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Abstract: We present a structural analysis for sensor location in the Fault
Detection and Isolation problem. We deal with this problem when the system
under consideration is structured, that is, the entries of the system matrices
are either fixed zeros or free parameters. With such structured systems one can
associate a graph. We define in this graph a set of separators (Input Separators)
which allows us to get sets of system variables in which additional sensors must
be implemented to solve the considered FDI Problem. It is shown that these
separators parameterize all the solutions, and allow to choose among a set of
potential additional sensors to solve the FDI problem.

Keywords: Linear systems, Structured systems, Fault detection and isolation,
Sensor location selection.

1. INTRODUCTION

The Fault Detection and Isolation (FDI) problem
has received considerable attention in the past ten
years (Chen and Patton, 1999; Frank, 1996). It
consists of building residuals from the available
data and isolating, whenever possible, the faults
using the residuals. When this FDI problem is not
solvable with the existing sensors we look for a
solution using additional sensors, see for example
(Raghuraj et al., 1999).
We consider the FDI problem in the framework of
structured linear systems which represent a large
class of parameter dependent systems (Lin, 1974;
Dion et al., 2003). Structured systems can be
described by graphs and simple properties of these
graphs will allow us to get interesting structural
information on the system. The FDI problem has
been tackled in this context and a reduced sys-

tem where the fault free additional sensors should
be implemented has been determined (Commault
and Dion, 2007).
In this paper we prove that a set of separators
(Input Separators) in the graph of the system
characterizes fully the considered FDI problem
and give a necessary and sufficient solvability con-
ditions in terms of number of additional sensors
measuring variables between faults and separa-
tors in the associated graph. We show that these
results allow to choose among a set of potential
additional sensors to solve the FDI problem.
This paper is an extension of preliminary results
(Commault et al., 2006) where only necessary
conditions were given.
The paper is structured as follows. The problem
is formulated in Section 2. Structured systems are
presented in Section 3. In Section 4, we define
Input Separators and give their properties. Appli-



cation to the sensor location problem is performed
in Section 5. Concluding remarks end the paper.

2. PROBLEM FORMULATION

2.1 Observer-based FDI problem

Let us consider the following linear time-invariant
system :

Σ

{

ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)

. (1)

where x(t) ∈ R
n is the state vector, f(t) ∈ R

r the
fault vector and y(t) ∈ R

p the measured output
vector. A,C,L and M are matrices of appropriate
dimensions.
A dedicated residual set is designed using a bank
of r observers for system (1), according to the
dedicated observer scheme (Chen and Patton,
1999).
The ith observer of this bank of r observers is
designed for a system of type (1) as follows:

˙̂x
i
(t) = Ax̂i(t) +Ki(y(t)− Cx̂i(t)), (2)

where x̂i(t) ∈ R
n is the state of the ith observer,

Ki is the observer gain to be designed such
that x̂i(t) asymptotically converges to x(t), when
f(t) = 0.
The residuals are defined as :

ri(t) = Qi(y(t)− Cx̂i(t)), for i = 1, . . . , r, (3)

where Qi is a 1× p matrix.
Let us state now our FDI diagnosis problem.

FDI problem The bank of observer-based FDI
problem consists in finding, if possible, matrices
Ki and Qi, such that, for i = 1, 2, . . . , r, A−KiC

is stable, and the fault to residual transfer matrix
is non zero, proper and diagonal.

2.2 Sensor location for FDI

Consider again the system (1). Often the above
defined FDI problem has no solution using only
the existing sensors on the system. In this case we
consider new sensors which could be implemented
on the system. We assume that these new sensors
are fault free.
Consider the composite system denoted by Σc.

Σc







ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)
z(t) = Hx(t) + Pf(t)

, (4)

where the output vector z collects the new mea-
surements.

If additional sensors are necessary we look for
an implementation which minimizes their number,
and give results concerning the additional sensors
location. Our study will be achieved in the frame-
work of structured systems that we introduce now.

3. LINEAR STRUCTURED SYSTEMS

We will consider models based on the available
physical knowledge on the system. These models
capture the relations between internal variables
but without fixing the precise value of the pa-
rameters. Frequently, starting from a nonlinear
dynamical model of a system one gets linearized
models around different set points which share the
same structure but with different parameter val-
ues. A distillation column example is worked out
in (Commault and Dion, 2006). This is illustrated
in Figure 1 where a nonlinear model is linearized
around two different set points.
Such models which incorporate prior knowledge
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Fig. 1. Nonlinear system

on the structure have been often used in the liter-
ature see e.g (Lin, 1974; Meyer et al., 1994; Blanke
et al., 2003)
In this paper we will consider linear structured
systems as in (Lin, 1974). We consider linear sys-
tems as described in (1), but with parameterized
entries and denoted by ΣΛ

ΣΛ

{

ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)

. (5)

This system is called a linear structured systems if

the entries of the composite matrix J =

[

A L

C M

]

are either fixed zeros or independent parame-
ters (not related by algebraic equations). Λ =
{λ1, λ2, . . . , λk} denotes the set of independent
parameters of the composite matrix J . More de-
tails can be found in (Dion et al., 2003).
For such systems one can study generic properties
i.e. properties which are true for almost all values
of the parameters collected in Λ (Murota, 1987).
A directed graph G(ΣΛ) = (V,W ) can be easily
associated with the structured system ΣΛ of type

(5) where the matrix

[

A L

C M

]

is structured:



• the vertex set is V = F ∪ X ∪ Y where
F , X and Y are the fault, state and output
sets given by {f1, f2, . . . , fr}, {x1, x2, . . . , xn} and
{y1, y2, . . . , yp} respectively,
• the arc set is W = {(fi, xj)|Lji 6= 0} ∪
{(xi, xj)|Aji 6= 0} ∪ {(xi, yj)|Cji 6= 0} ∪ {(fi, yj)|
Mji 6= 0}, where Aji (resp. Cji,Lji,Mji) denotes
the entry (j, i) of the matrix A (resp. C,L,M).
Recall that a directed path in G(ΣΛ) from a
vertex iµ0 to a vertex iµq is a sequence of
arcs (iµ0, iµ1), (iµ1, iµ2), . . . , (iµq−1, iµq) such that
iµt ∈ V for t = 0, 1, . . . , q and (iµt−1, iµt) ∈W for
t = 1, 2, . . . , q. If iµ0 ∈ F and, iµq ∈ Y , P is called
a fault-output path. If i0 ∈ V1 and, il ∈ V2, where
V1 and V2 are two subsets of V , P is called a V1-V2
path. Moreover, if i0 is the only vertex of P which
belongs to V1 and il 6= i0 is the only vertex of
P which belongs to V2, P is called a direct V1-V2
path.
A set of paths with no common vertex is said to
be vertex disjoint. A V1-V2 linking of size k is a
set of k vertex disjoint V1-V2 paths. A linking is
maximal when k is maximal.
Consider now composite system as defined in (4).
All the previous definitions can be extended to the
composite structured system Σc

Λ
with associated

graph G(Σc
Λ
) where Σc

Λ
is defined as

ΣcΛ







ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)
z(t) = Hx(t) + Pf(t)

. (6)

In this paper we will consider that ΣΛ is struc-
turally observable (Lin, 1974; Murota, 1987).
Give now the result concerning the diagonal FDI
problem by using a bank of observers, which was
stated first in (Commault et al., 2002).

Theorem 1. Consider the structurally observable
system with r faults ΣΛ as defined in (5) and the
associated graph G(ΣΛ). The bank of observer-
based diagonal FDI problem, is generically solv-
able if and only if:

k = r, (7)

where k is the size of a maximal linking in G(ΣΛ).

4. INPUT SEPARATORS

Consider the graph G(ΣΛ) = (V,W ) of a struc-
tured system of type (5) with vertex set V and
edge set W .

Definition 2. (van der Woude, 2000) A separator
S is a set of vertices such that any fault-output
path has at least one vertex in S. The dimension
of a separator is the number of vertices in S.

Define now a particular set of separators which
will be useful in the sequel.

Definition 3. A separator S of dimension d is
an input separator if for any separator S ′ of
dimension d′, such that any direct path from faults
to S contains a vertex in S′, we have d′ > d.

This means that a separator is an input separator
if there is no separator of lower or equal dimension
between faults and this separator.
Among all the input separators, the input sep-
arator which has the minimal dimension can be
proved to be unique. It is called the minimal input
separator and denoted S∗ (van der Woude, 2000).
S∗ can be obtained using standard maximum flow
algorithms as the Ford and Fulkerson algorithm
(Hu, 1982). The dimension of S∗ is equal to the
maximal size of a fault-output linking in G(ΣΛ).
S∗ is indeed the first bottleneck between faults
and outputs. S∗ may contain fault, state and
output vertices.
We will give now a characterization of the input
separators.

Proposition 4. Consider the structured system
ΣΛ and its associated graph G(ΣΛ).
A separator S of dimension d is an input separator
if and only if:

• There exists a F -S linking of size d in G(ΣΛ).
• For any separator S′ such that any direct

path from F to S contains a vertex in S ′, the
maximal size of a F − S′ linking in G(ΣΛ) is
of dimension d′ > d.

Example 1 Consider the structured system ΣΛ

whose associated graph is depicted in Figure 2
From this graph we can remark that:
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Fig. 2. Graph G(ΣΛ) of Example 1

- {y1, y2, y3} is a separator of dimension 3. but it
is not an input separator because there are other
separators of dimension 2 and 3 between the faults
and this separator.
- {x3, x4},{x1, x2}, are two separators of dimen-
sion 2, and {x1, x2} is an input separator of min-
imal dimension and it is then the minimal input
separator S∗ of the system.
- S1

3={f1, f2, x2}, S
2
3 ={f3, f4, x1}, are input sep-

arators of dimension 3.



Definition 5. Consider the structured system ΣΛ

with its associated graph G(ΣΛ). Consider two
separators S and S′ of G(ΣΛ). Let Ts (resp. Ts′)
be the set of all vertices in any direct path from
F to S (resp.S′) in G(ΣΛ) except for the vertices
of S (resp.S′). We will say that S is greater than
or equal to S′, S Â S′ if Ts ⊂ Ts′ .

For example in Figure 2, we can get:
-{f1, f2, f3, f4, x6} is the set associated with the
separator {x2, x5, x7}.
-{f1, f2, f3, f4, x5, x6, x7} is the set associated
with the separator {x1, x2, x3, x4}.
-{f1, f2, x5, x7} is the set associated with the sep-
arator {x1, f3, f4}.
-{x2, x5, x7} Â {x1, x2, x3, x4}.
-{x1, f3, f4} Â {x1, x2, x3, x4}.
-{x2, x5, x7} and {x1, f3, f4} are not comparable.

5. APPLICATION TO THE SENSOR
LOCATION PROBLEM IN FDI

5.1 Structural analysis for the sensor location

problem

We will now use the properties of separators to
tackle the sensor location problem and give a
necessary condition expressed in terms of number
of additional sensors (Commault et al., 2006).

Theorem 6. Consider the linear structurally ob-
servable system ΣΛ defined by (5) with its asso-
ciated graph G(ΣΛ). Consider a separator S of
G(ΣΛ) and its associated set Ts defined in Defi-
nition 5. Consider the composite system Σc

Λ
with

additional measurements z(t) defined in (6) and
its associated graph G(Σc

Λ
). The FDI problem on

Σc
Λ
has a solution only if there are at least r − d

additional sensors which measure vertices of Ts,
where d is the dimension of the separator S and r

the number of faults.

Applying Theorem 6 to S∗ the minimal input
separator, we get the following: (Commault and
Dion, 2007).

Corollary 7. The minimal number of additional
sensors we have to add to solve our FDI problem
is equal to r − k. where k is the dimension of S∗.
These sensors must measure variables in Ts

∗.

Definition 8. Consider the structured system ΣΛ

with its associated graph G(ΣΛ). Consider a sepa-
rator S of G(ΣΛ) and its associated set Ts. Define
the constraint associated with S as the minimal
number of sensors that should measure vertices in
Ts to solve the FDI problem.

From Theorem 6 this minimal number of sensors
is equal to r−d where r is the dimension of F and
d is the dimension of S.

Proposition 9. Let S1 and S2 be two separators
of dimensions d1 and d2 respectively. The con-
straint associated with the separator S1 implies
the constraint associated with the separator S2 if:
S1 Â S2 and d1 ≤ d2.

Proof

Let TS1
and TS2

be the sets associated with
S1 and S2. Assume that TS1

⊆ TS2
and d1 ≤

d2. Compare the two constraints associated with
S1 and S2. The constraint associated with S1

tells us that at least ν1 = r − d1 new sensors
should measure vertices of TS1

. The constraint
associated with S2 tells us that at least ν2 =
r − d1 new sensors should measure vertices of
TS2

. As d1 ≤ d2 then ν1 ≥ ν2 and as TS1
is

a subset of TS2
, it follows that when the con-

straint associated with S1 is respected, the con-
straint associated with S2 will be satisfied too.2

For example in Figure 2, we have:
-The constraint associated with the separator
{x2, x5, x7} says that at least one new sensor
should measure vertices in {f1, f2, f3, f4, x6} to
solve the FDI problem.
-The constraint associated with the separator
{x1, f3, f4} says that at least one new sensor
should measure vertices in {f1, f2, x5, x7} to solve
the FDI problem.
-The constraint associated with the separator
{x1, x2, x3, x4} says that at least zero new sensor
should measure vertices in {f1, f2, f3, f4, x5, x6, x7}
to solve the FDI problem.

Corollary 10. The set of constraints associated
with all the possible separators of G(ΣΛ), is im-
plied by the set of constraints associated with
input separators.

Proof

Consider a separator S of G(ΣΛ) of dimension
d. If this separator in not an input separator,
from Definition 3 there is an input separator
S′ of dimension d′ ≤ d between F and S.
From Proposition 9 the constraint associated with
S′ implies the constraint associated with S.2

For example in Figure 2:
- The constraint associated with the separator
S1 = {x3, x4} is implied by the constraint asso-
ciated with the separator S2 = {x1, x2} because
TS1

={f1, f2, f3, f4, x1, x2, x5, x6, x7}, TS2
=

{f1, f2, f3, f4, x5, x6, x7} and TS2
⊆ TS1

.
- The constraints associated with the two separa-
tors of dimension 3, S1 ={x1, f3, f4}, S2 =



{x2, f1, f2} are not comparable with our relation
order because neither TS2

6⊆ TS1
nor TS1

6⊆ TS2
.

Now state our main result which parameterizes
all the solutions of the sensor location problem in
FDI in terms of input separators.

Theorem 11. Consider the linear structurally ob-
servable system ΣΛ with r faults defined by (5)
with its associated graph G(ΣΛ). Consider the
composite system Σc

Λ
with additional measure-

ments z(t) defined in (6) with corresponding ver-
tex set Z and its associated graph G(Σc

Λ
). The

FDI problem on Σc
Λ

has a solution if and only
if for any input separator S of G(ΣΛ) with as-
sociated set TS defined in Definition 5 there are
at least r − d additional sensors which measure
vertices of Ts, where d is the dimension of S.

Proof

Necessity follows from Theorem 6.
Sufficiency: Assume that after adding r − k addi-
tional sensors we do not have a solution for the
FDI problem, where k is the dimension of the
minimal input separator S∗ of G(ΣΛ). This means
that we do not have a linking of dimension r be-
tween F and Y ∪Z. The minimal input separator
S∗

c of the graph G(Σc
Λ
) of the extended system has

dimension kc < r.
Denote by µ the dimension of Z ∩ S∗

c . Define the
set S̄∗

c = S∗

c \(Z ∩ S∗

c ) of dimension kc − µ. Prove
now that the set S̄∗

c is a separator of G(ΣΛ).
Assume that there exists a F − Y path with no
vertex in S̄∗

c . This path can not have a vertex in
Z then this path has no vertex in S∗

c . This contra-
dicts the fact that S∗

c is a separator of G(Σc
Λ
) and

then any F − Y path has a vertex in S̄∗

c which is
then a separator of G(ΣΛ).
Consider now an additional sensor z in Z\(Z∩S∗

c ).
Assume that such a sensor measures a vertex in
TS̄∗

c

. There would exist a path from F to z with
no vertex in S∗

c contradicting the fact that S∗

c is a
separator of G(Σc

Λ
). Then the additional sensors

in Z\(Z ∩ S∗

c ) measure no vertex in TS̄∗
c

and the
maximal number of sensors measuring vertices
in TS̄∗

c

is µ. The constraint associated with the

separator S̄∗

c tells us that the minimal number
of additional sensors which measure vertices in
TS̄∗

c

is r − dim(S̄∗

c ) = r − (kc − µ). Since kc < r

this number is greater than µ which leads to a
contradiction.
Using Corollary 10 it follows that there exists an
input separator for which the constraint is also vi-
olated. 2

Example 2 : This is a very simple academic exam-
ple which allows to illustrate the basic concepts
and results of the paper. Consider the structured
system with 6 faults and 3 outputs whose graph
is depicted in Figure 3. One has:

- The separator {f6, y1, y2} is the minimal input
separator and it is of dimension 3 so the minimal
number of additional sensors needed for any so-
lution of the FDI problem is 6 − 3 = 3. From
Corollary 7 additional sensors measuring vertices
only in the set {y1, y2, y3, x4, f6} are useless for
the sensor location problem.
From now on we consider only minimal solutions.
i.e solutions with three additional sensors.
- The input separators of dimension 4 are:
{y1, y2, f1, f6}, {y1, y2, f2, f6}, {y1, y2, f3, f6},
{y1, y2, f4, f6}, {y1, y2, f5, f6},{y1, y2, x1, f6}. The
constraints associated with these separators tell
us that two different sensors can not measure only
{f1} or {f2} or {f3} or {f4} or {f5} or {x1} or
{f4 and x2} or {f5 and x3}.
- The input separators of dimension 5 are:
{f1, f2, f3, f6, y2}, {f3, f4, f5, f6, y1}, {y1, y2, f1,
f4, f6}, {y1, y2, f1, f5, f6}, {y1, y2, f2, f4, f6},
{y1, y2, f2, f5, f6}. The constraints associated with
{f1, f2, f3, f6, y2}, (resp. {f3, f4, f5, f6, y1}) tell us
that at least one additional sensor should measure
vertices in {f4, f5, x2, x3}, (resp. {f1, f2, x1}).
- The input separator of dimension 6 is:
{f1, f2, f3, f4, f5, f6}.
We remark also that the constraints associated
with the separators: {y1, y2, f1, f4, f6}, {y1, y2, f1
, f5, f6}, {y1, y2, f2, f4, f6}, {y1, y2, f2, f5, f6}, are
implied by the constraints associated with the
previous input separators, and they do not provide
more information for the sensor location problem.

5.2 Choice of additional sensors

In practice only some variables (or linear combi-
nation of variables) are available for measurement.
It follows that for a given system only a limited
number of additional sensors is implementable. In
this part we will start with a given set of available
additional sensors z(t) as in (6). In this case the
sensor location problem amounts to choose in this
set the sensors to be implemented for solving the
FDI problem. We will illustrate this on the pre-
vious example with a set of potential additional
sensors Z = {z1, z2, z3, z4, z5} that measure ver-
tices in G(ΣΛ) as illustrated in Figure 4.
Using the previous analysis we have the following
properties:
- First we can check if the FDI problem is solvable
using Theorem 1 on the graph G(Σc

Λ
). The pro-

posed set of additional sensors is a solution for the
FDI problem, since with these additional sensors
we have a F -{Y ∪Z} linking of size r = 6.
- From Corollary 7 we need at least r−k additional
sensors which should measure variables in TS∗ . In
our example this condition is satisfied since four
additional sensors measure variables in TS∗ .
- For the FDI problem the additional sensors
which measure variables only outside TS∗ are use-
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Fig. 3. Graph G(ΣΛ) of Example 2
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Fig. 4. Graph G(Σc
Λ
) of Example 2 with 5 addi-

tional sensors.

less. The additional sensor z5 measures only x4
which does not belong to TS∗ , z5 is then a useless
sensor for the FDI problem.
- Among the useful additional sensors it turns
out that some belong to any solution, they are
called essential while others not. In our example
the two sensors z3 and z4 can not belong to a
minimal solution at the same time. This follows
from the constraint associated with the separator
{y1, y2, f4, f6}. It follows that the sensors z1 and
z2 are essentials.
-The only two minimal solutions with three addi-
tional sensors are: {z1, z2, z3} and {z1, z2, z4}.

6. CONCLUDING REMARKS

In this paper we have presented a structural anal-
ysis which is well suited for the sensor location in
the Fault Detection and Isolation problem (FDI).
The proposed analysis is based on the associated
system graph and on specific separators.
This prior structural analysis allows to determine

the minimal number of needed additional sen-
sors and the sets of internal variables which will
be of interest to measure for solving our FDI
problem. This analysis provides with a complete
parametrization of all the solutions for the con-
sidered sensor location problem, and allows to
choose among a set of potential additional sensors
to solve the FDI problem.
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