extended kheperdth the wireless
3) if (wp > 0) then a”:“:’ o :“(as ko (va)) colour camera, 8 infra-red sensors and 2 motors (i.e. two

4) if (vp <0)thena :=max(1,a/(as *o(va))) _ Bin this case, we assume that variationDirectiop is positive (negative)
5) correctedMotorright = desiredMotonght % Q if the robot is biased towards going right (left).

. L . 4conergence is guaranteed by the threshold inctHeanction.
6) correcterMotoriest := desiredMotories: * (1 — a) 5The Simbad Package is available from http://simbad.stange.net/

under the conditions of the GPL (GNU General Public Licence)
2Training provides a much faster and efficient way to buildahécipation 5Recent versions do indeed provide such a library.
module compared to manual definition by the supervisor. http:/www.k-team.com/
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b) Training the Anticipation Module:

As seen in the previous section, thaticipation module
can be trained using desired motor commands at tinas
input and observed orientation variation at time- 1 as
output. The goal is to predict as accurately as possible the
future state of the robot in the world, and then compare

wheels). The 84BAD simulator provides a simulated khepera It 1o th_e_ effgctwe state. of the world. Thg error _rate of
the anticipation mechanism should be low in the simulated

and control architecture can be switched from simulation to” ™ . o .
real world. The robot used in simulation slightly differsin environment, and unknown at first in the conditions of a real

the real one. The variation sensor for the simulated robot i’fr?vwoln{_nent. In this cas;a, two S.Ltqat'r?nﬁ a”ﬁe: ?'th? It()jwt i
provided by a denoised compass while it is provided throug simulation was accurate), or it is high, allowing to detec

a simple visual tracking algorithm for the real robot. This no;se anddperlturbatlon an_d enabh?g twrection moduldo
algorithm tracks specific landmarks in the environment ancfict accordingly (see previous section).

compute orientation variation from the landmark’s movemen  1NiS i indeeld a simple straight-forward regression leggni
task (R — R"). In order to perform this regression task,

B. Experimental setup the anticipation mechanism is implemented as a multi-layer

S ¢ id basis for th luati f hi perceptron with 2 inputs (motor commands) and one output
0 as 1o provide a basis for Ihe evauation of our arc I'(orientation variation). Weights between neurons arenledr
tecture, we start with evolving a controller for a given task

L S . . using the standard back-propagation learning algorithm.
and training the anticipation network in the simulator. @g t .g propag g4
. : . . First, 1.000.000 examples are extracted from random wan-
previously shown figure 1, this means we are successwel&

X L er controls of the robot in the simulator. Then, learning is
concerned with theontrol moduleand theanticipation mod- .
ule. performed on a subset of the examples and tested with another

a) Evolving the Control Module: subset - despite Fhe great number of examples,_ qurning is al
- . - _— . ways performed in less than 10 seconds. Learning is repeated

The task to be opt|m|;ed 'S deﬂped as visiting the MaxXl1 o times to get a good accuracy of learning performance.
mum number of pIaces in the e_nvwonment shown in flgureSeveral topologies were tested, from 0 hidden node to 20
2. The control moduleis a multi-layered perceptron. The hidden nodes (not shown here) - best results are archieved by

perceptron have 8 inputs (one for each IR sensor on thﬁﬂe network with no hidden layer (see fig. 4), which is not
khepera robot) and 2 outputs corresponding to the motor oug;eally surprising (this is a rather straight-forward mag.
puts (left an right motor). The evolution optimize the weigh ¢) Adding the Correction Module:

on the connections between neurons. Problem properties and .
: . Once both modules are completed, we add dbeection
parameters are defined as: . X
moduleand put our architecture to the test. This means that

o 50 100
generations

Fig. 3. Fitness function for the control

« 15 neurons (8 inputs, 4 hidden, 2 outputs, 1 bias); 4 eyolution/learning take place anymore, only adaptation
« the network is fully connected (46 weights); occurs in thecorrection moduleln the following, we present
+ 100 individuals, (20+80)-ES, mutation rate is 0.2; four experiments: (1) On-line calibration correction; @-
« environment is divided inta « j zones to be visited;  jine adaptation to continuous wear; (3) On-line adaptation
« fitness : changing environmental noise and (4) On-line adaptation fo
— Optimize F' such that a real-world robot.
F= Z?:o(zyzo(exploredi,j)) The three first experiments are performed in simulation:
— duration: Tz different kind of perturbations are added in the simulaifber
— explored; ; is 1 if explored, O if not. evolution is completed and the adaptation ability is evizlda

— It stops right after a collision (implicit penalization). The orientation sensor is based on an on-board compass. The
Results are shown on figure 3: the robot quickly succeedfinal experiment is performed using a real Khepera robot
in exploring all places. and on-line adaptation is evaluated for a simple go-forward



continuous noise continuous noise with evolved behavior

error
H
error

1500
time

0
tume

Fig. 5. go-forward behavior. left: without correction, rdid: with correc- Fig. 6. evolved behavior samples. left: without correctiomiddle: with

tion, right: prediction error correction, right: average prediction error on 10 runs.
behavior. In this case, change of orientations are detectec

using visual tracking of a landmark - this results in the same

architecture, only Khepera robot do not provide compass. It — —
is important to note that from the controler viewpoint, the

type of value is interpreted in the exact same fashion (i.e. a

change of orientation). As a consequence, an evolved rob@ig. 7. behaviors for continuous wear. left: ad-hoc with@etrection,

using compass can be implemented straight-forward in a If(;l.é\rpiddle-left: ad-hoc with correction, middle-right: evely without correction,
. . . L . right: evolved with correction

robot using visual tracking as long as normalization is the

same.

In all the following experiments, robot locomotion traces ) ) o
are shown along with the prediction error - in the case ofcontrollers). For both experiments, the erroris quite imaot
non-anticipation-based correction controllers, antitign is @t first, and the anticipation-based correction quicklyrecr
nevertheless computed, albeit not used, so as to plot tH&ccordingly and keeps on correcting to maintain the prefict
prediction error. In order to address validation issues, al®mor as low as possible. Results are shown in figures 7 and
experiments were performed more than 20 times to ge?- Note that correction for the evolved behavior makes it

reliable results. Summary of results as well as illusteativ POSSiPle to avoid a crash (see fig.). As stated in section,IV-C
robot trace examples will be shown. the occasional peaks can be reduced thanks to over-sampling

when learning anticipation (results not shown here).
C. On-line calibration correction

The first problem to address in a real environment deal
with the initial calibration of the robot. We evaluate it in
the case (1) of a hand-written go-forward controller and (2) | this third experiment, we are concerned with the ro-
of the evolved controller. Figures 5 and 6 respectively show,;stness towards perturbation changing through time (e.g.
the results for both setting. In both cases, the anticipatio non-homogeneous grip due to environmental changes). In
module provide a clear correction and control quickly con-grder to achieve this, we alternatively increase and deerea
verge to the awaited behavior. Then again, the figures showertyrbations on both the wheels, i.e. the error increase an
that anticipation error decrease over time as adaptation igecrease on the left wheel, then on the right wheel, and
performed. In the case of the evolved controller, error geakgsg on. The results on figure 9 shows the case when no
occur when avoiding a wall - this is due to the lack of correction is added. this figure also shows the same situatio
examples of wall-encounter during the training and is notyjth correction: we can see an adaptation of the behavior and

an issue since prediction error is quickly reduced aftedsar onjy few errors occur. This is due to a quick alpha variation
Albeit not an issue, this can be reduced by oversampling suchom the anticipation mechanism.

examples when learning anticipation (i.e. in the curretuze

situations when the robot turns are much less frequent than
going straight-forward. This lack of examples leads to tgea inceasing noise inceasing noise withevvolved
prediction error in this case). . |

%. On-line adaptation to changing environmental noise

D. On-line adaptation to continuous wear

error
H
error

This second experiment addresses the problem of contint
ous wear: a wheel which diameter or motor power decrease ,
over time. In this setup, perturbation intensity incredsdse ' SESSSSR e N
form of a logarithmic function over time, until a threshol i e
reached. The correction mechanism is exactly the same as beg. 8. prediction error for continuous wear. left: ad-hdeaight-forward
fore and same tests are performed (hand-written and evolvegthavior, right: evolved behavior.

B 8 § 8 = &

1500
time
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Fig. 11. Example with low perturbation - 2 left images: goward without

) o ) . ) . correction - 2 right images: go-forward with correction
Fig. 9. Left: prediction error for changing environmentalise. Right: alpha

correcting value is adapted over time.

autonomous mobile robot in the real world. This is a key
problem in Evolutionary Robotics since evolved contraller
are rarely used in real robots because of the difficult task of
exactly simulating what is relevant from the real world.
. The main contribution of this paper is to propose a new
. *" generic control architecture for Evolutionary Roboticsith
. relies on an anticipation module so as to perform on-line
e R e w = adaptation towards locomotion perturbations. This module
is learned during evolution and then used during real-world
operation to correct output commands from the task-orgbnte
evolved controller.

Experiments showed that this anticipation module is able
to capture part of the simulated world model and makes
it possible to compute a prediction error between awaited
.. . and actual consequences of an action in the real world.
In this final experiment, we reproduce the same setup 3% his prediction error was shown as a key feature for on-line

before on a real Khepera robot with a 2D camera (see SeCtioQdaptation towards several kind of perturbations and radlu
IV-A). Perturbation is that of the real world, the contralis

a simple go-forward ad hoc behavior and tAeticipation Future works include more real-world studies of the adap-
. B L . . . tive capacity of the proposed architecture in the scopeiofus
Module is trained as before in simulatiBnThe orientation pactty brop pe oty

L . . . : . more generic and reliable orientation variation sensorisu
sensor is implemented using a visual tracking algorithoivhi

track d land Kin th . t Th bot is ol @s optical flow based sensor rather than compass or visual
tracks a red landmark in the environment. The robot Is place acking sensor. We also intend to extend our approach to
in straight line in front of the red landmark. Figure 11

tivelv show the behavior of the robot without and .ththe case of more complex robotic systems such as legged
respectively show the behavior of the robot without and wi robot, where such anticipation module may be used for failur

anticipation-based correction. In order to compare the tWOdetection and recovery

settings, we compute the cumulative prediction error over

Constant noise Straight forward controler

vith antiipation
without anticipation

error

Fig. 10. Real robot error rates for one example. The errowgrwith time
due to a continuous noise on one wheel. With the anticipatiomection,
the control is adapted continously so that the error remaw |

F. On-line adaptation for a real-world robot

time that is given by the anticipation module in both case (se
fig. 10 - in the setup where no anticipation-based correctiorh]
is done, anticipation is computed to plot the predictioroerr [2]
but not used). This experiment has been performed ten time%]
always leading to similar results (only one result showreher 4]
It is clear that the anticipation and correction modulesaoie
to reduce the prediction error and make it possible to mainta [°]
the right direction. In some other experiments (not shown
here), we used a khepera robot with a greater perturbatiofs]
on the left wheel - the anticipation module succeeded in
maintaining the right direction while in the standard setup (7,
the robot quickly deviated from its original trajectory and
ended bumping into nearby wall. (8]
V. CONCLUSION 9]
In this paper, we have adressed the difficult problem
of transferring a simulation-based evolved controller to a

REFERENCES

S. Nolfi and D. Floreano. Evolutionary Robotics. MIT Pse2000.

R. Brooks. A Robust Layered Control System for a MobilebBb IEEE
Journal of Robotics and Automation, Vol. 2, No. 1, pp.14-28B6

D. Goldberg. Genetic Algorithms in search. Addison-Vegs1989.

S. Nolfi and D. Parisi. Auto-teaching : networks that depetheir own

teaching input. Proceedings of the second ECAL, 1993.

N. Godzik, M. Schoenauer and M. Sebag. Robustness inahg tun

: Auto-teaching vs. Anticipation in Evolutionary Robotid3roceedings
of PPSN, 2004.

U. Nehmzow. Quantitative analysis of robot-environménteraction -
on the difference between simulations and the real thingroteedings
of Eurobot, 2001.

O. Miglino, S. Nolfi, H. Hautop Lund. Evolving mobile rob® in

Simulated and real environments. Artificial Life 2 (417-334895

N. Jakobi, P. Husbands, I. Harvey. Noise and the reality gthe use of
simulation in evolutionnary robotics. Lecture Notes in Guuter Science
1995

L. Hugues, N. Bredeche. Simbad : an Autonomous Robot Bition

Package for Education and Research. Proceedings of Thé MNiter-

national Conference on the Simulation of Adaptive Beha(®4B’06),

Roma, Italy.

[10] S. Luke. ECJ: A java-based evolutionary computatiord aenetic

8i.e. The Anticipation module was trained using a wanderimgavior.
Thus, the Anticipation module is dependent with regardh&dnvironment
rather than to a specific behavior.

programming system, 2002. http://cs.gmu.edetlab/projects/ecj/.

[11] Koza's GP web site: http://www.genetic-programmaorg.



