
HAL Id: hal-00113035
https://hal.science/hal-00113035

Preprint submitted on 14 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutionary robotics : anticipation and the reality gap
Cédric Hartland, Nicolas Bredeche

To cite this version:
Cédric Hartland, Nicolas Bredeche. Evolutionary robotics : anticipation and the reality gap. 2006.
�hal-00113035�

https://hal.science/hal-00113035
https://hal.archives-ouvertes.fr

Evolutionary Robotics, Anticipation and the Reality Gap

Cédric Hartland and Nicolas Bredèche
IA-TAO team - INRIA Futurs, LRI/CNRS

Universit́e de Paris-Sud
F-91405 Orsay Cedex, France
{hartland, bredeche}@lri.fr

Abstract— Evolutionary Robotics provide efficient tools and
approach to address automatic design of controllers for auto-
mous mobile robots. However, the computational cost of the
optimization process makes it difficult to evolve controllers
directly into the real world. This paper addresses the key
problem of tranferring into the real world a robotic control ler
that has been evolved in a robotic simulator. The approach
presented here relies on the definition of an anticipation-enabled
control architecture. The anticipation module is able to build a
partial model of the simulated environment and, once in the real
world, performs an error estimation of this model. This error
can be reused so as to perform in-situ on-line adaptation of robot
control. Experiments in simulation and real-world showed that
an evolved robot is able to perform on-line recovery from several
kind of locomotion perturbations.

I. I NTRODUCTION

Evolutionary Robotics provide an approach towards build-
ing efficient controllers for autonomous (mobile) robots in
the context of sparse, noisy and delayed rewards[1]. This is
possible thanks to extensive use of evolutionary algorithm, a
stochastic population-based optimization process[3], inorder
to optimize, for example, artificial neural networks based
control architecture. However, such optimization algorithms
require high computational resources. As a consequence,
optimization is usually performed in a simulated environment
and often end up with behaviors that cannot be implemented
into an autonomous robot in the real world.

In this paper, we address the key problem of behavior
transfer from simulation to the real world in the context of a
task-optimized mobile autonomous robot, sometimes refered
to as thereality gap[8]. More precisely, we are concerned
with adaptive on-line calibration process wrt. locomotion
perturbations : calibration issues, partial hardware and/or
software failure, medium and long lasting changes in the
environment, etc.

Our approach relies on the use of an anticipation mech-
anism that makes it possible to capture specificities of the
simulated world where optimization took place. The anticipa-
tion mechanism is then able to quantize the actual locomotion
error in the real world with regards to intended motor outputs
from the controller. It is then possible to use this error signal
in order to perform on-line adaptation to recover from several
kind of motor calibration error and/or medium- and long-
lasting motor noise.

In the following section, we present the problem setting and
review the litterature for possible candidate solutions. Next,

we describe an approach based on training an anticipation
mechanisms in order to modelize the simulated environment
and, in a later step, to approximate the error of this model with
regard to robot’s behavior in the real world. This mechanism
makes it possible to adaptively correct motor outputs so as to
comply with the robot physical dynamics in the real world.
In section IV, our approach is experimentaly validated for
an evolved wall-avoidance behavior and several experiments
show the robustness towards different kind of locomotion
perturbations.

II. PROBLEM SETTING AND RELATED WORKS

The Evolutionary Robotics [1] approach addresses the
problem of automatic design of robotic controllers by relying
on evolutionary algorithms, i.e. population-based stochastic
optimization algorithms. Such algorithms are particularly well
fitted when the objective function (i.e. the task) is difficult to
describe. These stochastic optimization algorithms perform
on a generational basis (i.e. optimization at stepi depends
on stepi − 1) and rely on the exploration of the space of
possible solutions through a population of candidate solutions
by combining selection operators (most fitted candidates are
likely to survive from one generation to another) and ideally
well-suited variation operators (candidates may be recom-
bined and/or altered to diffuse supposedly good characteristics
as well as to efficiently explore the search space). These
algorithms have been shown to be very efficient and to
achieve human-competitive results on numerous problems
where standard learning algorithm are difficult to apply1,
which is a key advantage in robotics.

However, controller optimization has long been rightfully
criticized because of a poor modelization of the robot physical
behavior in the real world. Short and long-term perturbations
are either ignored or loosely modelized within the simulator
because of the task extreme difficulty[6], [8]. Hence, evolved
controllers are very difficult to implement in a real world
robot and experiments are usually limited to simulated envi-
ronments.

In the scope of this paper, we are concerned with loco-
motion perturbations in the real world. In this context, it
is possible to identify several kind of perturbations, most
of them (except no.2) resulting in a stable or changing
directional bias during locomotion:

1see [11] for examples

1) calibration perturbation depending on wheels or mo-
tor characteristics at initialization (diameter, power,
etc.);

2) punctual perturbation that occurs more or less fre-
quently, but are always very limited in time (e.g.
slip/sliding, collision, etc.);

3) long-lasting changedue to a partial motor failure (e.g.
minor hardware failure, lasting energy supply problem,
external perturbation, change in the wheel texture, etc.);

4) intensity-changing perturbation (e.g. ongoing loss of
energy for one motor, agravating motor problem, etc.).

Among these possible perturbations, it should be noted
that the second one is usually easy to handle by controllers
thanks to immediate recovery and does not need adaptation
(i.e. a single motor command towards the other direction may
compensate sliding). However, all other perturbations cannot
be adressed in such a way since non-adaptive controllers
would oscillate between goal-oriented control and error com-
pensation (see section IV for an experimental illustration).

One extreme approach is to evolve controllers directly on
real robots. While this makes it possible to completely avoid
the problem at hand, it is extremely time consuming both from
the robot viewpoint (for obvious reason, evolution in the real
world is much slower than in a simulated environment) and
from the human supervisor viewpoint (who has to deal with
everything from minor annoyances, major software/hardware
failures and coffee breaks). For example, the experiment
described in [7] took more than 27 hours to perform a single
evolution - note that a similar evolution could be performed
in less than twenty minutes on today Personal Computers.

In a slightly different setup, some works have adressed the
problem of adaptiveness to lasting changes in the scope of
evolutionary robotics. The work presented in [4] addressesthe
problem of evolving an autonomous mobile robot controller
for exploring a simple arena. During evolution, environmental
variation is modified inbetween each generation (”night” and
”day” alternate) and leads to a change in the IR proximity
sensors behavior. The controller is a neural network with
four inputs (IR sensors) and four outputs (two motor outpus,
and two ”models”). In fact, this network is divided in two
parts: (1) the control network produces the motor output
and (2) the model network (an oracle) produces thedesired
motor outputs. All weights are evolved, but during evaluation,
control network weights are adjusted (with standard back-
propagation) using the model network output as a reinforce-
ment signal. The authors shows that such a network makes
it possible to quickly adapt to the previously mentionned
perturbations.

However, recent works in [5] show that this approach is
not robust as soon as the robot is runned longer than the
time used for evaluation during evolution (i.e. control network
converge towards model network). The authors propose a new
architecture, based on a neural network controller that embeds
a control network (as previously) and an anticipatory network.
In this case, they show that robustness in the long term is
possible for the same ”night” and ”day” experimental setting.

In this case, the anticipatory network predicted sensor inputs
at t + 1.

While the cited works where concerned with adaptation
towards long-lasting sensor perturbations, the anticipatory
mechanism provide an efficient way to take into consideration
environmental perturbations. Indeed, the main point of such
a mechanism is to provide an error rate of the awaited
consequence of an action on the environment. In the next
section, we show how to exploit this error signal to address
the problem of motor perturbations.

III. A PPROACH

In the scope of evolving a controller within a simulated
environment, we propose to build a partial model of this
very simulated environment. The goal of such a model is
to be able to provide a basis for detecting anomalies (i.e.
perturbations) once the robot is immersed in the real world.
That is, we intend to build an error detector rather than an
exact model of the world. Biologists have long been aware
of the role of anticipation in animals and the ability of
such a module to perform agent and/or world behavior error
detection. Formally, the anticipation function (Fanticipation)
is defined as:
∀t ∈ T , Fanticipation(ω(statet)) → θ(statet+1)

With state∗ defining all possible information that charac-
terize the robot in its environment (e.g. sensory inputs, action
outputs, proprioceptive information, memory, etc.) and with
ω andθ as functions that perform a selection on a subpart of
all available information in a givenstate of the robot in the
environment (e.g. only IR sensors as inputs and only motor
as outputs).

In the next two sub-sections, we shall define (1) the
anticipation module that predicts the awaited variation be-
tween actual and future state and (2) the correction module
that corrects desired actions so as to cope with possible
perturbations.

A. The Anticipation Module

In a previous section, we showed previous work that relied
on sensory information anticipation[5]. However, locomotion
is mostly independent of the sensors (as far as no obstacle
comes into contact). The question is: how to measure per-
turbation during locomotion? A relevant approach is to rely
on the variation (or difference) between the awaited conse-
quences of an action and the actual observed consequences.
The next question is to identify the relevant sensors from
which to measure such a variation. For example, a proximity
infra-red sensor belt is hardly fitted to do this (perceptual
aliasing, very noisy - it is mostly targeted at low-level
object avoidance). However, many sensors provide evaluation
of relative movement in the environment: compass, optical
flow, inertial gyro, external-source odometer (e.g. LED-LDR
circuit), etc. For all these sensors, the anticipation module is
focused on predicting variations between actual and future
sensor values (e.g. compass variation in radians).

Fig. 1. Overview of the control architecture

Figure 1 shows our architecture. The anticipation behavior
predicts the variation in orientation from desired motor out-
puts. At the next step, this variation is then confronted with
the actual observed variation in orientation so as to evaluate a
prediction error, which is finally used to correct and convert
desiredoutputs intoeffectiveoutputs. This architecture shows
two very interesting properties:

1) the anticipation module is completely independent from
other modules and may be trained separately (e.g. using
a simple wander behavior) or in parrallel with another
learning task (e.g. behavior optimization)2;

2) training can be easily performed as a supervised learn-
ing task (regression) where each step provides the
source data from learning stept and the oracle out-
put for learning stept − 1 (∀t), that is : ∀t ∈ T ,
find Fanticipation defined asFanticipation(motort) →
variationt+1. In section IV, we will show that this
training can be easily and quickly achieved using a very
simple neural network predicting compass variation.

B. The Correction Module

According to figure 1, the anticipation signal is used
as a source to correct the desired motor commands, i.e.
efficient commands in a simulated environment. Of course,
this module is added to the architecture after evolution, i.e.
only when the robot is immersed in the real world. In the
following, we are concerned with a two-wheels robot but it
should be noted that extension towards diverse hardware is
rather straight-forward. The following algorithm describes the
correction module :

1) vA = abs(diff(vsval, vaval))
2) vD = sign(diff(vsval, vaval))
3) if (vD > 0) thenα := α ∗ (aS ∗ σ(vA))
4) if (vD < 0) thenα := max(1, α/(aS ∗ σ(vA)))
5) correctedMotorright := desiredMotorright ∗ α
6) correcterMotorleft := desiredMotorleft ∗ (1 − α)

2Training provides a much faster and efficient way to build theanticipation
module compared to manual definition by the supervisor.

Where vs is the variation on the sensors,va is the an-
ticipated variation ont the sensors.α is the corrective value
and adaptiveSpeedaS is the speed at whichα should be
adjusted whenever a prediction error occurs3. Moreover,aS is
multiplied by the normalised and bounded variationAmplitude
vA (thanks to functionσ - maximum threshold is set to avoid
correction oscillations). All values are defined between 0 and
1.

The above algorithm means that the Correction Module
performs on-line adaptation based on the difference between
predicted motor consequences and actual observed motor
consequences on the position of the robot in the real world.
Long-term adaptation is performed by gradually modifying
theα term. This term is used to adjust motor calibration and is
constantly converging toward the (possibly changing through
time) optimal value4.

As a short discussion, two important considerations should
be noted. Firstly, sensors considered here for measuring
variation can be any sufficiently low biased sensor measuring
the consequences of an agent’s action. In the following we
use a compass sensor and a visual landmark to compute the
variation - while not proprioceptive, these sensors are enough
to give information on the actual consequences of motor
control. Of course, an accelerometer or any proprioceptive
sensor could also be used - making it possible to apply
such online adaptation to other kind of robots (e.g. walking
robots, where adaptation is performed on servo-motor control
using angular position). Secondly, the correction function is
limited here to a linear function, but other functions couldbe
considered.

In the next section, we show several experiments in simu-
lation and real world that illustrate our approach.

IV. EXPERIMENTS

A. Implementation Issues

The following experiments were performed with the SIM -
BAD robotic simulator developped in our lab and a Khepera
mobile robot with color camera.

SIMBAD is an open source Java 3d robot simulator for
scientific and educational purposes[9]5. It provides a simple
basis for studying Situated Artificial Intelligence, Machine
Learning, and more generally AI algorithms, in the context of
Autonomous Robotics and Autonomous Agents. Moreover, it
embeds PICONODE, a Neural Network library (feed-forward
NN, recurrent NN, etc.) and can be easily used in conjunc-
tion with any Evolutionary Algorithm library6. We rely on
Sean Luke’s ECJ[10], a powerful Evolutionary Computation
library in Java, for the evolutionary part.

The robot used is an extended khepera7 with the wireless
colour camera, 8 infra-red sensors and 2 motors (i.e. two

3in this case, we assume that variationDirectionvD is positive (negative)
if the robot is biased towards going right (left).

4conergence is guaranteed by the threshold in theσ function.
5The Simbad Package is available from http://simbad.sourceforge.net/

under the conditions of the GPL (GNU General Public Licence).
6Recent versions do indeed provide such a library.
7http://www.k-team.com/

Fig. 2. Evolution environment for the controll

Fig. 3. Fitness function for the control

wheels). The SIMBAD simulator provides a simulated khepera
and control architecture can be switched from simulation to
real world. The robot used in simulation slightly differs from
the real one. The variation sensor for the simulated robot is
provided by a denoised compass while it is provided through
a simple visual tracking algorithm for the real robot. This
algorithm tracks specific landmarks in the environment and
compute orientation variation from the landmark’s movement.

B. Experimental setup

So as to provide a basis for the evaluation of our archi-
tecture, we start with evolving a controller for a given task
and training the anticipation network in the simulator. On the
previously shown figure 1, this means we are successively
concerned with thecontrol moduleand theanticipation mod-
ule.

a) Evolving the Control Module::
The task to be optimized is defined as visiting the maxi-

mum number of places in the environment shown in figure
2. The control moduleis a multi-layered perceptron. The
perceptron have 8 inputs (one for each IR sensor on the
khepera robot) and 2 outputs corresponding to the motor out-
puts (left an right motor). The evolution optimize the weights
on the connections between neurons. Problem properties and
parameters are defined as:

• 15 neurons (8 inputs, 4 hidden, 2 outputs, 1 bias);
• the network is fully connected (46 weights);
• 100 individuals, (20+80)-ES, mutation rate is 0.2;
• environment is divided intoi ∗ j zones to be visited;
• fitness :

– OptimizeF such that
F =

∑n
i=0

(
∑n

j=0
(exploredi,j))

– duration:Tmax.
– exploredi,j is 1 if explored, 0 if not.
– It stops right after a collision (implicit penalization).

Results are shown on figure 3: the robot quickly succeeds
in exploring all places.

Fig. 4. Error rate during the learning

b) Training the Anticipation Module::
As seen in the previous section, theanticipation module

can be trained using desired motor commands at timet as
input and observed orientation variation at timet + 1 as
output. The goal is to predict as accurately as possible the
future state of the robot in the world, and then compare
it to the effective state of the world. The error rate of
the anticipation mechanism should be low in the simulated
environment, and unknown at first in the conditions of a real
environment. In this case, two situations arise: either it is low
(simulation was accurate), or it is high, allowing to detect
noise and perturbation and enabling thecorrection moduleto
act accordingly (see previous section).

This is indeed a simple straight-forward regression learning
task (Rn → R1). In order to perform this regression task,
the anticipation mechanism is implemented as a multi-layer
perceptron with 2 inputs (motor commands) and one output
(orientation variation). Weights between neurons are learned
using the standard back-propagation learning algorithm.

First, 1.000.000 examples are extracted from random wan-
der controls of the robot in the simulator. Then, learning is
performed on a subset of the examples and tested with another
subset - despite the great number of examples, learning is al-
ways performed in less than 10 seconds. Learning is repeated
10 times to get a good accuracy of learning performance.
Several topologies were tested, from 0 hidden node to 20
hidden nodes (not shown here) - best results are archieved by
the network with no hidden layer (see fig. 4), which is not
really surprising (this is a rather straight-forward mapping).

c) Adding the Correction Module::
Once both modules are completed, we add thecorrection

moduleand put our architecture to the test. This means that
no evolution/learning take place anymore, only adaptation
occurs in thecorrection module. In the following, we present
four experiments: (1) On-line calibration correction; (2)On-
line adaptation to continuous wear; (3) On-line adaptationto
changing environmental noise and (4) On-line adaptation for
a real-world robot.

The three first experiments are performed in simulation:
different kind of perturbations are added in the simulatorafter
evolution is completed and the adaptation ability is evaluated.
The orientation sensor is based on an on-board compass. The
final experiment is performed using a real Khepera robot
and on-line adaptation is evaluated for a simple go-forward

Fig. 5. go-forward behavior. left: without correction, middle: with correc-
tion, right: prediction error

behavior. In this case, change of orientations are detected
using visual tracking of a landmark - this results in the same
architecture, only Khepera robot do not provide compass. It
is important to note that from the controler viewpoint, the
type of value is interpreted in the exact same fashion (i.e. a
change of orientation). As a consequence, an evolved robot
using compass can be implemented straight-forward in a real
robot using visual tracking as long as normalization is the
same.

In all the following experiments, robot locomotion traces
are shown along with the prediction error - in the case of
non-anticipation-based correction controllers, anticipation is
nevertheless computed, albeit not used, so as to plot the
prediction error. In order to address validation issues, all
experiments were performed more than 20 times to get
reliable results. Summary of results as well as illustrative
robot trace examples will be shown.

C. On-line calibration correction

The first problem to address in a real environment deals
with the initial calibration of the robot. We evaluate it in
the case (1) of a hand-written go-forward controller and (2)
of the evolved controller. Figures 5 and 6 respectively show
the results for both setting. In both cases, the anticipation
module provide a clear correction and control quickly con-
verge to the awaited behavior. Then again, the figures show
that anticipation error decrease over time as adaptation is
performed. In the case of the evolved controller, error peaks
occur when avoiding a wall - this is due to the lack of
examples of wall-encounter during the training and is not
an issue since prediction error is quickly reduced afterwards.
Albeit not an issue, this can be reduced by oversampling such
examples when learning anticipation (i.e. in the current setup,
situations when the robot turns are much less frequent than
going straight-forward. This lack of examples leads to greater
prediction error in this case).

D. On-line adaptation to continuous wear

This second experiment addresses the problem of continu-
ous wear: a wheel which diameter or motor power decreases
over time. In this setup, perturbation intensity increasesin the
form of a logarithmic function over time, until a threshold is
reached. The correction mechanism is exactly the same as be-
fore and same tests are performed (hand-written and evolved

Fig. 6. evolved behavior samples. left: without correction, middle: with
correction, right: average prediction error on 10 runs.

Fig. 7. behaviors for continuous wear. left: ad-hoc withoutcorrection,
middle-left: ad-hoc with correction, middle-right: evolved without correction,
right: evolved with correction

controllers). For both experiments, the error is quite important
at first, and the anticipation-based correction quickly correct
accordingly and keeps on correcting to maintain the prediction
error as low as possible. Results are shown in figures 7 and
8. Note that correction for the evolved behavior makes it
possible to avoid a crash (see fig.). As stated in section IV-C,
the occasional peaks can be reduced thanks to over-sampling
when learning anticipation (results not shown here).

E. On-line adaptation to changing environmental noise

In this third experiment, we are concerned with the ro-
bustness towards perturbation changing through time (e.g.
non-homogeneous grip due to environmental changes). In
order to achieve this, we alternatively increase and decrease
perturbations on both the wheels, i.e. the error increase and
decrease on the left wheel, then on the right wheel, and
so on. The results on figure 9 shows the case when no
correction is added. this figure also shows the same situation
with correction: we can see an adaptation of the behavior and
only few errors occur. This is due to a quick alpha variation
from the anticipation mechanism.

Fig. 8. prediction error for continuous wear. left: ad-hoc straight-forward
behavior, right: evolved behavior.

Fig. 9. Left: prediction error for changing environmental noise. Right: alpha
correcting value is adapted over time.

Fig. 10. Real robot error rates for one example. The error grows with time
due to a continuous noise on one wheel. With the anticipationcorrection,
the control is adapted continously so that the error remain low.

F. On-line adaptation for a real-world robot

In this final experiment, we reproduce the same setup as
before on a real Khepera robot with a 2D camera (see section
IV-A). Perturbation is that of the real world, the controller is
a simple go-forward ad hoc behavior and theAnticipation
Module is trained as before in simulation8. The orientation
sensor is implemented using a visual tracking algorithm which
tracks a red landmark in the environment. The robot is placed
in straight line in front of the red landmark. Figure 11
respectively show the behavior of the robot without and with
anticipation-based correction. In order to compare the two
settings, we compute the cumulative prediction error over
time that is given by the anticipation module in both case (see
fig. 10 - in the setup where no anticipation-based correction
is done, anticipation is computed to plot the prediction error
but not used). This experiment has been performed ten times,
always leading to similar results (only one result shown here).
It is clear that the anticipation and correction modules areable
to reduce the prediction error and make it possible to maintain
the right direction. In some other experiments (not shown
here), we used a khepera robot with a greater perturbation
on the left wheel - the anticipation module succeeded in
maintaining the right direction while in the standard setup,
the robot quickly deviated from its original trajectory and
ended bumping into nearby wall.

V. CONCLUSION

In this paper, we have adressed the difficult problem
of transferring a simulation-based evolved controller to an

8i.e. The Anticipation module was trained using a wandering behavior.
Thus, the Anticipation module is dependent with regards to the environment
rather than to a specific behavior.

Fig. 11. Example with low perturbation - 2 left images: go-forward without
correction - 2 right images: go-forward with correction

autonomous mobile robot in the real world. This is a key
problem in Evolutionary Robotics since evolved controllers
are rarely used in real robots because of the difficult task of
exactly simulating what is relevant from the real world.

The main contribution of this paper is to propose a new
generic control architecture for Evolutionary Robotics that
relies on an anticipation module so as to perform on-line
adaptation towards locomotion perturbations. This module
is learned during evolution and then used during real-world
operation to correct output commands from the task-oriented
evolved controller.

Experiments showed that this anticipation module is able
to capture part of the simulated world model and makes
it possible to compute a prediction error between awaited
and actual consequences of an action in the real world.
This prediction error was shown as a key feature for on-line
adaptation towards several kind of perturbations and failures.

Future works include more real-world studies of the adap-
tive capacity of the proposed architecture in the scope of using
more generic and reliable orientation variation sensors such
as optical flow based sensor rather than compass or visual
tracking sensor. We also intend to extend our approach to
the case of more complex robotic systems such as legged
robot, where such anticipation module may be used for failure
detection and recovery.

REFERENCES

[1] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT Press, 2000.
[2] R. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation, Vol. 2, No. 1, pp.14-23 1986.
[3] D. Goldberg. Genetic Algorithms in search. Addison-Wesley, 1989.
[4] S. Nolfi and D. Parisi. Auto-teaching : networks that develop their own

teaching input. Proceedings of the second ECAL, 1993.
[5] N. Godzik, M. Schoenauer and M. Sebag. Robustness in the long run

: Auto-teaching vs. Anticipation in Evolutionary Robotics. Proceedings
of PPSN, 2004.

[6] U. Nehmzow. Quantitative analysis of robot-environment interaction -
on the difference between simulations and the real thing. InProceedings
of Eurobot, 2001.

[7] O. Miglino, S. Nolfi, H. Hautop Lund. Evolving mobile robots in
Simulated and real environments. Artificial Life 2 (417-434) 1995

[8] N. Jakobi, P. Husbands, I. Harvey. Noise and the reality gap : the use of
simulation in evolutionnary robotics. Lecture Notes in Computer Science
1995

[9] L. Hugues, N. Bredeche. Simbad : an Autonomous Robot Simulation
Package for Education and Research. Proceedings of The Ninth Inter-
national Conference on the Simulation of Adaptive Behavior(SAB’06),
Roma, Italy.

[10] S. Luke. ECJ: A java-based evolutionary computation and genetic
programming system, 2002. http://cs.gmu.edu/∼eclab/projects/ecj/.

[11] Koza’s GP web site: http://www.genetic-programming.org.

